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English summary

For the world as a whole, life expectancy has more than doubled over the past two

centuries. This transformation of the duration of life has greatly enhanced the quantity

and quality of people’s lives. It has fuelled enormous increase in economic output and

in population size, including an upsurge in the number of elderly. Understanding human

mortality dynamics is of utmost importance in the context of rapid ageing and increasing

length of life experienced by most populations nowadays. The present thesis highlights

new and innovative methods for estimating and projecting future mortality levels among

humans.

Three studies have been devised, which develop and analyse relevant statistical models

for addressing uncertainty in future mortality. The studies are in the form of research

manuscripts that are/will be published in scientific journals together with software pack-

ages ensuring the reproducibility of the results. In the first study, a method for forecasting

life expectancy for females and males is developed. To forecast female life expectancy, the

method is based on the analysis of the gap in life expectancy between females in a given

country and females in record-holding countries. To forecast male life expectancy, the gap

between male life expectancy and female life expectancy in a given country is analysed.

In the second study, we explore a new approach inspired by indirect estimation techniques

applied in demography, which can be used to estimate full life tables at any point in time,

based on a given value of life expectancy at birth or at any other age. The third study

makes use of the statistical properties of a probability density function in order to estimate

the distribution of deaths of a population in the future. We employ time series methods

for forecasting a limited number of central statistical moments and then reconstruct the

future distribution of deaths using the predicted moments. The estimation of the density

function is done using the maximum entropy approach.

The results show that mortality modelling can be tackled from different perspectives and

higher accuracy of the future trajectories can be obtained when compared with the more

traditional extrapolative methods based on age specific death rates or probabilities.
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Danish summary

I løbet af de sidste to hundrede år har vi oplevet mere end en fordobling i den forventede

levealder. Denne transformation af levealderen har haft stor betydning for menneskets

livskvantitet og -kvalitet. Det har bidraget til en enorm økonomisk vækst, men også i

forhold til befolkningsstørrelsen, som nu oplever en støt vækst i befolkningen af ældre.

Det er yderst vigtigt, at vi forstår dynamikken bag menneskets dødelighed for at forstå

den hurtige vækst i forventet levealder, som de fleste befolkningsgrupper oplever i dag.

Denne afhandling sætter fokus på nye og innovative metoder til at forudsige den fremtidige

levealder hos mennesker.

Der er gennemført tre studier, som udvikler og analyserer relevante statistiske modeller,

der imødekommer usikkerhed vedr. det fremtidige niveau af dødelighed. Studierne er

gennemført som forskningsmanuskripter, som enten er, eller vil blive, offentliggjort i vi-

denskabelige tidsskrifter sammen med software, som sikrer gengivelse af de opnåede re-

sultater. I det første studie udvikles en metode til at fremskrive den forventede levealder

for mænd og kvinder. For at fremskrive kvinders forventede levealder baseres metoden

på en analyse af afstanden imellem mænd og kvinders forventede levealder i et givent

land. I det andet studie udforskes en ny tilgang, som er inspireret af indirekte estima-

tionsteknikker anvendt indenfor demografi. Denne tilgang kan bruges til at estimere den

komplette overlevelsestavle på et hvilket som helst tidspunkt, baseret på den forventede

levealder ved fødsel eller ved en hvilken som helst alder. Det tredje studie gør brug af

de statistiske egenskaber ved en tæthedsfunktion for at kunne estimere en befolknings-

gruppes fremtidige dødsfaldsfordeling. Vi anvender tidsseriemetoder til at fremskrive et

begrænset antal centrale statistiske momenter for derefter at rekonstruere den fremtidige

fordeling af dødsfald ud fra de fremskrevne momenter. Estimering af tæthedsfunktionen

baseres på maximal entropi metode.

Resultaterne viser, at modellering af dødelighed kan håndteres fra forskellige udgangspunk-

ter og at der opnås større nøjagtighed for fremtidige dødelighedsforløb sammenholdt med

mere traditionelle extrapolerende metoder, baseret på aldersspecifikke dødelighedsrater

eller sandsynlighed for dødsfald.
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Introduction

We may regard the present state of the universe as the effect of its past

and the cause of its future. An intellect which at a certain moment

would know all forces that set nature in motion, and all positions of

all items of which nature is composed, if this intellect were also vast

enough to submit these data to analysis, it would embrace in a single

formula the movements of the greatest bodies of the universe and those

of the tiniest atom; for such an intellect nothing would be uncertain

and the future just like the past would be present before its eyes.

– Pierre Simon Laplace (1825) – A Philosophical Essay on Probabilities

Longevity risk, defined as the risk that people live longer than expected, represents an

important issue for current societies. Although longevity advancements increase the pro-

ductive life span and welfare of millions of individuals, there are also increasing costs for

pay-as–you-go (PAYG) and defined benefits pension systems, threatening the long-term

solvency of financial institutions due to increases in unanticipated future liabilities. Addi-

tionally, if unhealthy life expectancy is extended as a result of improvements in mortality

rates at advanced ages, public health expenditures are affected. To deal with these rapid

changes and avoid negative consequence, academics and professionals alike have acknowl-

edged the significance and necessity of accurately assessing longevity risk. Considerable

effort has been dedicated to finding and developing better methods and mathematical

models to predict the future. These are mainly statistical and epidemiological methods

based on the observation of past trends and on the identification of determinants of the

decline in physiological capacities with age. For instance, Pollard (1987) identified a vari-

ety of predictive models of age-specific death rates based on: projection by extrapolation

of transformation of death-rates and mortality probabilities, projection by cause of death,

projection by reference to model life tables, projection by reference to a law of mortality,

projection by reference to another population, and combinations of these methods.
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If the performance of the proposed methods on the short-term can be subject to de-

bate, in the long run Oeppen and Vaupel (2002) showed that demographers and actuaries

consistently underestimated the increase in life expectancy by embracing unrealistic as-

sumptions or often ignoring the long term trends.

In order to identify, elucidate and quantify future longevity, one must employ forecasting

models that adequately capture the effects of all the moving parts of the mechanism

driving the changes in life expectancy. Even if this is, like Laplace’s vision, an unrealistic

and impossible endeavour, tackling the stochasticity of the evolution of mortality from

multiple perspectives is what validates our predictions.

1.1 History of Mortality Modelling

Modelling human mortality has been an important and active area of research for de-

mographers, insurance mathematicians and medical scholars since Graunt (1662) first

examined mortality in London to produce the first publication that was concerned mostly

with public health statistics. Graunt’s work showed that, while individual life-length was

uncertain, there was a more predictable pattern of mortality in groups and causes of

death. Halley (1693) showed how to actually construct a non-deficient mortality table

from empirical birth-death data and even succeeded in presenting a method to perform a

life annuity calculation based on this table. Such early tables were empirical and calcu-

lation was time consuming. Theoretical mortality modelling first began with DeMoivre

(1725), who postulated a uniform distribution of deaths model, and showed simplified

annuity calculation methods. Taking a biological approach to mathematical modelling,

Gompertz (1825) assumed that the force of mortality µx in adulthood shows a nearly

exponential increase, where the two parameters of his model are positive and vary with

the level of mortality and the rate of increase in mortality with age. The Gompertz model

and its modified version by Makeham (1867), where an additional constant is added to

take into account the background mortality due to causes unrelated to age, were widely

used as the standard models for adult mortality in humans (Kirkwood, 2015; Olshansky

and Carnes, 1997); and then extended further to animal species in general (Sacher, 1977).

2
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Figure 1.1: Mortality modelling timeline

Early discovery of important notions in the field of mortality modelling were made by

Danish scientists like Oppermann (1870) and Thiele (1871), with exposure to actuarial

science and active in insurance companies at that time. However, the recognition of their

work came only many years later because of a combination of factors, ranging from the

publication of the new ideas in inaccessible places and an uncommon language like Danish,

to the lack of interdisciplinary collaboration (Hoem, 1983).

After one century of developments, the structure of the mathematical models became

increasingly complex and capable of accurately capturing all the spectrum of the mortality

intensity experienced by humans. For example Heligman and Pollard (1980) proposed an

eight-component mortality model that fits the entire age range,

µx = A(x+B)C +De−E(log x−logF )2 +GHx. (1.1)

Figure 1.2 shows how this model can fit the entire age-range by decomposing the age-

pattern of mortality into three pieces, each part with a relatively small number of param-

eters to control it. There are three parameters (A, B and C) to describe child mortality,

three to describe a very flexible accident hump (D, E and F) typically occurring in young

adulthood, and finally two parameters (G and H) to describe mortality at older ages. The

3
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Figure 1.2: Observed and fitted death rates between age 0 and 80 for male population in
Sweden. The mortality is extrapolated up to age 100.

main disadvantage of this model is that in its traditional form is difficult to fit and it does

not account for uncertainty.

Siler (1983) developed a five-parameter competing-hazard model in order to capture mor-

tality during “immaturity”, adulthood and senescence and to facilitate inter-specific com-

parison, by assigning location and dispersion parameters respectively for the three im-

portant sections of the mortality curve. Thatcher et al. (1998) performed studies to

fit different mathematical models to different reliable data sets on adult and oldest-old

mortality (aged 80 and above) covering the few recent decades. They evaluated the com-

parative compatibility of those models to the data, established the logistic model as the

best mathematical model of human adult mortality, replacing the widely used Gompertz

model and Makeham model. The logistic model assumes that the force of mortality µx is

a logistic function of age x.

Author Publication Model

De Moivre 1725 µ(x) = 1/(ω − x)

Gompertz 1825 µ(x) = AeBx

Gompertz – µ(x) = 1
σ
exp

{
x−M
σ

}
Inverse–Gompertz – µ(x) = 1

σ
exp

{
x−M
σ

}
/
(
exp

{
e

−(x−M)
σ

}
− 1
)

Makeham 1867 µ(x) = AeBx + C
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Makeham – µ(x) = 1
σ
exp

{
x−M
σ

}
+ C

Oppermann ≤ 1870 µ(x) = AeBx + (C +Dx)e−Ex

Oppermann 1870 µ(x) = Ax−
1
2 +B + Cx

1
2

Thiele 1871 µ(x) = A1e
−B1x + A2e

− 1
2
B2(x−C)2 + A3e

B3x

Wittstein & Bumstead 1883 q(x) = 1
B
A−(Bx)

N

+ A−(M−x)
N

Steffenson 1930 log10 s(x) = 10−A
√
x−B + C

Perks 1932 µ(x) = (A+BCx)/(BC−x + 1 +DCx)

Harper 1936 log10s(x) = A+ 10B
√
x+Cx+D

Weibull 1951 µ(x) = 1
σ

(
x
M

)M
σ
−1

Inverse–Weibull – µ(x) = 1
σ

(
x
M

)−M
σ
−1
/
(
exp

{(
x
M

)−M
σ

}
− 1
)

Van der Maen 1943 µ(x) = A+Bx+ Cx2 + I/(N − x)

Van der Maen 1943 µ(x) = A+Bx+ I/(N − x)

Quadratic – µ(x) = A+Bx+ Cx2

Beard 1971 µ(x) = KAeBx/(1 + AeBx)

Beard–Makeham 1971 µ(x) = KAeBx/(1 + AeBx) + C

Gamma–Gompertz 1979 µ(x) = AeBx/(1 + AG
B

(eBx − 1))

Siler 1983 µ(x) = A1e
−B1x + A2 + A3e

B3x

Heligman–Pollard 1980 q(x)/p(x) = A(x+B)C +De−E(lnx −lnF )2 +GHx

Heligman–Pollard 1980 q(x) = A(x+B)C +De−E(lnx −lnF )2 + GHx

1+GHx

Heligman–Pollard 1980 q(x) = A(x+B)C +De−E(lnx −lnF )2 + GHx

1+KGHx

Heligman–Pollard 1980 q(x) = A(x+B)C +De−E(lnx −lnF )2 + GHxK

1+GHxK

Rogers–Planck 1984 q(x) = A0 + A1e
−Ax + A2e

{B(x−U)−e−C(x−U)} + A3e
Dx

Martinelle 1987 µ(x) = (AeBx + C)/(1 +DeBx) +KeBx

Carriere 1992 S(x) = ψ1S1(x) + ψ2S2 (x) + ψ3S3 (x)

Carriere 1992 S(x) = ψ1S1(x) + ψ4S4 (x) + ψ3S3 (x)

Kostaki 1992 q(x)/p(x) = A(x+B)C +De−Ei(lnx −lnF )2 +GHx

Kannisto 1998 µ(x) = AeBx/(1 + AeBx)

Kannisto–Makeham – µ(x) = AeBx/(1 + AeBx) + C

5



Table 1.1: Main parametrization functions for human mortality

The above models describe mortality at a fixed point in time; however, actual mortality is

stochastic and evolving continuously. Thus, while the mortality models described above

are static, the parameters must be fitted periodically to accommodate changes in mortality

patterns.

1.2 Mortality Forecasting

Since Malthus (1798), demographic forecasting became more prominent, and the desire

to anticipate future changes in the composition and structure of populations lead to the

development of cohort-component forecasting methods. The first to use these techniques

was Cannan (1895), who prepared a cohort component forecast for England and Wales.

By the end of the 1920’s, such forecasts had also been made for the Soviet Union by

Tarasov in 1922 (De Gans, 1999), for the Netherlands by Wiebols (1925), for Sweden by

Wicksell (1926), and for the United States by Whelpton (1928).

At the beginning of the twentieth century, when demographers were developing the cohort-

component forecasting system, statisticians established the foundations of the so called

stationary processes. This theory was based on a linear transformation of white noise.

Although the main features of the theory were essentially perfected by the beginning

of the 1950’s (Doob and Doob, 1953), their practical application in statistics did not

become standard until the publication of Box and Jenkins (1970). Early examples of

their use in demography include Saboia (1974, 1977). The popularity of these methods

is related to their great flexibility, and to the fact that they allow for the incorporation

of effects of changes in behavioural and socio-economic variables in forecasts and permit

the construction of confidence intervals (Tabeau et al., 2001).

Until the 1980s, the mathematical models used in directly forecasting mortality rates or life

expectancy were relatively simple and involved a fair degree of subjective judgement. Over

the past thirty years, a number of new approaches have been developed for forecasting
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mortality using stochastic models such as Alho (1990); Alho and Spencer (1991); McNown

and Rogers (1989, 1992); Bell and Monsell (1991), and Lee and Carter (1992, henceforth

LC). The main advantage of stochastic models is that the output is not a single figure but

a distribution. LC proposes a log-bilinear model for mortality rates incorporating both

age and year effects:

lnm(x, t) = a(x) + b(x)k(t) + ε(x, t) (1.2)

where, m(x, t) is the observed central death rate at age x in year t, a(x) represents the

average age-specific pattern of mortality, b(x) is a pattern of deviations from the age of

profile as the mortality index k(t) varies, and finally ε(x, t) denotes the residual term at

age x and time t.

Lee and Carter’s work has been widely cited and it is also used for long-run forecasts

of age-specific mortality rates by the U.S. Bureau of the Census as a benchmark model,

see Hollmann et al. (1999). Moreover, since that paper, most other models attempting

to assess both time and age evolution of mortality have started with the LC framework.

Numerous papers since Lee and Carter (1992) have tried to improve upon their model by

adding more principal components, or a cohort effect, or any range of similar statistical

quantities. Booth et al. (2006) modify the LC model by optimally choosing the time

period over which to fit the model and adjust the index of mortality, k(t), to fit the

total number of deaths in each year. De Jong and Tickle (2006) reduced the number of

parameters in LC to model mortality rates as a smoothed state space model. Yang et al.

(2010) take a further step and use multiple principal components to expand the LC model.

Chen and Cox (2009) introduce jumps into modelling the state variable, found in Lee and

Carter (1992), to increase goodness of fit measures and price insurance linked securities.

Deng et al. (2012) use a more advanced jump diffusion model to fit the temporal state

variable and Li et al. (2011) identify non-linearities in the temporal state variable. A

cohort effect, which incorporates the year of birth into the model, is added to the LC

model in Renshaw and Haberman (2006). And more recently, Mitchell et al. (2013) used

a methodology similar to LC to model the changes in log mortality rates rather than levels

of log mortality rates.
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On the other hand, a totally different approach to mortality modelling emerged at the

beginning of 2002 when two important articles were published: Oeppen and Vaupel (2002)

and White (2002). Oeppen and Vaupel showed that life expectancy at birth in the record-

holding countries has increased linearly since 1840. White (2002) also found a linear trend

in sexes combined life expectancy in 21 industrial nations from 1955 and 1995. Figure 1.3

shows some details of the probable trajectories of limits and convergence for average life

expectancy over the past four centuries. The vertical bars show the inter-quartile range

of life expectancy for countries containing half the World’s population. These emphasize

three massive changes: rapid improvement in life expectancy, greater symmetry in the

distribution, and the globalization of mortality experience (Oeppen, 2006).

Figure 1.3: Limits and convergence for national average female life expectancy at birth

Source: Oeppen (2006)

According to Oeppen and Vaupel (2002), this linear rise may be the most remarkable

accomplishment of mass human endeavour ever achieved. Yet little research has been done

on why the revolution in human longevity started about 200 hundred years ago, why the

revolution started in Scandinavia, and why progress in increasing record life expectancy
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has been so steady. Both findings, Oeppen–Vaupel and White, challenge the view that

risks of death are fundamental to understanding the future trends of mortality, in a world

dominated by LC type of forecasting models where the main objective is to project the

age-specific death rates and afterwards to derive the other life table measures.

Torri and Vaupel (2012) started to build on this methodology and published a model that

at first forecasts the world’s record life expectancy and then the gap between the record

and the current life expectancy of a particular country/population of interest assuming a

convergence to the forecast record level. Also, the United Nations and US Census Bureau

produces many of its current deterministic projections by extrapolating broad summaries

of population processes, and then breaking them down into age-specific rates using model

schedules and relational models, to yield the age- and sex-specific fertility, mortality, and

migration rates that are required by the standard cohort component population projection

method. And more recently Raftery et al. (2013) propose an approach to forecasting life

expectancy directly using a random walk model with a non-constant drift and a Bayesian

hierarchical model, which allows the estimatimation of different rates of improvement in

life expectancy for each country.
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1.3 Aims

The overall rationale behind this thesis is to provide alternative solutions for demographers

and actuaries to the problem of mortality modelling and forecasting, to estimate mortality

indices and actuarial life tables using the forecasts and to evaluate the applicability of the

solution in a range of settings.

Aim I: To develop a method for forecasting female and male life expectancy based on

analysis of the gap between female life expectancy in a country compared with a

given benchmark and also by assessing the sex-gap evolution. (Paper I).

Aim II: To explore the relationship between life expectancy and age-specific deaths rates

and develop a statistical model inspired by indirect estimation techniques applied

in demography , which can be used to estimate full life tables at any point in time,

based on a given value of life expectancy at birth or any other age. (Paper II).

Aim III: To propose a new method of predicting the death distributions of a certain

population by making use of the properties of statistical moments given by a

density function. (Paper III).

Aim IV: To demonstrate the applicability and accuracy of the developed methods by

creating user-friendly open-source software packages. (R packages).
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1.4 Methods and Data

The present thesis groups a series of new methods and applications in order to reach

the defined aims. A brief description of these methods is provided in this section. The

detailed models are presented in the thesis manuscripts.

1.4.1 Forecasting Life Expectancy

Life expectancy is highly correlated over time among countries and between males and

females. The objective is to construct a model for forecasting life expectancy making

use of the correlations existing among countries and between sexes. Our approach to

forecast life expectancy combines separate forecasts to obtain joint male and female life

expectancies that are coherent with the best-practice trend. The trend used as benchmark

in the manuscript I is that proposed by Oeppen and Vaupel (2002) for females in the

record-holding countries. This trend was used due to its remarkable linear regularity at

age 0.

To predict future life expectancy levels, the benchmark given by the best-practice life

expectancy is identified in order to get a general sense of the direction and the rate of

change in human mortality. The gap between female life expectancy in a given population

and the best-practice trend in the world, Dk,x,t, is forecast using a classic time series model,

thus determining future female life expectancy. The gap between male and female life

expectancy, Gk,x,t is forecast with the help of a mixed model to obtain the country specific

male life expectancy.

OdDk,x,t = µk,x︸︷︷︸
Drift

+

p∑
i=1

φiO
dDk,x,t−i︸ ︷︷ ︸

Regression

+ ε
(1)
k,x,t +

q∑
j=1

θjε
(1)
k,x,t−j︸ ︷︷ ︸

Smoothed noise

(1.3)
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G∗k,x,t =



β0 + β1Gk,x,t−1 + β2Gk,x,t−2︸ ︷︷ ︸
Autoregressive model

+ β3(e
f
k,x,t − τ)+︸ ︷︷ ︸

Level associated with
life expectancy when the gap

starts narrowing

+ε
(2)
k,x,t if, efk,x,t ≤ A,

Gk,x,t−1 + ε
(3)
k,x,t︸ ︷︷ ︸

Random walk

, otherwise.

(1.4)

Once the two gaps are identified and their future trend determined, the core of the pro-

posed double-gap model can be summarized by two equations: first future female life

expectancy at age x, time t and country k, efk,x,t, can be obtained as the difference be-

tween future best-practice life expectancy at that age and time, ebpx,t, and a predicted gap

or distance, Dk,x,t, of the performance of the specific lagging country or region,

efk,x,t = ebpx,t −Dk,x,t. (1.5)

Similarly, future life expectancy for the male population is modelled as the difference

between future female life expectancy and the sex gap, Gk,x,t, in life expectancy,

emk,x,t = efk,x,t −Gk,x,t. (1.6)

The current model is not restricted to the usage of a particular benchmark, countries or

regions. One may decide to use a different trend depending on the best performing model

for each case based on their past evaluation. Also, the choice of the historical frame to be

fitted is as important as the choice of the model. For example, predicting life expectancy

at age 65 based on a trend starting in the 19th century would underestimate the future

improvements in human mortality. No forecasting model is meant to be used in prediction

into an indefinite future. The rate of increase in life expectancy may vary depending on

the selected historical period.
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Figure 1.5: Actual and forecast life expectancy at birth and at age 65 generated by the DG, LC
and CBD models for females and males in the USA, 1950-2050. Prediction intervals at the 80%
and 95% level are shown only for the DG model.

Having simple methods to predict future mortality levels is of high importance because

of the growing significance this field is acquiring in society. Justified by the accuracy and

simplicity demonstrated, the Double-Gap model represents an addition to the existing

family of forecasting models. Today, when so many models exist, the researcher should

probably not work simply with one model or approach to modelling the future, but with a

combination of them. Thus, the Double-Gap model should be considered as a promising

available forecasting tool.

1.4.2 Estimating Age-Specific Death Rates

In predicting demographic processes, such as human mortality, methods involving extrap-

olation of mortality rates or probabilities are the most common approaches. However,

methods based on extrapolating life expectancy directly are very appealing because they

offer the same, or higher, level of forecast accuracy but with the advantage of being

parsimonious, focusing on one variable rather than several.

We have introduced a simple method, the Linear-Link model, to derive the entire schedule

of age-specific death rates, based on a single value of life expectancy and prior knowledge
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of human mortality patterns. Our method can be regarded as a decomposition approach

of the human mortality curve between the general age pattern, βx, and an age-specific

speed of improvement, νx. The method is inspired by: (1) the Log-quadratic model

(Wilmoth et al., 2012) in the sense of using a leading indicator in determining the age

pattern of mortality; (2) the model introduced by Ševčíková et al. (2016) by adopting

an inverse approach to death rates estimation starting from life expectancy; (3) the Lee–

Carter model (1992) using the same interpretation of mortality improvement over time

and age; and finally (4) the Li et al. (2013) method to model the rotation of age patterns

of mortality decline for long-term projections.

The model is based on the observed linearity between age-specific death rates, mx, and life

expectancy at a certain age, eθ. It can be seen as a method that links the life expectancy

at age θ at any point in time to a mortality curve estimated from the death rates mx’s

that return a life expectancy level of eθ. To gain precision in the fitting of the death-rates,

the Linear-Link model can be extended by including additional parameters:

logmx,t = βx log eθ,t + νxk + εx,t for x ≥ θ,

ω∑
x=θ

νx = 1, and νx ≥ 0,
(1.7)

where νx is the speed of mortality improvement over time at age x, k is an estimated

correction factor independent of time and εx,t are independent and identically distributed

random variables normally distributed with mean zero and variance σ2.

The method can be useful in three different situations: future target life expectancy, life

tables for countries with deficient data and historical life table construction.

First, the model can be used in forecasting practice when the level of life expectancy is

forecast first. We showed that this model can accurately reconstruct a Lee–Carter forecast

starting from a single value of life expectancy at birth. This is important, because the

Linear-link model offers the possibility of taking advantage of the more regular pattern of

the life expectancy evolution. It is much easier and more parsimonious, from a technical

14



perspective to forecast one time series of expectation of life than to extrapolate 100 or

110 series of death probabilities corresponding to each age group. In the same manner

adult mortality can be estimated based on a value of life expectancy at an advanced age,

say age 65.

Second, the method can be used to build model life tables and to estimate the current

age patterns of mortality in poor-data countries or regions, like Sub-Saharan Africa. In

this case, the parameters of the model are estimated based on a collection of historical life

tables from several regions or populations. Once the parameters have been estimated, and

implicitly the model life table, they remain fixed. The relevant mortality curve is simply

calibrated in accordance with a single value of life expectancy at birth or any other age

instead of child mortality as in the case of Wilmoth et al. (2012). In our analysis, we

show examples using high quality data from developed countries in order to demonstrate

the efficiency of the model, and to be able to assess the accuracy of the mortality curve

reconstruction. However, the estimation procedure and the steps of the algorithm are the

same for this case too.

Third, the Linear-Link model can be a useful tool in a variety of research contexts of

historical demography like backward projections and estimation of mortality levels in

historical populations. Due to the existence of scarce non-standardized population data

in the past and population censuses only for the more recent times, the very possibility

of projecting mortality backward is of theoretical interest (Ediev, 2011).

1.4.3 Forecasting the age-at-death distribution

In addition to investigating the evolution of age-specific death rates or the pattern of life

expectancy in the future, the problem of identifying possible future longevity levels in a

given population can be tackled by analysing the distribution of deaths and the change

in its location-shape measures over time. For a distribution, the collection of all the

statistical moments uniquely determines its density function.

We consider the classical moment problem where a positive density f(x) is sought from

knowledge of its power moments. The method proposed here assesses the evolution of
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observed moments of the distribution of deaths in order to forecast them by employing

multivariate time series models and reconstructing the forecast distribution using the max-

imum entropy approach (MaxEnt) developed by Mead and Papanicolaou (1984). MaxEnt

offers a definite procedure for the construction of a sequence of approximations for the

true density based on the information entropy given by the density. The procedure aims

at constructing specific sequences of functions fN(x) which eventually converge to the

true distribution f(x) as the number of moments used, N , approaches infinity

µn =

∫ ω

a

xnfN(x)dx, n = 0, 1, 2 . . . , N, (1.8)

where µn represents the n-th statistical moment of a continuous density function. We

denote the estimated density fN(x) in order to indicate that this density was generate

based on a finites number of moments, N .

Taking advantage of the regularity of human mortality, the reconstruction of a density

function can be obtained by imposing a prior restriction on the class of function where

the solution is sought. In this way, only a small number of moments, usually 3 to 6, are

needed in order to determine a good fit. As strategy for finding the local maxima of the

entropy functional L = L(f), we employ the method of Lagrange multipliers, λn for the

n-th moment:

L = H +
N∑
n=0

λn [µ̂n − µn] , (1.9)

where H denotes the information entropy measure of the estimated density.

Reconstructing the density function from a set of predicted moments has the advantage

of allowing accelerating/decelerating rates of mortality improvement over age and time,

identifying in this way the source of longevity risk.
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1.4.4 Data

The data source used in this thesis is the Human Mortality Database (2017a), which

contains homogeneous historical mortality data for populations in 43 different countries

and territories. The HMD constitutes a reliable data source because it includes high

quality data that were subject to a uniform set of procedures, thus maintaining the cross-

national comparability of the information.

For the purpose of our analyses we have focused on a subset of these data covering mainly

calendar years 1950–2015 and the 0–95 age range in 38 countries and regions, giving

76 sex-specific populations. The selected populations must have sufficient size to allow

the fitting of the models and should be unique, meaning that a person included in one

population should not be included in others.

The predictive power of the methods is demonstrated by performing out–of–sample fore-

casts and estimations in the 0–100 age range. Data at higher ages might be unreliable or

too sparse for different populations, which would make it difficult to differentiate between

data related problems and modelling issues.

1.5 Overview of the thesis and discussion

The evolution of human mortality is a complex process that is driven by a large number of

factors and can not be explained by a single statistical model. Different approaches can be

taken to predicting future mortality. In the current thesis, we introduce three innovative

methods that make use of the observed trends in several demographic indicators.

Manuscript I presents a model built on the idea of a persistent trend in life expectancy

over long periods of time that is driving the future development in longevity across coun-

tries and populations in a coherent manner. The available data in the Human Mortality

Database (HMD) suggests a linear increase in record life expectancy at birth in the world

since the mid-19th century. Since then, a few countries have occupied the first position

(Bengtsson, 2006), maintaining their leadership for several years only to be surpassed

by other countries that used to lag behind. The evolution of mortality for an individ-
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ual country can be characterised by periods of rapid developments, stagnation or even

deterioration of longevity levels. However, despite all these possible realizations, history

shows that it is reasonable to assume that mortality is driven by a benchmark–like record

female life expectancy. We implemented this idea in the so called Double–Gap model

and tested it using data from all the countries listed in HMD. Detailed results shown

for the USA, France and Sweden suggests that DG is capable of generating comparable

predictive power with the two most commonly used forecasting models, the Lee–Carter

and the Cairns–Blake–Dowd models.

In Manuscript II, an indirect estimation technique is employed to estimate the level of

mortality at a given point in time by deriving the age-specific mortality estimates from

the observed link between life expectancy and death rates. Life expectancy is an age-

aggregated measure and deeper knowledge can be obtained by converting the obtained life

expectancy level into age-schedules of death rates and actuarial life tables by exploiting the

regularities of age patterns of mortality. Used in the context of forecasting, the Linear–

Link model demonstrated capabilities in replicating the Lee–Carter forecasts with the

advantage of generating graduated mortality estimates.

Manuscript III goes deep into the statistical moments theory and proves that the problem

of future development in longevity can be studied from a compositional perspective. A

reduction in the probability of dying at young ages does not mean that fewer people will

die. It only means that, for most people, death will occur at a later stage in life. Over

a long enough time frame death is certain. The central moments of the distribution of

deaths give an accurate description of the timing of death experience in a certain cohort or

in a given year. If moments are extrapolated, one can use the maximum entropy method

to reconstruct the future distribution of deaths. The main advantages of this approach

is that it can anticipate where the most rapid change in mortality will occur on the age

scale.

No statistical model in general and none of the three methods described in this thesis

is meant to be used in prediction into an indefinite future. The rate of increase in life

expectancy may vary depending on the selected historical period. The choice of the

historical frame to be fitted is as important as the choice of the model.
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Reproducible research

The presented methods and algorithms are implemented in the format of open source

software libraries written in the R programming language (R Core Team, 2018). The R

packages containing the source code, original data and usage examples can be downloaded

and installed from the Comprehensive R Archive Network (CRAN) or from the author’s

GitHub repository (https://github.com/mpascariu). All the results presented in the

thesis are reproducible.
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Abstract

Life expectancy is highly correlated over time among countries and between males and

females. These associations can be used to improve forecasts. Here we propose a method

for forecasting female life expectancy based on analysis of the gap between female life

expectancy in a country compared with the record level of female life expectancy in the

world. Second, to forecast male life expectancy, the gap between male life expectancy

and female life expectancy in a country is analysed.We present these results for various

developed countries. We compare our results with forecasts based on the Lee–Carter

approach and the Cairns–Blake–Dowd strategy. We focus on forecasting life expectancy

at age 0 and remaining life expectancy at age 65.

Keywords:

Life expectancy forecasting; Mortality modelling; Best practice trends; Sex-gap

24



2.1 Introduction

The history of the evolution of life expectancy is of crucial importance for demographers

and actuaries who want to develop more accurate forecasting models. Between 1840 and

2014 no more than seven countries have been the record holders of female life expectancy

at birth; starting with Sweden and Norway in the 19th century and finishing with present

day Japan. The competition among countries to reduce mortality levels resulted in a

remarkable linear rise as presented by Oeppen and Vaupel (2002), or a segmented linear

trend as suggested by Vallin and Meslé (2009). In developed countries, the linear trend

in period life expectancy has proven itself to better fit trends in human mortality than

more complex mathematical models based on age-specific death rates (White, 2002). The

rate of change in age-specific death rates have less regular patterns over time than life

expectancy, which is an age-aggregated measure. Thus, although life expectancy loses

specificity it compensates in terms of accuracy. Furthermore, data highly aggregated by

age give valuable information that can be used to tackle the issue of mortality forecasting

from a clearer perspective.

Torri and Vaupel (2012) built on the idea that future human longevity is given by a general

life expectancy trend. Their model at first forecasts the world’s record life expectancy

and then the gap between the record and the current life expectancy of a particular

population of interest assuming a tendency towards convergence with the predicted record

level. The Torri–Vaupel approach is promising but has the drawback that populations

that lag behind record life expectancy cannot become the record holder; in addition the

interdependence between the sexes is not recognized. Furthermore, no population’s life

expectancy can exceed the forecast record.

Between 1950 and 2014 the record holder for life expectancy at birth changed more than

15 times among 5 countries; and in the same manner the record holder for life expectancy

at age 65 changed more than 10 times among 6 countries. This indicates that the record

is not given by a single reference population. The case of Japan shows that a country with

a very low level of life expectancy, which was the case immediately after World War II in

this country, can improve at a fast pace, catch up with the low mortality populations and
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eventually become the record holder. How long a population can maintain the status of

record holder is an open question. A method that can capture change in the recordholder

is highly relevant. We propose such a method by using the trend-line of record life

expectancy, instead of the actual record values. The use of trend-line implies that the

best-practice country in a given year can be above the best-practice line. This fact was

shown by Oeppen and Vaupel (2002).

The majority of the forecasting models used by demographers and actuaries tend to

predict future longevity for specific countries separately for males and females. One

reason could be that females, as a group, have a different mortality age-pattern from

males. They live longer and the death rates for females are lower than those for males

at all ages, even before birth and in almost every country in the world (Austad, 2006).

The most pronounced discrepancy can be observed in the very old, among centenarians

and supercentenarians (persons with an age of 110 and more) when women outnumber

men by more than nine to one (Perls and Fretts, 1998). The sex gap in life expectancy

widened and then shrank in the last half of the last century as the rate of improvement

in female life expectancy exceeded that for males. Thus, the available evidence indicates

the presence of behavioural as well as biological differences between the sexes, and social

and psychological factors all play important roles in differentiating the mortality patterns

for females and males. To simplify analysis an assumption generally made is that females

and males are two different populations independent of each other.

Li and Lee (2005) introduced a method for forecasting death rates of different populations

and for both sexes that are not expected to diverge, using an augmented common factor

model. Hyndman et al. (2013) propose a method for coherent forecasting of mortality

rates in different subpopulations based on functional principal components models of

simple functions of rates. The product-ratio functional forecasting method models the

geometric mean of subpopulation rates and the ratio of subpopulation rates to product

rates. Raftery et al. (2013) also discuss the possibility of forecasting life expectancy using a

two-sex model, and develop this idea with the introduction of an elegant model to obtain

joint probabilistic projections of life expectancy for both sexes (Raftery et al., 2014).

First, female life expectancy is forecast using a Bayesian hierarchical model and then the
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gap between female and male is modelled, recognizing in a formal way the correlation in

mortality. Coherent two-population modelling of age-specific death-rates have been done

by Jarner and Kryger (2011); Cairns et al. (2011); Li and Hardy (2011) and Dowd et al.

(2011).

Further knowledge can be gained by integrating the idea of the life expectancy correlation

between sexes and also between countries, into a single model. The main objective of this

article is to present such a model.

The remainder of the article is organized as follows. First, in Section 2.2 the data used

in fitting the model are presented. In Section 2.3 a new life expectancy projection model

is proposed. In Section 2.4 a method to assess the performance of the model is given.

Section 2.5 shows simulation results and illustrations of life expectancy in several countries

by sex. The discussion and conclusion are in Section 2.6.

2.2 Data description

The data source used in this article is the Human Mortality Database (2017a), which

contains historical mortality data for 47 homogeneous populations in different countries

and regions. HMD constitutes a reliable data source because it includes high quality

historical mortality data that was subject to a uniform set of procedures, guaranteeing

the cross-national comparability of the information.

For the purpose of our analysis we have focused on a subset of these data covering calendar

years 1950–2014 and the 0–95 age range in 38 countries and regions, giving 76 sex-specific

populations. The selected populations must have sufficient size to allow the fitting of a

forecasting model and should be unique, meaning that a person included in one population

should not be included in others. The selected countries are shown in 2.1 along with the

dates used to define the fitting periods.
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2.3 The method

The objective is to construct a model for forecasting life expectancy of female and male

life expectancy at any age. The model is based on correlations existing among countries

and between sexes. The method combines separate forecasts to obtain joint female and

male life expectancies that are coherent with the bestpractice trend and correlated.

The model construction follows four steps:

1. Best-practice life expectancy is identified in order to get a general sense of the

direction and the rate of change in human mortality.

2. The gap between female life expectancy and the best-practice trend in the world

is forecast using a classic time series model, thus determining future female life

expectancy.

3. The gap between male and female life expectancy is forecast with the help of a linear

model to obtain the country specific male life expectancy.

4. Prediction intervals are constructed from a multivariate normal distribution with

mean zero and covariance matrix given by the residuals generated in the fitting of

the three time series in the previous steps.

Table 2.1: Selected HMD countries and years with available data used for the illustration

Available data Countries and regions
1950 - 2010 Bulgaria
1950 - 2011 Canada
1950 - 2012 Italy
1950 - 2013 Scotland, England & Wales, Iceland, New Zealand
1950 - 2014 Australia, Austria, Belgium, Czech Republic, Denmark, Finland,

France, Hungary, Ireland, Japan, Netherlands, Norway,
Portugal, Spain, Slovakia, Switzerland, Sweden, U.S.A.

1956 - 2014 East Germany, West Germany
1958 - 2014 Poland, Russia
1959 - 2013 Estonia, Latvia, Lithuania, Ukraine
1959 - 2014 Belarus
1970 - 2014 Taiwan
1981 - 2013 Greece
1983 - 2014 Israel, Slovenia

Source: Human Mortality Database (2017a)
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The core of the proposed double-gap model can be summarized by two equations: first

future female life expectancy at age x, time t and country k, efk,x,t, can be obtained as

the difference between future best-practice life expectancy at that age and time, ebpx,t, and

a predicted gap or distance, Dk,x,t, of the performance of the specific lagging country or

region,

efk,x,t = ebpx,t −Dk,x,t. (2.1)

Similarly future life expectancy for the male population is modelled as the difference

between future female life expectancy and the sex gap, Gk,x,t, in life expectancy,

emk,x,t = efk,x,t −Gk,x,t. (2.2)

2.3.1 Step 1 - The best-practice trend

The best-practice trend in life expectancy is defined as the predicted value of a linear

model based on the female record life expectancy time series of the form

erecordx,t = αx0 + αx1t,+ε
(0)
x,t ,with t = 1, 2, 3... (2.3)

therefore,

ebpx,t = αx0 + αx1t, (2.4)

where erecordx,t denotes the record life expectancy at age x and time t, ebpx,t is the best-

practice trend, αxi represent the parameters of the model fitted at age x, and the errors

ε
(0)
x,t are independent and identically distributed random variables normally distributed

with mean zero and variance σ(0). To predict future best-practice levels we will follow the

past regularity observed in improvement in life expectancy and extrapolate directly the

future trend.
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Figure 2.1: The trend of record female life expectancy at birth and at age 65 between 1950 and
2014

The Double-Gap model in equations (2.1) and (2.2) are applied here to life expectancies

at birth and at age 65: Analysing the period between 1950 and 2014 we can observe that

the record life expectancy at birth increased at a rate of 2.1 years per decade from 73.5

to 86.8, while at age 65 the improvement was on average 1.27 years per decade, captured

in the parameter αx1 in equation (2.3). These rates of increase imply a change from 16.3

years in 1950 in Iceland to 24.2 in 2014 in Japan. The linear fit is presented in Figure

2.1.

2.3.2 Step 2 - The gap to best-practice trend

One way to forecast the gap between the best-practice trend and country specific female

life expectancy, Dk,x,t, is to use the classic ARIMA model (Box and Jenkins, 1976). This

is appropriate when the data set is sufficiently long and exhibits a stable and consistent

pattern over time with few outliers.

In general notation, we have an ARIMA(p, d, q) model, where p is the order of the

autoregressive process, d indicates the order of integration, namely the number of times

that the series must be differenced in order to make it stationary, and q is the order of the

30



moving average process. The general form of an ARIMA(p, d, q) model for a stochastic

process Dk,x,t is given by:

OdDk,x,t = µk,x︸︷︷︸
Drift

+

p∑
i=1

φiO
dDk,x,t−i︸ ︷︷ ︸

Regression

+ ε
(1)
k,x,t +

q∑
j=1

θjε
(1)
k,x,t−j︸ ︷︷ ︸

Smoothed noise

(2.5)

where the response can be obtained from linear regression of previous gaps plus additional

smoothed noise. We denote with OdDk,x,t the stationary (transformed) time series used to

fit the ARIMA model. The constant parameter µk,x is the drift, indicating the average

change in the series over time; φi are the parameters of the auto-regressive part, and θj

are the parameters of the moving average part. Finally ε(1)k,x,t is a sequence of independent

and identically distributed random variables with mean zero and variance σ(1).

Table 2.2: Estimated parameters of the ARIMA model for the gap between best-practice and
country specific data at birth and at age 65, 1950-2014.

Age Rank µ φ1 φ2 θ1

USA
0 (0, 1, 0) - - - -
65 (0, 1, 0) - - - -

FRANCE
0 (1, 1, 0) - -0.3519 - -
65 (1, 1, 1) - -0.3048 - -0.4533

SWEDEN
0 (2, 1, 1) 0.0283 -1.1521 -0.5065 0.9173
65 (0, 1, 1) 0.0175 - - -0.6694

Source: Authors’ calculations based on data described in Table 2.1

For each country and period of time an appropriate model is fitted so that it captures the

information given by the past pattern of the gap. We consider ARIMA(p, d, q) models

where d is selected based on successive KPSS unit-root tests (Kwiatkowski et al., 1992).

That is, we test the data for a unit root; if the test result is significant, we test the differ-

enced data for a unit root; and so on until non-significant. Once the order of difference d is

selected, we proceed to select the values of p and q by minimizing the AIC. Finally based

on the historical trend we decide whether a drift should be allowed in the model.

An analysis for the case of France over the 1950-2014 period indicated that theARIMA(1, 1, 0)

for age 0 and ARIMA(1, 1, 1) for age 65 are the most suitable models for describing the

data. For the USA the random walk with no drift is found to be the most parsimo-
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nious model for both ages, but for Sweden, ARIMA models with a higher rank degree

are needed. Estimated future values of the gap in 2050, together with 80% and 95%

prediction intervals, are plotted in Figure 2.2.

The forecast gaps for France show that the French female population could surpass the

best practice trend in the future. This information is given by the lower side of the 80%

and 95% prediction limits which are below zero. The forecasts for Sweden suggest a

continuation of the historical trend where improvement in life expectancy at birth and

age 65 is lower than the pace given by our selected benchmark, namely the best-practice

trend. However the speed of divergence is slow, approximately one year of life expectancy

in a 40 year forecasting horizon. For the USA, the forecasts suggest little change.
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Figure 2.2: The forecast gap between the best-practice trend and country-specific female life
expectancy at birth and at age 65, with associated 80% and 95% prediction intervals, 1950-2050.
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2.3.3 Step 3 - The sex gap model

To predict the gap in life expectancy between females and males, Gk,x,t, at a given age x

for specified country k at time t we apply a method that consists of a linear model and a

random walk process with no drift.

The linear model takes into account the gap in the previous two years and an additional

term that relates to female life expectancy. This term is given by (efk,x,t − τ)+ where τ

is the level of life expectancy at the time when the sex gap is expected to stop widening

and start narrowing. The notation (z)+ represents the maximum value between zero and

z. The linear model is fitted over all ages lower than the level of female life expectancy,

A. The levels of τ and A are determined from historical data by maximizing the resulting

maximum likelihoods of our linear model over integer values of τ and A. In the statistical

software R the linear model can be fitted using the crch package (Messner and Zeileis,

2015).

G∗k,x,t =



β0 + β1Gk,x,t−1 + β2Gk,x,t−2︸ ︷︷ ︸
Autoregressive model

+ β3(e
f
k,x,t − τ)+︸ ︷︷ ︸

Level associated with
life expectancy when the gap

starts narrowing

+ε
(2)
k,x,t if, efk,x,t ≤ A,

Gk,x,t−1 + ε
(3)
k,x,t︸ ︷︷ ︸

Random walk

, otherwise.

(2.6)

Because there is little evidence to make any assumptions about future pattern of the

female-male gap at advanced ages (Raftery et al., 2014) the random walk model will be

used to further fit and predict the evolving gap if life expectancy surpasses the obtained

limit A.

As a further check we ensure that the modelled gap will always be between the observed

historical minimum and maximum values of the female-male gap,

Gk,x,t = min{max{G∗k,x,t, L}, U}, (2.7)
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where L and U are the minimum and maximum observed gaps respectively. The errors

ε
(2)
k,x,t and ε

(3)
k,x,t are independent and identically distributed random variables normally

distributed with mean zero and variance σ(2) and σ(3) respectively.

The presented method is similar with the linear model used by Raftery et al. (2014).

In order to obtain joint probabilistic forecasts of life expectancies for female and male

populations, Raftery et. al. modelled the relation between the two by projecting the sex-

gap using a linear regression with different levels of female life expectancy as covariates.

The model is applied to World Population Prospects 2008 set of quinquennial data starting

in 1950 (United Nations, 2009).

We chose to adopt a modified version of the Raftery model because several covariates

in the original model, which was constructed for projecting 5 years intervals, were not

statistically significant for a 1-year step projection model. Also, we decided not to impose

any dependency of an initial life expectancy in our model as in the original Raftery

model. This decision was taken because an important number of time series in the Human

Mortality Database start after 1950 as shown in Table 2.1.

The model is fitted using the data from all the countries in order to obtain the coefficient

values and then it is used to forecast the gap for each country separately, using country

specific female life expectancy.

Table 2.3: Estimated parameters for sex-gap forecast models for life expectancy at birth and
age 65

Parameters Estimate Estimate Pr(> |t|)
Age 0 Age 65 for both ages

β0 0.21257 0.14052 <2e-16
β1 0.82184 0.64807 <2e-16
β2 0.15971 0.32943 <2e-16
β3 -0.02690 -0.01442 <2e-16
τ 75 15
A 86 24
L 0.99 0.33
U 13.68 5.24

Source: Authors’ calculations based on data de-
scribed in Table 2.1
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Estimates of the model parameters are provided in Table 2.3 for the models fitted at age

0 and age 65 respectively. The parameter β0 denotes the intercept level, which could be

interpreted as a biological gap between the sexes; β1 and β2 represent the effect of the

previous two gaps at time t− 1 and t− 2, influencing the range of possible values for the

new gap. Together the first three parameters, β0, β1 and β2 explain the majority of the

gap trend. The negative β3 parameter gives the speed of the convergence between the

female and male life expectancies. As shown in Table 2.3, the life expectancies at birth

are converging faster than those at age 65.

The forecast values of the sex gap in the USA, together with 80% and 95% prediction

intervals based on the 1950-2014 data, can be observed in Figure 2.3. In all three countries,

and indeed in many other developed countries, the sex gap increased between 1950 and

about 1980, and then decreased to 2014. The models for age 0 suggest a continuation of

the descending trend until the beginning of 2030 where the gap will remain approximately

constant. The transition from a decreasing gap to stagnation coincides with the shift from

the linear model to the random walk model described in equation (2.6). For instance in

France, where currently life expectancy is higher than in the USA, the period of time

needed to reach a value of life expectancy of 86 years for female population is shorter

i.e. resulting in a projection with a shorter period of time with a decreasing sex-gap. In

USA and Sweden the forecast gap in 2050 is approximately 3 years but in France it is 6

years for life expectancy at birth. For life expectancy at age 65 the models forecast very

little change. Also, even if it is not impossible, the models suggest that is highly unlikely

that the sex-gap would become negative and a higher life expectancy for males would be

experienced in any of the three countries either at age 0 or 65.

2.3.4 Step 4 - Dealing with correlated prediction intervals

Our approach to forecasting combines different models that generate separate predictions.

Because our aim is to obtain coherent results we construct prediction intervals from a

multivariate normal distribution with mean zero and covariance matrix given by the

residuals generated in the fitting of the three time series in the previous steps.
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Figure 2.3: The forecast gap between female and male life expectancy at birth and at age 65,
with associated 80% and 95% prediction intervals, 1950-2050

The multivariate normal distribution of the three-dimensional random vector of residuals

ξ = [ε
(0)
x,t , ε

(1)
k,x,t, ε

(2,3)
k,x,t] can be written,

ξ ∼ N3(µ,Σ), (2.8)

with the mean vector,

µ =
[
E(ε

(0)
x,t) = 0, E(ε

(1)
k,x,t) = 0, E(ε

(2,3)
k,x,t) = 0

]
,

and 3×3 covariance matrix,

Σ =
[
Cov(ε

(0)
x,t , ε

(1)
k,x,t, ε

(2,3)
k,x,t)

]
.
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The time series of errors obtained by fitting the random walk model in the Raftery model,

ε
(3)
k,x,t (see Equation 2.6), is usually of a very short length over the 1950 and 2014 period.

This is because in most countries the level of life expectancy at age x is below the deter-

mined level A, during the entire period of time. Therefore, in practice the random walk

model is used only for forecasting in most of the countries. The assumption adopted in

order to keep the model simple is that variance σ of ε(3)k,x,t equals the variance observed in

the ε(2)k,x,t.

The distributions of future values of country-specific life expectancies at age x are esti-

mated by combining simulated future paths of the two gaps and the best-practice level

through Monte-Carlo simulation.

2.4 Accuracy of forecasting prediction

To assess the performance of our model we look at differences between observed and

forecast life expectancy and summarize the forecast accuracy. We carry out a back–testing

exercise in the spirit of Booth et al. (2006), Jarner and Kryger (2011) and Haberman et al.

(2014). Four historical periods used for fitting are considered in our data set: 1950–19851,

1950–1990, 1950–1995 and 1950–2000; and using the rest of the years until 2014 as the

window of evaluation.

Let ek,x,t denote the observed remaining life expectancy at age x, time t and country k

and êk,x,t denote the forecast of ek,x,t. Then we define the forecast error as:

ωk,x,t = ek,x,t − êk,x,t. (2.9)

Two measures are considered: mean error (ME) and mean absolute percentage error

(MAPE). The mean error is a scale-dependent measure that is useful when comparing

different methods applied to the same data set. Calculating the mean error of a forecast

is straightforward as it indicates the degree of “optimism” or “pessimism” of the predicted

1Greece, Israel and Slovenia were not evaluated on the 1950–1985 interval because of insufficient data,
but were considered in the other three scenarios.
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values. However, any scale-dependent measure is sensitive to outliers. Most recommended

in the scientific literature is MAPE (Hanke et al., 2001; Bowerman et al., 2004) which

is scale-independent and can therefore be used to compare forecast performance across

different sets of data.

ME = mean
(
ωk,x,t

)
,

MAPE = mean
(
|100× ωk,x,t

ek,x,t
|
)
,

(2.10)

where the notation mean(z) denotes the sample mean of {z} over the period of inter-

est.

2.5 Results and illustrations

We estimate the distribution values of country specific life expectancies at birth and at

age 65 by combining simulated future paths of the gaps and the best-practice trend. The

forecast future life expectancies for the three selected countries with different patterns

in the two gaps observed in the last 60 years, along with corresponding 80% and 95%

prediction intervals, are shown in Table 2.4.

We compare our results with the values generated by the Lee–Carter model (Lee and

Carter, 1992) and the Cairns–Blake–Dowd model (Cairns et al., 2006). The Lee–Carter

model (LC) is the first stochastic extrapolative model to be developed and can be used to

predict the central mortality rates mx,t, for all ages. The Cairns–Blake–Dowd (CBD) is a

stochastic model designed for modelling mortality at higher ages and builds on the obser-

vation that log death rates are approximately linear at ages above 40. Both approaches

are well-established methods in mortality forecasting and can be easily implemented in R

statistical software using the StMoMo package (Villegas et al., 2015). Comparison with the

CBD model is performed only at age 65. The Lee–Carter model is fitted to ages 0-95 and

65-95, and the CBD is fitted over the 65-95 age range. Both models generate a matrix
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of forecast death rates. The forecast life expectancies are computed using standard life

table calculations.

In order to obtain a complete series of death rates for all the ages up to 110 and to be

able to accurately compute the life expectancies the Kannisto old age mortality model is

used (Thatcher et al., 1998) which uses a logistic function fitted for death rates at ages

above 80. However, if the predicted death rate at the highest age, in our case 95, is

sufficiently large (≥ 0.4) a constant force of mortality could be assumed. The difference

in life expectancies between the two methods is insignificant.

In 2050, US forecast female life expectancy at birth is 88.93 years and 25.44 years at age

65 according to the Double–Gap model (henceforth DG). The Lee–Carter (LC) model

predicts more pessimistic results, namely 85.88 years expectation of life at birth and 23.9

years at age 65. Using the DG we estimate an increase in life expectancy at birth of 7.46

years for females and 9.27 years for males, and an improvement in life expectancy at age

65 of 4.59 years for females and 5 years for males. Therefore, US male life expectancy

forecast increases faster in the following 40 years than female life expectancy. In general

DG model is more optimistic than the LC model, the forecast results for French, Swedish,

and US populations over this horizon of time are higher than the LC forecasts.

The sex-gap forecast given by the DG model is narrower in all the three countries than

the predicted values of the LC and CBD model. The DG model has the advantage of

modelling the female and male population together taking into account the coherence

and correlation between the two, while for LC and CBD separate projections are needed

resulting in trajectories with a divergent trend between female and male life expectancy.

At age 65 the sexgaps forecast by the LC and CBD model are similar.

A visual representation of the results already presented in Table 2.4 is given in Figure

2.4 in connection with the historical female record life expectancy and the extension of

the best-practice trend. In the long term the DG forecast trajectories of life expectancy

follow the trend given by the best-practice line. On the other hand the LC and CBD

projected trajectories tend to diverge for all three countries and sexes.
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Table 2.4: Forecasts of life expectancy in 2050 produced by the Double–Gap (DG) Lee–Carter
(LC) and Cairns–Blake–Dowd (CBD) models, with 80% and 95% prediction intervals. The
models were evaluated on data from the period 1950–2014.

AGE 0 AGE 65

MODEL FEMALES MALES SEX GAP FEMALES MALES SEX GAP

U
SA

DG

êx,2050 88.93 85.94 2.99 25.44 23.26 2.19

80% PI (87.41–90.46) (83.93–87.83) (1.10–5.00) (24.36–26.53) (21.46–24.97) (0.47–3.98)

95% PI (86.64–91.18) (82.94–88.94) (0.01–5.99) (23.81–27.14) (20.63–25.94) (-0.49–4.81)

LC

êx,2050 85.88 81.57 4.31 23.90 21.19 2.71

80% PI (84.72–86.85) (80.52–82.52) - (22.93–24.84) (20.27–22.07) -

95% PI (84.26–87.27) (79.97–83.05) - (22.45–25.36) (19.80–22.48) -

CBD

êx,2050 - - - 24.01 21.34 2.67

80% PI - - - (22.73–25.40) (20.13–22.58) -

95% PI - - - (22.16–26.12) (19.55–23.32) -

ex,2014 81.47 76.67 4.80 20.85 18.26 2.59

FR
A
N
C
E

DG

êx,2050 92.82 87.15 5.67 27.79 24.14 3.65

80% PI (90.60–95.12) (85.18–89.08) (3.74–7.64) (26.18–29.3) (22.36–25.91) (1.88–5.43)

95% PI (89.43–96.27) (84.19–90.07) (2.75–8.63) (25.38–30.14) (21.40–26.73) (1.06–6.39)

LC

êx,2050 91.14 85.38 5.76 27.55 23.28 4.27

80% PI (89.62–92.8) (83.78–86.80) - (25.75–29.17) (21.39–24.85) -

95% PI (88.53–93.53) (83.02–87.46) - (24.67–30.00) (20.23–25.84) -

CBD

êx,2050 - - - 27.58 23.49 4.09

80% PI - - - (24.77–30.67) (20.93–26.46) -

95% PI - - - (23.54–32.68) (19.83–28.26) -

ex,2014 85.40 79.26 6.14 23.29 19.32 3.97

SW
E
D
E
N

DG

êx,2050 90.41 87.84 2.57 25.37 23.22 2.15

80% PI (89.03–91.79) (85.84–89.92) (0.49–4.58) (24.24–26.50) (21.48–24.94) (0.42–3.88)

95% PI (88.25–92.51) (84.81–90.95) (-0.53–5.61) (23.63–27.13) (20.50–25.84) (-0.48–4.86)

LC

êx,2050 88.58 84.50 4.08 25.02 21.57 3.45

80% PI (87.37–89.69) (83.32–85.45) - (23.90–26.03) (20.45–22.57) -

95% PI (86.69–90.15) (82.69–85.90) - (23.13–26.44) (19.90–23.19) -

CBD

êx,2050 - - - 25.27 21.79 3.48

80% PI - - - (23.67–27.06) (20.27–23.54) -

95% PI - - - (22.92–28.23) (19.58–24.57) -

ex,2014 84.05 80.35 3.70 21.47 18.85 2.62

Note: The uncertainty in the sex-gap in the case of forecasts generated by the LC and CBD is not available.
Sex-specific LC and CBD models are fitted and used to forecast female and male life expectancy.

Source: Authors’ calculations based on data described in Table 2.1
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Prediction intervals given by the DG model indicate that the female French population

has the highest probability, among the three countries, of surpassing the best-practice

trend and becoming the new world record holder for life expectancy at birth or at age

65.

Out-of-sample forecasts are performed using the DG, LC and CDB models in order to

test the performance of the three models. Four forecasting horizon are selected starting

with 1985 until 2014. The forecast values are compared with the historical values of life

expectancy. Table 2.5 offers an overall performance of the forecast in the USA, France and

Sweden but also over the 38 Human Mortality Database (HMD) countries and regions.

DG performs better than both LC or CBD in terms of mean errors (ME) and mean

absolute percentage errors (MAPE) when all the countries are considered. However at

age 65 the difference between the models is minor especially in the male population.

Table 2.5: Accuracy measures for the forecast life expectancy at birth and at age 65. Four
evaluation periods are considered: 1985-2014, 1990-2014, 1995-2014 and 2000-2014. The
results are averaged over the four periods.

AGE 0 AGE 65
COUNTRIES MODEL ME MAPE ME MAPE

38 HMD Countries

DG -0.198 1.728 0.632 4.745
LC 1.099 1.907 0.748 5.294
CBD - - 0.725 5.264

USA, FRANCE & SWEDEN

DG -0.285 0.619 0.414 3.433
LC 0.540 1.032 0.449 3.611
CBD - - 0.421 3.518

Table 2.6 presents an in-depth overview of the accuracy measures for both sexes. DG is

consistently less biased than LC for male life expectancy at birth in the three selected

countries, but not for females. The CBD model is found to be more accurate that the LC

model for age 65 in the male populations. However, there is no model that consistently

performs better over all forecasting windows and populations in the study. Some models

exhibit a particularly good or bad behaviour for certain historical trends due to the specific

constraints of these models. These results show that the DG is capable of generating

comparable predictive power with the two most commonly used forecasting models.
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Figure 2.4: Actual and forecast life expectancy at birth and at age 65 generated by the DG, LC
and CBD models for females and males, 1950-2050. Prediction interval at 80% and 95% level
are shown only for the DG model.
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Table 2.6: Accuracy measures for the forecast life expectancy at birth and at age 65, by sex.
Four evaluation periods are considered: 1985-2014, 1990-2014, 1995-2014 and 2000-2014. The
results are averaged over the four periods.

FEMALE POPULATION MALE POPULATION
AGE 0 AGE 65 AGE 0 AGE 65

COUNTRY MODEL ME MAPE ME MAPE ME MAPE ME MAPE

38 HMD
DG -0.309 1.400 0.450 3.616 -0.088 2.056 0.814 5.874
LC 0.510 1.082 0.482 3.629 1.689 2.732 1.014 6.960
CBD - - 0.469 3.660 - - 0.981 6.869

USA
DG -0.912 1.135 -0.278 1.955 -0.061 0.369 0.848 4.894
LC -0.414 0.666 -0.255 2.394 0.926 1.240 0.904 5.195
CBD - - -0.272 2.388 - - 0.871 5.007

FRANCE
DG 0.139 0.349 0.664 3.099 0.112 0.509 0.951 5.344
LC 0.031 0.304 0.305 1.640 1.305 1.692 0.892 4.969
CBD - - 0.314 1.672 - - 0.840 4.680

SWEDEN
DG -0.688 0.834 -0.340 1.664 -0.298 0.517 0.641 3.639
LC -0.196 0.276 -0.245 1.272 1.586 2.016 1.096 6.193
CBD - - -0.279 1.420 - - 1.052 5.944

More visual results for 18 countries are presented in Figure 2.5 and Figure 2.6 in the

Appendix.

2.6 Discussion

Our approach to forecast life expectancy combines separate forecasts to obtain joint male

and female life expectancies that are coherent with the best-practice trend. The trend

proposed in the current article is based on the record level of female life expectancy; this

trend was used due to its remarkable linear regularity at age 0. The current model is

not restricted to the usage of this particular benchmark, and countries or regions might

decide to use a different trend depending on the best performing model for each case based

on their past evaluation. In some cases, if the data allow other trends can be adopted,

for example a super-population composed from Scandinavian countries if the goal is to

forecast the life expectancy in one of these populations. Or the model can be applied to

the USA in order to forecast life expectancy in each American states and jurisdictions with

the record US total female population as “best-practice” (Whelpton et al., 1948).
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No forecasting model is meant to be used in prediction into an indefinite future. The

rate of increase in life expectancy may vary depending on the selected historical period.

Therefore, the choice of the historical frame to be fitted is as important as the choice of the

model. For example, predicting life expectancy at age 65 based on a trend starting in the

19th century would underestimate the future improvements in human mortality. Also one

might ponder the suitableness of the use of a linear trend at age 65. The fluctuations in the

relative rate of improvement experienced after age 65 in the last decades (as seen in Figure

2.1) suggest the current model can benefit from further research in this direction.

Starting with 1850, not only a rapid improvement in life expectancy has been taking

place but also a compression of mortality experience or in other terms a “globalization”

of improvements in mortality. After 1950 cross-sectional convergence in life expectancy

between different countries is noticeable, with the main contribution being made by coun-

tries with a higher level of mortality (Oeppen, 2006). This is because of the increasing

“communication” between the countries and continents and a much faster transfer of tech-

nology and innovations that help increase life expectancy in all countries. Our proposed

method models the gap whether there is convergence or not and even allows countries

with a higher level of mortality to become the record holder in terms of longevity at some

point in the future.

Life expectancy is an age-aggregated measure but deeper knowledge can be obtained

by converting the obtained life expectancy level into age-schedules of death rates and

actuarial life tables by exploiting the regularities of age patterns of mortality. In actuarial

science the use of life tables, and other models reflecting life contingencies, is motivated by

the need to determine insurance and pension risks, net premiums, and benefits. Although

beyond the current project scope, a further step in our research is to transform forecast

life expectancy into deaths rates and probabilities using indirect estimation techniques

(Brass, 1971; Wilmoth et al., 2012) or by reconstruction of the empirical distribution of

deaths from its statistical moments following the maximum entropy approach (Mead and

Papanicolaou, 1984).

Having simple methods to predict future mortality levels is of high importance because

of the growing significance this field is acquiring in society. Justified by the accuracy
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and simplicity demonstrated in the present article, the Double–Gap model represents an

addition to the existing family of forecasting models. Today when so many models exist

the researcher should probably not work simply with one model or approach to modelling

the future, but with a combination of them. Thus, the Double-Gap model should be

considered as a promising available forecasting tool.
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2.7 Appendix
2.7.1 Out-of-sample forecasts for 18 countries, 1990–2014
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Figure 2.5: Comparison of actual life expectancy at birth in 1990–2014 with forecasts
generated by the Double–Gap and Lee–Carter models for 18 countries and regions.

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

POLAND PORTUGAL RUSSIA SCOTLAND SPAIN WEST GERMANY

ENGLAND & WALES IRELAND ITALY JAPAN NETHERLANDS NORWAY

AUSTRALIA AUSTRIA BELGIUM CANADA CZECH REPUBLIC DENMARK

1960 1980 2000 1960 1980 2000 1960 1980 2000 1960 1980 2000 1960 1980 2000 1960 1980 2000

10

15

20

10

15

20

10

15

20

Time (Years)

Li
fe

 E
ex

pe
ct

an
cy

 (
Ye

ar
s)

●● ●● ●●CBD DG LC

Figure 2.6: Comparison of actual life expectancy at age 65 in 1990–2014 with forecasts
generated by the Double–Gap, Lee–Carter and CBD models for 18 countries and regions.
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2.7.2 Forecasts for 18 countries and regions, 2015–2050
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Figure 2.7: Forecast life expectancy at birth in 2015–2050 for 18 countries and regions
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Figure 2.8: Forecast life expectancy at age 65 in 2015–2050 for 18 countries and regions
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Abstract

The prediction of human longevity levels in the future by direct forecasting of life ex-

pectancy offers numerous advantages, compared to methods based on extrapolation of

age-specific death rates. However, the reconstruction of accurate life tables starting from

a given level of life expectancy at birth, or any other age, is not straightforward. Model

life tables have been extensively used for estimating age patterns of mortality in poor-data

countries. We propose a new model inspired by indirect estimation techniques applied in

demography, which can be used to estimate full life tables at any point in time, based

on a given value of life expectancy at birth. The methods presented in this paper are

implemented in a publicly available R package.

Keywords:

Indirect estimation; Life expectancy; Forecasting; Death rates; Age-patterns of mortal-

ity
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3.1 Introduction

Understanding human mortality dynamics is of utmost importance in the context of rapid

ageing process together with the increase in length of life experienced by most popula-

tions nowadays. The link between the pension systems sustainability and changes in life

expectancy is more apparent than ever in light of the recent reforms that are taking place

in Europe. In countries like Germany and Finland the level of retirement benefits are

linked to life expectancy, in other countries like the U.K. and France the retirement age is

set to increase from the current levels and implicitly the contribution period for pensions

to be extended as people live longer (Stoeldraijer et al., 2013).

In predicting demographic processes, such as human mortality, methods involving extrap-

olation of mortality rates or probabilities are the most common approaches. Stochastic

models, such as those proposed by Lee and Carter (1992) or Cairns et al. (2006) have

gained significant popularity and have been extensively used in the last two decades. Ideas

that focus only on life expectancy have given rise to a new approach. The models intro-

duced by Torri and Vaupel (2012), Raftery et al. (2014) and Pascariu et al. (2018) are

partially inspired by the linear time trends observed in life expectancy at birth in many

developed countries, particularly in the second half of the twentieth century (Oeppen and

Vaupel, 2002; White, 2002). These life expectancy models are very appealing because they

offer the same, or higher, level of forecast accuracy in terms of life expectancy but with

the advantage of being parsimonious, focusing on one variable rather than several. They

rely on a measure that incorporates all the factors that influence longevity (lifestyle, ac-

cess to healthcare, diet, economical status, etc.), namely life expectancy (Christensen and

Vaupel, 1996). Furthermore, highly aggregated data by age provide valuable information

that can be used to tackle the issue of mortality forecasting from a clearer perspective.

The U.S. Census Bureau predicts the future mortality levels up to year 2100 based on

projections of life expectancy at birth by sex and race, modelling an exponential decline

of the gap to the observed upper asymptote of life expectancy. The period age-specific

death rates are estimated in a subsequent step using these projections (United States

Census Bureau, 2014).
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Transformation of life expectancy into mortality rates at every age can be accomplished

by exploiting the regularities of age patterns of mortality. In actuarial science, the use

of life tables and other models reflecting life contingencies is motivated by the need to

determine insurance and pension risks, net premiums, and benefits. Basically, actuarial

methods combine the life table with functions related to an assumed rate of interest

(Møller and Steffensen, 2007; Dickson et al., 2013). Based on the relevance of having a set

of age-specific death rates, we propose a method to create such an array of values from

one available life expectancy.

Our method extends the work initiated by the different systems of model life tables

(Gabriel and Ronen, 1958; United Nations, 1955, 1967; Coale and Demeny, 1966, 1983;

Ledermann, 1969; Sullivan, 1972); Brass’ relational model (1968; 1971) and the recent

extensions of techniques for estimating age patterns of mortality by Murray et al. (2003)

and Wilmoth et al. (2012). Our model is also related to the work of Mayhew and Smith

(2013) that uses the trends in life expectancy to establish a robust statistical relation

between changes in life expectancy and survivorship. A further, similar approach to the

one developed here is that of Ševčíková et al. (2016) which incorporates a method based

on the Lee–Carter model for converting projected life expectancies at birth to age-specific

death rates in the UN’s 2014 probabilistic population projections.

Relational models were developed for estimation purposes in poor-data contexts. These

models rely on parameters that depict the relationships between various measures of age-

specific and overall mortality. The parameters in a relational model are estimated from

an initial analysis of historical mortality data and become fixed thereafter. Once those

values have been estimated, the model simplifies to a few initial inputs like: reported

child survival, records of population growth, responses to questions about fertility and

mortality and in our case life expectancy at birth or at any other age. Furthermore, in

recent years the accessibility of historical mortality data, such as the Human Mortality

Database (HMD), means that the necessary information to estimate the parameters of

relational models is readily available. As shown here, an algorithm that derives a life table

based only on life expectancy at birth can also be widely used in forecasting practice.
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The remainder of the article is organized as follows. First, in Section 3.2 a new model

to derive age-specific death rates is introduced and a description of the data used in

testing is provided. Section 3.3 shows computed results and illustrations of life expectancy

decomposition into death rates in several populations. The discussion and conclusion are

presented in Section 3.4.

3.2 Data and Methods

3.2.1 Data

The data source used in this article is the Human Mortality Database (2017b), which

contains historical mortality data for homogeneous populations in 43 different countries

and territories. The HMD constitutes a reliable data source because it includes high

quality data that were subject to a uniform set of procedures, thus maintaining the cross-

national comparability of the information.

In order to test and illustrate the performance of the method, we fit the model using the

death rates computed using death counts and population exposed to the risk of death in

the calendar year for the female populations of the England & Wales, France, Sweden

and USA available in the HMD. The reason for using these death rates is that old age

mortality in the HMD is often subject to diverse correction procedures and modelling

depending on the country (Wilmoth et al., 2007).

The reconstructive power of the method for a point forecast of life expectancy is demon-

strated using the 1980–2014 mortality data between age 0 and 100. Data at higher ages

might be unreliable or too sparse for different populations, which would make it difficult

to differentiate between data related problems or modelling issues. To compute the ac-

curacy measures and the estimation errors, the 1965–90 data is applied to the same age

range.
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Figure 3.1: Linear relation between life expectancy at birth and death-rates on a log-log scale,
by age. The axis are labelled in normal scale for better interpretability. Based on HMD
mortality data starting from 1980 for 43 countries and territories.

3.2.2 The Model

Given a predicted level of life expectancy the age pattern of mortality can be derived

using a linear relation. The logarithm age-specific death rate at time t, denoted mx,t,

can be expressed as a linear function of the logarithm of life expectancy at a given age θ,

denoted eθ,t. Formally:

logmx,t = βx log eθ,t + εx,t for x ≥ θ, (3.1)

where x can take values between 0 and ω, the highest attainable age, and βx can be

regarded as an age-specific parameter. Parameter εx,t denotes a set of normally distributed

errors with mean zero and variance σ2. For example, when θ equals zero, we estimate an

entire mortality curve based on life expectancy at birth using this equation; when θ > 0,

we estimate the mortality curve starting from age θ.

The method presented here combines the strong linear relations found when comparing

life expectancies and age-specific death rates on a log-log scale. Figures 3.1 and 3.2 show

those relations, although the slopes and intercepts vary between ages, in all cases there
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is a strong linear concordance between the level of overall mortality, as depicted by life

expectancy, and the individual age-specific death rates. These relations have been key in

much of the work on model life tables (Gabriel and Ronen, 1958; United Nations, 1955,

1967; Coale and Demeny, 1966, 1983; Ledermann, 1969). Inspired by the two-dimensional

system (age and time) of the Log-quadratic model Wilmoth et al. (2012) and the strong

linear trends in Figures 3.1 and 3.2, we derive the age pattern of mortality based on

a given value of life expectancy, e.g. forecasted life expectancy value, and a matrix of

age-specific death rates from the past.

This model can be seen as a method that links the life expectancy at age θ at any point in

time to a mortality curve estimated from the death ratesmx’s that return a life expectancy

level of eθ. Therefore we will refer to it as the linear-link (LL) model. To gain precision

in the fitting of the death rates the LL model can be extended by including additional

parameters:

logmx,t = βx log eθ,t + νxk + εx,t for x ≥ θ,

ω∑
x=θ

νx = 1, and νx ≥ 0,
(3.2)

where νx is the speed of mortality improvement over time at age x, k is an estimated

correction factor independent of time and εx,t are independent and identically distributed

random variables normally distributed with mean zero and variance σ2. Different than

the Log-quadratic model that has a fixed set of parameters for any input value, here the

parameters βx, νx and k can be calculated for each set of age-specific death rates and

future life expectancy. Thus, it can be seen as an extension of the log-quadratic model for

countries that have good quality data, where an entire life table is completed from one

target value of life expectancy.

In addition, the LL model is closely related to the LC model. Indeed, if one sets the

parameters βxlogeθ,t = αx, νx = βx, and k = kt, we obtain the LC model. Despite their

similarities, there are two important differences between the two models. First, while

the shape of the mortality pattern αx is constant in the LC model, the first term of the
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Figure 3.2: Linear relation between life expectancy at age 65 and death-rates on a log-log
scale, by age. The axis are labelled in normal scale for better interpretability. Based on HMD
mortality data starting from 1980 for 43 countries and territories.

LL changes with the level of life expectancy considered; as such, there exists a range of

different baseline mortality curves of the LL model depending on the particular level of

eθ. Second, the k parameter is not modelled as a function of time, instead the parameter

is used as an optimization variable affecting the shape of the age pattern of mortality

to achieve the desired target life expectancy eθ. Thus, the k parameter enhances the

flexibility of the method and the accuracy of the results.

3.2.3 Algorithm

Let t be an observed unit of time in the interval {1, ..., T} and τ be a an unobserved point

in time T+n e.g. a date in the future. The objective is to convert a value of life expectancy,

e∗θ,τ , into a schedule of age-specific death rates m∗x,τ . The level of life expectancy can be

a predicted value given by certain extrapolation method or the target values resulted

following a subjective judgement. Input data will be a collection of observed death rates

mx,t and a level of life expectancy e∗θ,τ . The steps involved in the algorithm to obtain the

desired death rates are the following:
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1. Using the Kannisto mortality model (see Appendix) extendmx,t to higher age groups

up to age ω for all times t. The highest attainable age, ω, can be set for example

to 120.

2. Estimate the slope of the linear relation between life expectancy and the death-

rates, βx, over the observation time t. This is done by using the method of the least

squares approach, by minimizing the sum of squared residuals:

∑
x

[logmx,t − βx log eθ,t]
2 =

∑
x

[εx,t]
2. (3.3)

Alternatively, the parameters of the model can be estimated by assuming that deaths

follow a Poisson distribution (Brouhns et al., 2002), Dx v Poisson(Ex ·mx,t), with

mx,t = exp(βx log eθ + νxk). In order to use this approach death counts (Dx,t)

and exposure data (Ex,t) are needed. Sensitivity analysis shows that the difference

between the two fitting procedure return minor discrepancies (see section 3.5.2 in

the Appendix for more details).

3. Estimate the parameter νx by computing the singular value decomposition (SVD)

of the matrix of regression residuals, R, obtained in the previous step,

SV D [R] = DPQT = d1p1q
T
1 + ..., (3.4)

where

R =


ε0,1 ε0,2 · · · ε0,T

ε1,1 ε1,2 · · · ε1,T
...

... . . . ...

εω,1 εω,2 · · · εω,T

 ,

P = [p1, p2, ...] and Q = [q1, q2, ...] are matrices of left and right singular vectors,

and D is a diagonal matrix with singular values along the diagonal. The first term

of the SV D, d1p1qT1 , is used for obtaining the estimates of νx. Parameter νx can be

interpreted as the rate of mortality improvement over age.
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Figure 3.3: Estimated parameters of the Linear–link model, using HMD data from 1980 to
2014 and life expectancy at birth (θ = 0).

4. Smooth the βx and νx parameters using splines. This step is important to obtain

graduated mortality curves and avoid projecting age-specific noise in the jump-off

life table. However, if the graduation is not of interest or if the input data-set is

large enough, this step can be skipped.

5. Compute the initial mortality rates1 by m∗x,τ = exp{βx log e∗θ,τ + νxk}, where k = 0.

6. Optimize the mortality curve given in the previous step by finding the value of

k where the difference between target life expectancy e∗θ,τ and an estimated life

expectancy eθ,τ is below a tolerance level, for example 0.001. Where eθ,τ represents

the level of life expectancy at birth computed based on the mortality rates obtained

in step (5). Usually k will be in the range of (−150,+150) depending on the length

of the forecast window.

The estimated β parameters for the female populations in England & Wales, France,

Sweden and USA, exhibit minor differences between the countries, and capture well the

important stages of human mortality: the decreasing infant mortality, the accidental

hump, the adult mortality characterized by an exponential increase with age and, finally,

1The change in age-specific death rates can be assumed to be constant over time, in which case the
fitted νx is used in computing mx. Or, a shift in the speed of improvement can be imposed by “rotating”
the νx coefficients. For more details see Section 3.5.3 in the Appendix.
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a mortality plateau above the age of 100 years. As shown in Figure 3.3, the νx pattern

differs from population to population. In the case of Sweden, a larger variance is observed

over ages due to a smaller population size and more significant changes at younger ages

in the period analysed.

3.3 Results and Illustration

We perform back-testing against the observed mortality for the female populations living

in England & Wales, France, Sweden and USA. We take the period of 1965–90 as reference

and use the death-rates and life expectancies at birth in this time interval to fit our model.

Based on single values of life expectancy at birth observed in the subsequent years we
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Figure 3.4: Observed and estimated death rates for female populations in 2014. Computed
based on mortality data in the period 1965–90.
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Figure 3.5: Mean absolute errors (%) of the estimated log-death rates against the actual
log-death rates between 1991 and 2014. Computed based on female mortality data in the period
1965–90.

derive complete mortality curves. For example, the estimation of the age-specific death

rates in 2014 is demonstrated in Figure 3.4. The reconstructed mortality curves are in

general smoother than the observed data; this is more evident in the case of Sweden,

where the population is smaller compared with the other three countries.

Figure 3.5 shows that the average relative error of the estimated log-death rates, compared

to the actual rates between 1991 and 2014, is between 0.9% and 3.8%. It can be also

noted that the longer the prediction interval, the larger the errors. In the case of female

populations living in England & Wales, France, Sweden and USA, the largest errors

occurred in 2014; nonetheless these are smaller than 3.8% of the actual log-death rate.
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Figure 3.6: Relative errors (%) of the estimated log-death rates against the actual log-death
rates between 1991 and 2014. Computed based on female mortality data in the period 1965–90.
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Figure 3.7: Comparison of the mortality curves predicted by Lee–Carter and Linear-Link
models in 2040 from female populations. The models are fitted on the 1980–2014 historical
period.

This value is an average over the entire comparable age range (0–100). The largest impact

on the overall accuracy occurs at advanced ages, where the level of uncertainty is higher.

Figure 3.6 offers a view of the error distribution by age and time. However, the life

expectancy at birth computed based on the estimated death rates matches exactly the

actual life expectancy in the respective year and country.

In order to test the conversion reliability of a forecast value of life expectancy, we compare

the results generated by the LL model against the predicted mortality from the Lee–Carter

model (1992).

The LC model is fitted over the 0–95 age-range using the historical data from 1980 to

2014, and used to forecast death rates 26 years in the future, until 2040. The estimated
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matrix of predicted death rates between age 0 and age 95 is extended up to age 120 using

the Kannisto model (see equation (3.5) in the Appendix). If multiple projections are

simulated for the same forecast point, the LC would produce a range of outcomes that can

be translated into life expectancies using standard life table calculations. Any predicted

life expectancy given by LC is used as an input value in the LL model to derive the

mortality curve, thus obtaining two comparable curves. For every simulated trajectory,

the LL method can produce a mortality curve, generating the uncertainty around the

median prediction. Figure 3.7 shows that the reconstruction method employed by the

LL model gives an almost coincident mortality curve when compared with the LC curve

for female populations in 2040. The 99% prediction intervals are computed based on ten

thousand Monte-Carlo simulations. Besides the LL model showing a more smooth age-

pattern when compared with the LC results, it can perfectly estimate the predetermined

life expectancy.

3.4 Discussion

We have introduced a simple method, the Linear-link model, to derive the entire schedule

of age-specific death rates, based on a single value of life expectancy and prior knowledge

of human mortality patterns. The model is based on the observed linearity between

age-specific death rates, mx, and life expectancy at a certain age, eθ. The model can

be regarded as a decomposition approach of the human mortality curve between the

general age pattern, βx, and an age-specific speed of improvement, νx. The method is

inspired by: (1) the Log-quadratic model (Wilmoth et al., 2012) in the sense of using a

leading indicator in determining the age pattern of mortality; (2) the model introduced by

Ševčíková et al. (2016) by adopting an inverse approach to death rates estimation starting

from life expectancy; (3) the Lee–Carter model (1992) using the same interpretation of

mortality improvement over time and age; and finally (4) the Li et al. (2013) method to

model the rotation of age patterns of mortality decline for long-term projections.

The method can be useful in three different situations: future target life expectancy,

life tables for countries with deficient data and historical life table construction. The
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former is the one explored in the present manuscript, while the latter two are only briefly

discussed since their development goes beyond the scope of the paper of presenting the

LL model.

First the model can be used in forecasting practice when the level of life expectancy is

forecast first. We showed that this model can accurately reconstruct a Lee–Carter forecast

starting from a single value of life expectancy at birth. This is important, because the

Linear-link model offers the possibility of taking advantage of the more regular pattern

of the life expectancy evolution. It is much easier and parsimonious, from a technical

perspective to forecast one time series of expectation of life than to extrapolate 100 or

110 series of death probabilities corresponding to each age group. In the same manner

adult mortality can be estimated based on a value of life expectancy at an advanced age,

say age 65. In Figure 3.2, we showed that the linearity between death rates at advance

ages and life expectancy at age 65 on a log scale is maintained. A greater variation is

observed only at advanced ages, above 100, where data is sparse in general.

Second, the method can be used to build model life tables and estimate the current

age patterns of mortality in poor-data countries or regions, like Sub-Saharan Africa. In

this case the parameters of the model are estimated based on a collection of historical life

tables from several regions or populations. Once the parameters have been estimated, and

implicitly the model life table, they remain fixed. The relevant mortality curve is simply

calibrated in accordance with a single value of life expectancy at birth or any other age

instead of child mortality like in the case of Wilmoth et al. (2012). In our analysis we

show examples using high quality data from developed countries in order to demonstrate

the efficiency of the model, and to be able to asses the accuracy of the mortality curve

reconstruction. However, the estimation procedure and the steps of the algorithm are the

same for this case too.

Third, the LL model can be a useful tool in a variety of research contexts of historical

demography like backward projections and estimation of mortality levels in historical

populations. Due to the existence of scarce non-standardized population data in the past

and population census only for the more recent times, the very possibility of projecting

mortality backward is of theoretical interest (Ediev, 2011).
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According to our analysis, the optimal number of years to be used in the fitting of the

model is between 30 and 35 years. If a longer time interval was used, the parameter

estimates would lose their relevance. For example, the present rate of improvement in the

death rates is different from that experienced 50 years ago, because of fundamental changes

in society and scientific advances during this period (Bengtsson, 2006; Rau et al., 2008).

In the same manner over a longer period of time the linearity between life expectancy

and death rates might be challenged, however this should be investigated from case to

case.

The speed of improvement in age-specific death rates over ages changes over time. For

example, in recent decades, a faster pace of improvement was observed at ages 65 and

above (Vaupel, 1997; Shkolnikov et al., 2011). We address the possibility of experiencing

accelerating or decelerating speeds of mortality improvements over different age ranges

by assigning different weights to the estimated νx curve when the life expectancy at birth

continues to advance over age 75. The effect of this method can be best observed in

Figure 3.7 in the case of France. Under the implicit assumption of constant mortality

improvements, the LC forecast generates a second mortality hump around age 50. The

estimated mortality curve given by the LL model has a less pronounced effect due to the

rotated νx parameter. See a detailed description of the method in Appendix 3.5.3.

The evolution of human mortality is a complex process that is driven by a large number

of factors and can not be explained by a single statistical model. The Linear-link method

offers an alternative approach to deriving the unknown levels of mortality in the future.

In contrast with methods like the Lee–Carter model that extrapolate age-specific rates or

probabilities directly the method presented here recognizes life expectancy as the main

driver of mortality at any given age and employs an indirect estimation algorithm. These

methods can complement each other and help us understand better the future longevity

experienced by populations.
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3.5 Appendix

3.5.1 The Kannisto Model

Normally, mortality data is available in tables that contain detailed information up to age

85, 100 or 110, with last age group being open. In order to extend the mortality rates

up to age 120, the Kannisto method (Thatcher et al., 1998) for old-age mortality with an

asymptote equal to one can be employed:

mx =
αeβχ

1 + αeβχ
, (3.5)

which can also be written as a linear function of age
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Figure 3.8: Extension of female mortality rates using the Kannisto model in 2014.
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logit(mx) = ln(α) + βχ+ εχ, (3.6)

where ε is a normally distributed variable with mean zero, χ = x− 80, and parameters α

and β are positive real numbers. The model is usually fitted between age 80 and 95.

Assuming that Dx v Poisson(Ex ·mx(α, β)) the parameters α and β can be derived by

maximizing the log-likelihood function:

logL(α, β) =
95∑

x=80

{
Dxlog

[
mx(α, β)

]
− Exmx(α, β)

}
+ constant, (3.7)

where Dx denotes the number of deaths that occurred at age x, Ex represents the popu-

lation exposed to risk at the same age, and mx is the age-specific death rate.

The Kannisto model is not only useful to obtain values for oldest-old mortality but also

to smooth the rates computed on smaller sample sizes. The case of Sweden presented

in Figure 3.8 can be relevant here, where in 2014 the number of females aged 100 and

above was less than 1,700. A small sample size can create difficulties in obtaining reliable

mortality estimates based only on empirical observations. Outliers are expected to show

up from year to year.

3.5.2 Maximum likelihood estimation

Assuming that deaths are Poisson distributed, the LL model can be fitted by maximising

the log-likelihood given by

logL(a, ν, k) =
∑
x,t

{
Dx,t(ax + νxk)− Ec

x,t exp(ax + νxk)
}

+ constant, (3.8)

where ax = βx log eθ,t. The parameters are estimated following an updating scheme pro-

posed by Brouhns et al. (2002) based on the Newton-Raphson algorithm. The updating

procedure, with initial values âx(0) = 0, ν̂x(0) = 1, and k̂(0) = 0, is as follows:

68



âx(w + 1) = âx(w)−
∑

t(Dx,t − D̂x,t(w))

−∑t D̂x,t(w)
,

ν̂x(w + 1) = ν̂x(w),

k̂(w + 1) = k̂(w),

k̂(w + 2) = k̂(w + 1)−
∑

x(Dx,t − D̂x,t(w + 1))ν̂x(w + 1)

−∑x D̂x,t(w)(ν̂x(w + 1))2
,

âx(w + 2) = âx(w + 1),

ν̂x(w + 2) = ν̂x(w + 1),

ν̂x(w + 3) = ν̂x(w + 2)−
∑

t(Dx,t − D̂x,t(w + 2))k̂(w + 2)

−∑t D̂x,t(w + 2)(k̂(w + 2))2
,

âx(w + 3) = âx(w + 2),

k̂(w + 3) = k̂(w + 2),

where D̂x,t(w) = Ec
x,t exp(âx(w) + ν̂x(w)k̂(w)), is the estimated number of deaths after

iteration w. After the parameters are estimated, the parameter ax is transformed using

the LL model, ax = βx log eθ,t.

The maximum likelihood estimation (MLE) has several advantages over least squares

(OLS) and SVD methods or even weighted least squares (WLS) used in Wilmoth et al.

(2007). Several reasons have been given in the literature (Brouhns et al., 2002; Alho,

2000). One example would be the increasing confidence intervals by age. This is because

in the OLS estimation via SVD the errors are assumed to be homoskedastic and normally

distributed, which is quite a heavy assumption. The logarithm of the observed force of

mortality is much more variable at older ages than at younger ages because of the much

smaller absolute number of deaths at older ages. Therefore, since the number of deaths is a

counting variable, the Poisson assumption seems more reasonable (Brillinger, 1986).

However, in order to use this approach we need death counts Dx,t and exposures Ex,t,

which are not always available. This being the reason why the model described by equa-

tion (3.1) is chosen in the article. Our methodology is targeting populations with deficient

data as well as populations whose estimates of mortality rates are provided without dis-
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aggregation by deaths and exposures. Although conceptually a Poisson setting would be

better, the SVD approach is a pragmatic decision for practical reasons. As shown in figure

3.9 the difference between the two estimation methods for the case of England & Wales

females is very small but the data requirements is higher in the case of MLE.
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Figure 3.9: Comparison of the fitted mortality curves and parameter estimates of the
Linear-Link model using the OLS+SVD and MLE fitting procedures. England & Wales female
data for 1980–2014 period is used.

3.5.3 Rotation of mortality improvements

One of the main limitations of the LC model (1992) is the central assumption of constant

rates of mortality declines at different ages, resulting from the time-invariant bx coeffi-

cient of age-specific mortality improvements (Bongaarts, 2005). The assumption has been

violated in several low-mortality countries in recent decades, because rates of mortality

improvements have tended to decline over time at younger ages, and they have risen at

older ages (Kannisto et al., 1994; Vaupel et al., 1998; Wilmoth and Horiuchi, 1999).

It is important to take into consideration the changing age pattern of mortality improve-

ments to produce more accurate mortality forecasts, and projection methodologies that

ignore such rotation will lead to errors, particularly in the projected age patterns of future

death rates (Li et al., 2013). Li et al. proposed an extension of the LC method to incorpo-

rate the rotation of the age patterns of mortality decline for long-term projections.
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Here, we propose a modification of the original Li et al. (2013) methodology that ensures

the rotation of the rate of mortality improvement over age in the LL model, νx. The

methodology is composed of two different steps.

First, we derive an ultimate schedule of mortality improvements, νux , from the estimated

coefficient νx. In particular, the ultimate rates of improvement between ages 0 and 65 are

set equal to the average improvement at adolescent and adult ages (15–65); from age 65
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Figure 3.10: Assumption of the change in νx pattern following the increase in life expectancy
at birth from 75 to 102 years.
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onwards, improvements decrease following a logistic shape, and they converge to zero at

age 130.

Second, we smooth the transition from νx to νux using the weight function proposed by

Li et al. (2013). The transition, and therefore the degree of rotation of νx, is dependent

on e∗0(τ), the predicted value of life expectancy at birth (an input in our LL model).

Formally, the weight function ws can be expressed as:

ws(τ) =

{
1

2

[
1 + sin

[π
2

(2w(τ)− 1)
]]}p

with w(t) =
e∗0(τ)− 80

eu0 − 80
. (3.9)

Because νx parameter is scaled in order to take values between 0 and 1 the ultimate

pattern of mortality improvement by age will be the same for all countries. If the scaling

process is ignored, the same pattern is obtained in all cases with a different level of νx

between age 0 and 65. The estimated death rates would be the same in both case because

of the adjustment provided by k parameter.

The power of the smooth-weight function, p, regulates the speed of the rotation. It varies

between 0 and 1, and lower values correspond to faster rotations for levels of e∗0(τ) closer

to 80. The level of life expectancy at which the rotation finishes, eu0 , is also arbitrary;

here, we follow the recommendations of Li et al. (2013) and set the intermediate value of

0.5 for p and the age 102 for eu0 .

The rotated coefficient of mortality improvement over age, denoted N r
x(τ), can thus be

written as:

N r
x(τ) =


νx , e∗0(τ) < 80 ,

[1− ws(τ)] νx + ws(τ)νux , 80 ≤ e∗0(τ) < eu0 ,

νux , e∗0(τ) ≥ eu0 .

(3.10)
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Abstract

The age-at-death distribution is a representation of the mortality experience in a popu-

lation. Although it proves to be highly informative it is often neglected when it comes to

the practice of past or future mortality assessment. We propose an innovative method to

mortality modelling and forecasting by making use of the location and shape measures of

a density function i.e. statistical moments. Time series methods for extrapolating a lim-

ited number of moments are used and then the reconstruction of the future age-at-death

distribution is performed. The accuracy of the estimated distributions proves to be very

good and the predictive power of the method seems to be net superior when compared to

the results obtained using classical approaches to extrapolating age specific death rates.

The method is tested using data from the Human Mortality Database and implemented

in a publicly available R package.

Keywords:

Mortality forecasting; Density estimation; Statistical moments; Maximum entropy
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4.1 Introduction

The mortality experience of a population is well described by its hazard rates, a property

that has been well exploited in numerous methods of mortality modelling (Gompertz,

1825; Makeham, 1867; Siler, 1983; Heligman and Pollard, 1980) and forecasting (Lee

and Carter, 1992; Li and Lee, 2005; Haberman et al., 2014). The main reasons why

hazard rates have been used predominantly in modelling and forecasting is that they

readily represent the change in the risk of death over age and time. In addition the five

components of the pattern of human mortality (infant, child, youth, adult, and old-age

mortality) can be identified clearly in a graphical representation of the hazard curve; and

a variety of time series model can be employed to extrapolate the identified trends over

time.

Surprisingly few mortality methods acknowledge that the probability density function

of the distribution of deaths can be equally informative when compared to the hazard

indices: and more than that it can give immediate indication on key measure of longevity

like how long a population lives on average and the degree of variability of ages at death.

By employing statistical knowledge about the shape of the distribution, and how the level

of mortality at a certain age is fully dependent on the levels of mortality at all the other

ages, brings enormous advantages. When hazard rates are investigated no conclusion can

be made about mean age-at death, or the inequality experienced by the population when

it comes to death or what is the prevalence of extraordinary long life-spans (the outliers

in old-age mortality) or even summary statistics related to the mortality experience. For

example, Figure 4.1 illustrates the transition in the age-at-death distribution for men

living in England & Wales. We can learn that in 1960 the population experienced a

pronounced infant mortality level up to the age of 5, and the fact that it takes about 53

years in order for the first 10% of men to die. In 1960, only 10% of the male population

had the chance of living beyond the age of 85. Analysing the same distribution in 2016

we can see that infant mortality dropped to almost insignificant levels (an inspection on

the logarithmic scale would still show differences over ages), and that it takes about 63

years to eliminate the first 10% of the male population through death. We can also learn
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Figure 4.1: Convergence of the age–at–death distribution (England & Wales, Male population)

that more that 50% of men are surviving to age 85, and more than 10% of the population

will surpass the age of 93.

The first attempt to describe the mortality pattern by analysing the age-at-distribution

was made by Pearson (1897), building on Lexis’ work (1879), where different functions

were being used to capture the components of the pattern of human mortality. Pearson

used a skewed function, arguing that the skewness of old-age mortality depends on the

incidence of premature mortality. More recently Dellaportas et al. (2001) uses death

counts to fit the Heligman-Pollard model with Bayesian methods and Mazzuco et al.

(2018) models mortality by fitting a half-normal and a skew-bimodal-normal distribution

to the observed empirical age-at-death density function.

Despite being well suited to portray the dynamics of mortality patterns and to study

longevity and lifespan variability, age-at-death distributions have generally been neglected

in forecasting practice. The life table distribution of deaths, or f(x)1, is constrained en-

suring that its elements add to the radix of the population, usually l0 = 1, thus having∑
x f(x) = 1. Time-series extrapolations of its trends are likely to violate this assumption

1The commonly accepted life-table notation for the age-at-death distribution is d(x). However we will
use the f(x) notation in order to maintain consistency with the notation used in statistics for densities.
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making burdensome the use of the same extrapolative methods as in the case of hazard

rates. Notable attempts at forecasting the age-at-death distribution were made by Oep-

pen (2008) and Bergeron-Boucher et al. (2017) by adapting the Lee–Carter model to the

Compositional Data Analysis framework (Aitchison, 1982). While this approach solves

the problem of respecting the unit sum constraint, it also requires changing the coordinate

system from a Euclidean space to an Aitchison simplex (1986) which might hinder the

interpretation of the results. Another novel idea is introduced by Basellini and Camarda

(2018) by modelling the shifting and compression dynamics of the adult mortality distri-

bution around the modal age at death with a 3-parameter function, parameters that can

be extrapolated using standard time series models.

Inspire by the idea of forecasting mortality given the information offered by the age-at-

death distribution, we propose a novel approach to forecasting age-specific mortality levels

by making use of statistical moments i.e. the shape measures of a density. By employing

the knowledge about the shape of the distribution mentioned earlier, and how the level of

mortality at a certain age is fully dependent on the levels of mortality at all the other ages,

brings an enormous advantage to the extrapolation methods based on death frequencies

over the methods based on hazard or mortality rates extrapolation. One statistical mo-

ment describes one characteristic of the distribution it belongs to. For example, in the

case of the distribution of deaths of a population the first moments correspond to: i)

the mean age at death or life expectancy; ii) the variance offers information about the

inequality of the age at death; iii) the skewness states how concentrated the mortality

is around young or old ages, and iv) the kurtosis indicates the weight of the tails or the

presence of outliers (extreme old age) in the distribution. Beyond moments higher than

the fourth the interpretation is limited, however these are relevant in the case of more

complex distribution (multi-modal densities) helping in fine-tuning the observed irregu-

larities. Thus, for a distribution, the collection of all the moments uniquely determines

its density function. In order to gain a perfect understanding of the underlying density

function one needs to have information about all the moments up to infinity. However a

limited number of moments like mean, variance, skewness and kurtosis can already offer

a good approximation of the shape of the probability density function of the underly-
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ing distribution of deaths, and therefore a good understanding of the levels of mortality

experienced by a population at different ages.

The method proposed here considers the finite moment problem where a positive density,

f(x), is sought from knowledge of a limited number of its power moments. We assess the

evolution of several observed moments of the age-at-death distribution in order to forecast

them by employing multivariate time series models. And we reconstruct the forecast

distribution using the maximum entropy approach (Mead and Papanicolaou, 1984) that

relies on the average rate at which information is produced by a stochastic source of data

or density function i.e. information entropy. Reconstructing the density function from a

set of predicted moments has the advantage of allowing accelerating/decelerating rates of

mortality improvement over age and time. It also eliminates the necessity of altering the

coordinate system as in Oeppen (2008). We will refer to this method as the maximum

entropy mortality model (MEM).

The purpose of this study is:

• to demonstrate that accurate forecasts of age-specific mortality levels can be ob-

tained using statistical moments and the information provided by the age-at-death

distribution;

• to compare the MEM against other well established mortality models and determine

its newly added value.

• to validate the MEM predictions against a benchmark, that is, a simplistic trend

extrapolation of the age specific death-rates (naïve model) in order to justify the

increase in complexity of the proposed method. This objective is justified and

inspired by Bohk-Ewald et al. (2018), a study where 20 major fertility forecasting

methods are evaluated. The main findings show that across multiple measures of

fertility forecast accuracy only 4 methods consistently outperform the naïve model.
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4.2 Methods

In the current section we introduce our method of modelling and forecasting mortality

and the main concepts required to understand its estimation procedure.

4.2.1 Statistical Moments

The statistical moments are defined as the expected value of the n-th power of a random

variable x. The n-th moment, µn, for a continuous density function, f(x), about a value

c can be defined as:

µn =

∫ ω

a

(x− c)nf(x)dx, where n = 0, 1, 2 . . . (4.1)

If variable c denotes the mean it is said that µn is the n-th moment about the mean

or the n-th central moment. The moments can be computed about zero as well, in

which case the moment is called a raw or crude moment. The normalized moment of

a probability distribution is a central moment that is standardized. The normalization

is typically a division by an expression of the standard deviation, σ, which renders the

moment scale invariant. This has the advantage that such normalized moments differ only

in other properties than variability, facilitating e.g. comparison of the shape of different

probability distributions. Then the normalized moment of degree n of a central moment

is

µ̃n = µn/σ
n. (4.2)

Both, the raw and the normalized moments are used in this study. While the normalized

moments are a good choice to serve as indices in time series extrapolation (as we will see

in section 4.2.4), the raw moments are more efficient in the estimation of the underlying

density functions (section 4.2.3). If one type of moments is known, all the others can be

derived from these without losing their properties.
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4.2.2 Information Entropy

The concept of information entropy was introduced by Shannon (1948) in an effort to

mathematically formalize the process of communication in computer science (between

two devices). The word information, here, is used in a special sense and must not be

confused with meaning. The information is seen as a measure of the numbers of the

possible outcomes generate by a probabilistic process and it is defined as the logarithm

of this value. Warren (1949) reveals that the quantity which uniquely meets the natural

requirements that one sets up for information turns out to be exactly that which is known

in thermodynamics as entropy and which is a measure of the degree of randomness.

To explore the numerical values of the entropy measure H, let’s assume that the individu-

als in a population can die in one of the following two states: childhood (C) and adulthood

(A). The associate probabilities would be f(C) for the first state and f(A) = 1 − f(C)

for the second. It follows that:

H = − [f(C) log f(C) + f(A) log f(A)] or H = −
A∑
i=C

f(i) log f(i) (4.3)

Since the logarithm of a number smaller that 1 is a negative value, the minus sign in

the equation is added for convenience only, so that H is always positive. It turns out

that the information entropy has its largest value, when the events of dying in childhood

and adulthood are equally probable; that is when f(C) = f(A) = 0.5. Just as soon as

one outcome becomes more probable than the other (e.g. adult mortality greater than

childhood mortality) the value of H decreases. And when one outcome is very probable

(f(A) almost one and f(C) almost zero, say) the value of H is approaching zero. A

situation in which the stochastic process of dying in different states becomes less random

and the outcome almost certain. Therefore, information entropy is also a measure that

can show the level of inequality experienced by individuals represented in a distribution

such as age-at-death. A small value of the entropy indicates that everyone dies around

the same ages, i.e. the population is characterized by a small degree of inequality in terms

of age-at-death. If H is large one can say that the inequality is pronounced.
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To generalize, the entropy of a random variable x with probability distribution function

f(x) is the negative logarithm of the density function for the value, and can be written

as:

H = −
∫
f(x) logb f(x)dx, (4.4)

and

H = E [I(x)] = E [− logb f(x)] , (4.5)

where E is the expected value operator, I is the information content of x and b is the

base of the logarithms used. The entropy can be measured in binary units (bits) natural

units (nats) or decimal units (bann) for b equal to 2, e and 10 respectively. In the case

of f(xi) = 0 for some i, the value of logb(0) is taken to be 0, which is consistent with the

limit:

lim
p→0+

p log p = 0. (4.6)

Various entropy measures have been proposed in the scientific literature including the

entropy of a life table (Keyfitz, 1977) commonly used in demography. We note that

Keyfitz’s measure can not be an alternative to the Shannon entropy in this study. Keyfitz’s

entropy is defined as measure of elasticity of the life expectancy with respect to a uniform

change in age-specific death rates, and it does not represent a true measure of entropy in

the probability sense (Hill, 1993).

4.2.3 The finite moment problem

The problem of reconstructing a distribution from a given number of moments is not

straightforward. It is known in the mathematical literature as the finite moment prob-

lem. The method has been extensively studied from a theoretical perspective and has

practical applications in thermodynamics and quantum-physics. It can be regarded as

a finite dimensional version of the Hausdorff moment problem (Hausdorff, 1921; Shohat
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and Tamarkin, 1943). Various methods for solving this problem have been proposed in

the last decades, by making use of orthogonal polynomials (Chihara, 2011), splines (John

et al., 2007), or other numerical strategies (Frontini et al., 1990). All the procedures

aim at constructing specific sequences of functions fN(x) which eventually converge to

the true distribution f(x) as the number of moments N , used in estimation, approaches

infinity

µn =

∫ ω

a

xnfN(x)dx, n = 0, 1, 2 . . . , N. (4.7)

Equation (4.7) should be seen as a system of N + 1 equations, where the moments

µ0, . . . , µN come from the fN(x) density.

Taking advantage of the regularity of human mortality the reconstruction of a density

function can be realised using a small number of moments, usually 3 to 6. And, a good

fit of the true density is achieved by imposing a prior restriction of the class on functions

where the solution is sought.

Here we follow the maximum entropy reconstruction (MaxEnt) and the algorithm devel-

oped by Mead and Papanicolaou (1984) as a definite procedure for the construction of a

sequence of approximations to the true density. This method is based on the information

entropy given by the density function. As a strategy for finding the local maxima of the

entropy functional L = L(f), we employ the method of Lagrange multipliers, λn for the

n-th moment:

L = H +
N∑
n=0

λn [µ̂n − µn] . (4.8)

The entropy is maximized under the condition that the first N+1 moments, µ̂n, are equal

to the true moments µn, where n takes values between 0 and N . Functional variation of

L with respect to the unknown density f(x) yields

δL
δf(x)

= 0 =⇒ f = fN(x) = exp

(
−λ0 −

N∑
n=1

λnx
n

)
, (4.9)
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and the n−th raw moment

µn =

∫ ω

a

xn exp

(
−λn −

N∑
n=1

λnx
n

)
dx. (4.10)

Considering the availability of the first N + 1 moments, the equations (4.9) and (4.10)

(that are closely related to equation 4.7) should be viewed as a non-linear system of N+1

equations for the unknown Lagrange multipliers λ0, λ1, . . . , λN . If we assume that the

density f(x) is normalized such that the first moment is always equal to 1 (µ0 = 1, i.e.

respecting the unit sum constraint) the first equation in (4.10) then reads

µ0 =

∫ ω

a

x0fN(x)dx =

∫ ω

a

exp

(
−λ0 −

N∑
n=1

λnx
n

)
dx = 1 (4.11)

and results in the first Lagrange multiplier, λ0, being expressed in terms of the remaining

Lagrange multipliers:

∫ ω

a

exp

(
−

N∑
n=1

λnx
n

)
= eλ0 . (4.12)

The system of equations then reduces to

µn =

∫ ω
a
xn exp

(
−∑N

n=1 λnx
n
)

∫ ω
a

exp
(
−∑N

n=1 λnx
n
) , n = 0, 1, 2 . . . , N. (4.13)

For a numerical solution, one introduces Γ = Γ(λ1, λ2, . . . , λN) through the Legendre

transformation

Γ = ln(eλ0) +
N∑
n=1

µnλn, (4.14)

where the µn’s are the observed numerical values of the known moments. The stationary

points of the potential Γ are solutions to the equations
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Figure 4.2: Observed and estimated empirical density functions (USA, 1990, Male population)

δΓ

δλn
= 0 =⇒ µn, n = 0, 1, 2 . . . , N, (4.15)

which is the solution to the finite moment problem. The convexity of Γ guarantees that

if a stationary point is found for some finite values of λ1, λ2, . . . , λN it must be a unique

absolute minimum. A more detailed description and analytic demonstration of the method

and also alternative algorithms for solving the finite moment problem can be found in

Mead and Papanicolaou (1984).

Figure 4.2 shows the observed and reconstructed distribution of deaths using different

numbers of observed statistical moments for the male population living in the USA in

1990. This distribution of deaths is a good study case because it is characterized by a

pronounced level of mortality in the first year of life, an accident hump around age 20

and an exponential increase in adult and old age mortality. More recent distributions ex-

hibit less pronounced local maxima or modes, therefore making them easier to estimate.

Knowing only the first two moments, mean and variance, is not sufficient to obtain a good

reconstruction of the underlying distribution. The obtained coverage, i.e. the common

surface of the observed and estimated distributions, would be around 80%. However, the

more moments we employ in the estimation procedure the bigger the coverage becomes.

The results indicate that of 6 moments are enough to obtain a coverage above 96% where

the infant and adult mortality is captured adequately. We note here that above a large

enough coverage level, the measure does not necessarily indicate a more accurate ap-
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proximation of the true distribution, but better identification of the main body of the

distribution.

4.2.4 The Maximum Entropy Mortality model

The idea behind our forecasting method is simple. The future age-specific levels of mor-

tality for a population are determined by extrapolating a limited number of statistical

moments given by the available life-table age-at-death distributions. The extrapolation is

realised with multivariate time series models. The age-at-death distribution is estimate at

any point in time from the predicted moments using the MaxEnt algorithm (introduced

in section 4.2.3).

Prior to generating future realisations, the moments of ordinal 3 and higher are normal-

ized, and the logarithmic transformation is applied to the absolute values of all observed

moments. This ensures that the relevant shape measures remain positive on any fore-

casting horizon (e.g. the mean and the variance of the distribution). The period index

of interest to be used in forecasting, with first order differences, can be defined as fol-

lows:

yn,t = log |µ̃n,t| − log |µ̃n,t−1|. (4.16)

We are using a multivariate random–walk, with a vector of drift parameters θn (see Ap-

pendix 4.5.1 for a detailed description), to drive the dynamics of the multiple period

indices, so that

yn,t = θn + yn,t−1 + εn,t with t = 1, 2, ..., τ and n = 1, 2, ..., N, (4.17)

where εn,t ∼ N(0,Ω), with Ω = CC ′. C represents the Cholesky factorisation matrix of

the variance-covariance matrix Ω. The parameters θn and Ω are estimated by ordinary

least squares (OLS). A similar model is used by Haberman and Renshaw (2011) to generate

trajectories of the multiple period indices in various mortality models.
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Figure 4.3: Forecast of statistical moments of the life table distribution of deaths together with
95% prediction intervals, using a multivariate random–walk model (England &Wales, Male
population, 1980–2040)

Once the yn,t forecasts are obtained one can compute the statistical moments, estimate the

distribution of deaths at time t using MaxEnt, and derive any other life table indicator

by applying standard life table calculations (Preston et al., 2000).

4.2.5 Prediction intervals

We simulate prediction intervals for the indices of interest using an algorithm, which

makes full allowance for the forecast error generated by the multivariate random–walk

model.

Algorithm:

M simulations are performed on a forecasting horizon J .

For simulation m = 1, 2, . . . ,M

1. randomly sample a variable z∗m from the multivariate normal distribution N(0, I);

For j = 1, 2, . . . , J

2. compute y∗n,t+j = yn,t+j + jθ̂n +
√
jĈz∗m
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3. compute statistical moments µ∗t+j,n,m
4. estimate the density using the MaxEnt algorithm and determine d∗x,t+j,m.

4.3 Case study: England and Wales 1960–2016 male

mortality experience, ages 0-95

4.3.1 The data

The data source used in this article is the Human Mortality Database (2018), which con-

tains historical mortality data for 43 different countries and territories. HMD constitutes

a reliable data source because it includes high quality historical mortality data that was

subject to a uniform set of procedures, guaranteeing the cross-national comparability of

the information.

In order to test and illustrate the performance of the method, we fit the model using

life table death counts for male population in England & Wales between 1960 and 2016.

Additional results for various countries are presented in Appendix 4.5.2.

4.3.2 Model Comparison

In addition to the MEM model the following mortality models are evaluated and used to

forecast mortality:

• The multivariate random-walk with drift model:

log(mx,t) = θx + log(mx,t−1) + εx,t. (4.18)

This model represents a simple linear extrapolation of the logarithm of the age-

specific death rates, mx, based on the first and the last observed values in the

multivariate time series.
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• The Lee and Carter (1992) mortality model:

log(mx,t) = αx + βxkt + εx,t, (4.19)

which is a numerical algorithm to estimate the age-specific effects αx and βx and

employs the singular value decomposition (SVD) to derive a univariate time series

vector kt, that becomes the main leading indicator of future mortality.

• The Hyndman and Ullah (2007) – functional mortality model:

log(mx,t) = αx +
K∑
k=1

βx,kφt,k + ex,t + σt,xεx,t (4.20)

This model is an extension of the Lee–Carter model where the sum term allows for

smooth functions of age and σt,x allows the amount of noise to become age-specific.

• The Oeppen (2008) – compositional-data mortality model:

clr(fx,t) = αx + βxkt + εx,t (4.21)

Again, a variant of the Lee–Carter model where the index of interest to be mod-

elled is the life-table age-at-death distribution f(x), subject to a clr transformation

(instead of a logarithmic one).

For all models εx,t are independent and identically distributed random variables

(iid) normally distributed with mean zero.

Thus, five models are evaluated. Three of them are targeting the log–transformed death

rates, logmx, and the other two (Oeppen and MEM) are focusing on modelling the age-

specific frequencies of the age-at-death distribution or mortality data in compositional

format. We mention that the random-walk model is chosen because of its simplicity,

the Lee–Carter and Hydman-Ullah methods are included in comparison because of their

popularity and acceptance in the demographic and actuarial literature, and finally the

Oeppen model is selected because of its similarity with the MEM model (mainly, the

f(x) focus). Discussing the advantages and the features of the models used in comparison
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is beyond the scope of this paper. For more details about the models please refer to the

original articles.

The analysis is performed using the R programming language (R Core Team, 2018).

The Lee–Carter and the Hyndman–Ullah models are fitted and forecasted using the

demography R package (2017). The source code of the other three models can be down-

loaded and installed in form of an R software package from authors’ GitHub reposi-

tory.

4.3.3 Evaluation and predictive power measurements

We assess the performance of the proposed MEM method and the other four mortality

models based on forecasts of life expectancy at all ages2 as compared to the observed life

expectancies. All the models are fitted and evaluated over the 0–95 age-range. Since a

perfect fit of the data can always be obtained by using a model with enough parameters

and due to the fact that a good fit does not guarantee good forecasting performance

(Hyndman and Athanasopoulos, 2018), we will not evaluate the models based on their

ability to fit the historical data. The models are evaluated based on the out-of-sample

forecasting performance over the observed data, where we refer to sample as the dataset

used in fitting. The predictive power is our ultimate goal, translated into a high degree

of accuracy of forecast trajectories.

Many of accuracy measures have been published. See Hyndman and Koehler (2006)

for a comprehensive review of the most common accuracy measures used in forecasting

literature. Only six of them are considered here:

• ME – Mean Error;

• MAE – Mean Absolute Error;

• MAPE – Mean Absolute Percentage Error;
2Because the five mortality extrapolation methods are modelling different life table indicators (mx

vs. fx), in order to perform a fair comparison one needs to make sure that the life table computation
guarantees the transitivity between the indicators. That is, given a certain mortality level the same
values of life expectancy (indicator evaluated in this article) are obtained regardless of whether the life
table construction starts from mx, qx, lx or fx. In this article the goal is achieved by using the life table
methods implemented in the MortalityLaws R package (2018).
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• sMAPE – Symmetric Mean Absolute Percentage Error;

• sMRAE – Symmetric Mean Absolute Relative Error;

• MASE – Mean Absolute Scaled Error.

The sMRAE and MASE are accuracy measure computed relative to a benchmark model.

In the case of sMRAE the reference model in our study is the multivariate random-walk

with drift, because we consider this model to be the simplest reliable method to extrapo-

late age specific death-rates. The MASE measure assesses the accuracy of a forecast with

reference to a simple 1-step random-walk model (without drift). For all the presented

accuracy measure, except ME, a smaller value is preferred over a larger one. A model

performs better in terms of ME, compared to another model, if the obtained value is closer

to zero i.e. the smallest value in absolute terms. Because the six measures are evaluating

the accuracy by analysing different aspects of the realised forecasts, it is possible but not

mandatory to obtain a different classification of the model performance, depending on the

considered measure. We compute a general classification (GC) of the resulted accuracy

performance of the analysed models by considering the median classification over the six

measures for each model. The best performing model is marked with: rank (1).

4.3.4 Out–of–sample forecasting strategy

The period between 1960–2016 is long enough and relevant at the same time for assessing

the predictive power of the estimated models. A typical testing scenario would use sub-

periods of 20 years of data to fit/train the models, and subsequent periods of 20 years

of data to forecast and validate the results. Multiple testing scenarios are defined by

rolling forward the training/validation windows in steps of 1 year. This strategy will be

called: 20–20–1. Therefore, considering our timeline, in the first scenario we will use data

from 1960 to 1979 for fitting the models. The resulting models will be used to predict

mortality for the period between 1980 and 1999, and validate the forecasts against the

observed values in the same period. We will refer to this as the 1960–1979–1999 scenario.

By moving the evaluation windows 1 year forward, the second scenario would be 1961–

1980–2000. And so on until the last scenario: 1977–1996–2016. In total 18 scenarios have
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been defined, containing equal fitting and forecasting period lengths, making possible in

this way the aggregation (by averaging) and comparison of the accuracy results over all

scenarios in addition to the specific scenario results.

4.3.5 Results

Across multiple measures of forecast accuracy computed based on the mortality experience

of the male population living in England and Wales, we find that the predictive power

of the MEM method is net superior to the other models. Table 4.1 displays a summary

of the aggregated measures over 18 defined scenarios. We also learn that the differences

between the multivariate random-walk with drift, Lee–Carter and Hydman-Ullah models

are insignificant in the case of this population. And that the Oeppen method consistently

offers better results among the Lee–Carter type models, obtaining the second position

among the best-performing models in this study.

Table 4.1: Forecast accuracy measures aggregated over 18 scenarios in the 1960–2016 period

Model ME MAE MAPE sMAPE sMRAE MASE GC

M.Random-Walk w Drift 0.72 (3) 0.73 (3) 2.98 (3) 3.06 (3) 100.00 (3) 4.06 (3) (3)
Lee–Carter 0.78 (5) 0.78 (5) 3.15 (5) 3.25 (5) 103.93 (5) 4.30 (5) (5)
Hyndman–Ullah 0.76 (4) 0.77 (4) 3.10 (4) 3.19 (4) 102.69 (4) 4.22 (4) (4)
Oeppen 0.61 (2) 0.62 (2) 2.61 (2) 2.68 (2) 91.98 (2) 3.47 (2) (2)
MEM–6 0.42 (1) 0.45 (1) 2.11 (1) 2.15 (1) 79.59 (1) 2.66 (1) (1)

When the models are tested over the mortality experience of multiple populations using

the same strategy we discovered a similar patter, namely, in the majority of the cases the

methods based of age-at-death distribution (MEM and Oeppen) would be ranked as first

and second in the general classification.

The projected trajectories given by these methods can be inspected across different life

table indicators, which are equivalent in the sense that they represent the same level of

mortality. In Figure 4.4 we show the resulting mean trends in life expectancy at age 0,

25, 45, 65, 75 and 85; and in Figure 4.5 the trends in central death rate at the same ages

are represented. It is noticeable that the MEM can cope with different levels of mortality
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improvement over age and time. This is the main reason why the model is able to return

significantly better forecasts.
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Figure 4.4: Out–of–sample forecast of the remaining life expectancy at various ages using the
five mortality models (England & Wales, Male population, Scenario 18: 1977–1996–2016)
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Figure 4.5: Out–of–sample forecast of the age-specific death rates using the five mortality
models (England & Wales, Male population, Scenario 18: 1977–1996–2016)

4.3.6 How many moments to use in MEM forecasting?

In general, the number of statistical moments to be considered in the MEMmodel depends

on the regularity of the age-at-death distribution in the population of interest. The

more moments employed, the more accurate the estimation of the underlying distribution

becomes. However, the cost of using a lager number of moments is paid in processing
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speed and the likelihood of convergence of the MaxEnt algorithm. For 7 or more moments

a more complex time series model for moment extrapolation might be required.

We tested the MEM models of order 2 to 6, that is models that are estimated based on

the first 2, 3 until 6 moments (plus µ0). The testing was carried out in the same manner

and over the same scenarios as in section 4.3.5. From the results in table 4.2 we learn

that only the MEM–2 is disqualified by the benchmark model, all the other variants of

the MEM return significantly better results.

Table 4.2: Forecast accuracy measures aggregated over 18 scenarios in the 1960–2016 period

Model ME MAE MAPE sMAPE sMRAE MASE GC

M.Random-Walk w Drift 0.72 (5) 0.73 (5) 2.98 (5) 3.06 (5) 100.00 (5) 4.06 (5) (5)
MEM–2 1.00 (6) 1.01 (6) 4.02 (6) 4.16 (6) 113.12 (6) 5.44 (6) (6)
MEM–3 0.56 (4) 0.58 (4) 2.72 (4) 2.80 (4) 88.14 (4) 3.34 (4) (4)
MEM–4 0.47 (3) 0.49 (3) 2.41 (3) 2.47 (3) 83.10 (3) 2.94 (3) (3)
MEM–5 0.43 (2) 0.46 (2) 2.17 (2) 2.22 (2) 80.55 (2) 2.73 (2) (2)
MEM–6 0.42 (1) 0.45 (1) 2.11 (1) 2.15 (1) 79.59 (1) 2.66 (1) (1)

4.4 Conclusion & Discussion

The maximum entropy mortality model represents a new approach to modelling age-

specific mortality levels. Nevertheless, its novelty refers only to the authors’ idea of

defining an algorithm to forecast mortality using well established methods and concepts

like “statistical moments”, “information entropy”, “the finite moment problem” and “the

multivariate random-walk with drift” introduced decades or centuries ago. All these in-

dividually have important application in different scientific fields.

The main advantage of the MEM is that the possible forecast age-specific trends are no

longer based on the assumption of constant changes in mortality as in the Lee–Carter

model. A different speed of improvement can be predicted across ages by taking into

account the observed dynamics of the distribution of deaths and the change in its shape

and location. This makes possible the identification of the “location” of the longevity risk

across the x-axis. The model has the required features to predict the different rates of

change in life expectancy at different ages, e.g. by maintaining a linear increase in life

95



expectancy at birth and at the same time inducing accelerating rates for ages above 65.

This result is consistent with the observed trends in the past and across many developed

countries.

Even if not shown here, the model introduced in this article is flexible enough in the sense

that different covariates, influencing the mortality dynamics, can be considered in order

to further improve the predictions. Examples of such covariates are information on the

prevalence of smoking or obesity but also the trends in life expectancy at birth and modal

age at death. This can be done by extending the time series model used in extrapolation

(the multivariate random-walk with drift) by attaching extra cause-specific parameters.

Similarly, a wide range of multivariate autoregressive time series models can be used to

capture the coherent trends given by the observed empirical statistical moments, however

this is subject to the requirements imposed by the available data.

Including higher order moments in the prediction can sometimes increase the importance

of relatively small effects seen in the age-at-death distribution such as the accident hump

for males or infant mortality. In countries with a low level of mortality, four moments

can return pertinent results but in countries that still exhibit a pronounced multi-modal

distribution of deaths a larger number of moments might be required. The coverage

proportion, introduced in the article, is a very good measure to study the model’s ability

to estimate the shape of the true distribution, but it has an important drawback: two

errors of the same magnitude at different ends of the distribution will be assigned the same

weight in the measure. This is a drawback because underestimating or overestimating the

force of mortality at younger ages has a higher impact on the general level of mortality

of a population than underestimating or overestimating the force of mortality at an older

age. If we investigate the evolution of longevity by looking at life expectancy we can see

that relying solely on information given by the mean age at death and life-span disparity

in order to generate forecasts is an endeavour doomed to failure (as showed in table 4.2).

The model would mostly return pronounced pessimistic or overoptimistic results across

ages without a correspondence to reality. A real improvement can be noticed if 4 to 6

moments are used.

96



Other possible extensions of the MEM method worth exploring in the future are the use of

an optimal weighting scheme which decreases the importance of higher order moments or

the use of various smoothing methods that can be applied to the data prior to computing

the observed moments and fitting the model.

An important finding revealed in this study is the superiority of the age-at-death distri-

bution based extrapolation methods like the MEM and the Oeppen over the death-rate

based extrapolation methods.
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4.5 Appendix

4.5.1 The Multivariate random–walk with drift model

Denote a multivariate time series mx,t with t = {0, 1, 2, . . . , τ}, x = {1, 2, . . . , ω} and first

order differences

yx,t = mx,t −mx,t−1, t = 1, 2, . . . , τ.

For the random–walk with drift

yx,t = θx + yx,t−1 + εx,t.

Refer to the multivariate Gaussian model

Y = GA+ ε,

for which

Y =


y1,1 y2,1 . . . yω,1

y1,2 y2,2 . . . yω,2
...

... . . . ...

y1,τ y2,τ . . . yω,τ

 , G =


1

1
...

1

 , A =
[
θ1, θ2, . . . , θω

]
, and ε ∼ N(0,Ω),

so that

G′G = τ, G′Y =
[
y1+, y2+, . . . , yτ+

]
, where yi+ =

τ∑
t=1

yi,t = mi,τ −mi,0.

Then the OLS estimates

Â = (G′G)−1(G′Y ) =
[mi,τ −mi,0

τ

]
, with Ω̂ =

[ ε̂′ε̂

τ − 1

]
.
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The matrix of residuals

ε̂ = Y −GÂ =
[
yi,t − θ̂i

]
=
[
ri,t
]
,

so that

ε̂′ε̂ =



∑
r21,t

∑
r1,tr2,t . . .

∑
r1,trω,t∑

r2,tr1,t
∑
r22,t . . .

∑
r2,trω,t

...
... . . . ...∑

rω,tr1,t
∑
rω,tr2,t . . .

∑
r2ω,t

 .

Forecasting: successive substitution gives

mx,t+j = mx,t + jθx + εx,t+j + εx,t+j−1 + · · ·+ εx,t+1.

Then, taking expected values, the j-step ahead forecast, from t(= τ), is

m̂x,t+j|t = mx,t + jθx.
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4.5.2 Out–of–sample forecasts in various countries

Out–of–sample forecasts: Australia, Male population, 1960–2014

Table 4.3: Forecast accuracy measures aggregated over 16 scenarios in the 1960–2014 period

Model ME MAE MAPE sMAPE sMRAE MASE GC

M.Random-Walk w Drift 0.59 (4) 0.61 (4) 2.46 (5) 2.52 (5) 100.00 (4) 3.12 (4) (4)
Lee–Carter 0.60 (5) 0.62 (5) 2.41 (4) 2.45 (4) 101.68 (5) 3.13 (5) (5)
Hyndman–Ullah 0.48 (3) 0.51 (3) 2.11 (2) 2.14 (2) 94.54 (3) 2.64 (3) (3)
Oeppen 0.36 (2) 0.51 (2) 2.15 (3) 2.19 (3) 84.95 (1) 2.62 (2) (2)
MEM–6 0.11 (1) 0.41 (1) 1.75 (1) 1.76 (1) 85.70 (2) 2.15 (1) (1)
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Figure 4.6: Out–of–sample forecast of the remaining life expectancy and central death rates at
various ages using the five mortality models (Australia, Male population, Scenario 16:
1975–1994–2014)
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Out–of–sample forecasts: Canada, Male population, 1960–2011

Table 4.4: Forecast accuracy measures aggregated over 13 scenarios in the 1960–2011 period

Model ME MAE MAPE sMAPE sMRAE MASE GC

M.Random-Walk w Drift 0.58 (4) 0.59 (4) 2.19 (4) 2.23 (4) 100.00 (4) 3.77 (4) (4)
Lee–Carter 0.63 (5) 0.65 (5) 2.32 (5) 2.37 (5) 103.35 (5) 4.03 (5) (5)
Hyndman–Ullah 0.44 (3) 0.50 (3) 1.98 (3) 2.01 (3) 90.19 (3) 3.27 (3) (3)
Oeppen 0.35 (2) 0.45 (2) 1.88 (2) 1.89 (2) 88.39 (2) 3.05 (2) (2)
MEM–6 0.15 (1) 0.25 (1) 1.06 (1) 1.07 (1) 68.07 (1) 1.72 (1) (1)
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Figure 4.7: Out–of–sample forecast of the remaining life expectancy and central death rates at
various ages using the five mortality models (Canada, Male population, Scenario 13:
1972–1991–2011)
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Out–of–sample forecasts: France, Male population, 1960–2016

Table 4.5: Forecast accuracy measures aggregated over 18 scenarios in the 1960–2016 period

Model ME MAE MAPE sMAPE sMRAE MASE GC

M.Random-Walk w Drift 0.46 (3) 0.50 (3) 1.85 (3) 1.88 (3) 100.00 (4) 3.13 (3) (3)
Lee–Carter 0.53 (5) 0.55 (5) 2.02 (5) 2.06 (5) 106.19 (5) 3.44 (5) (5)
Hyndman–Ullah 0.47 (4) 0.51 (4) 1.90 (4) 1.93 (4) 99.63 (3) 3.21 (4) (4)
Oeppen 0.22 (1) 0.40 (2) 1.61 (2) 1.63 (2) 92.73 (2) 2.60 (2) (2)
MEM–6 0.23 (2) 0.35 (1) 1.56 (1) 1.58 (1) 91.36 (1) 2.43 (1) (1)
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Figure 4.8: Out–of–sample forecast of the remaining life expectancy and central death rates at
various ages using the five mortality models (France, Male population, Scenario 18:
1977–1996–2016)
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Out–of–sample forecasts: Italy, Male population, 1960–2014

Table 4.6: Forecast accuracy measures aggregated over 16 scenarios in the 1960–2014 period

Model ME MAE MAPE sMAPE sMRAE MASE GC

M.Random-Walk w Drift 0.88 (3) 0.88 (3) 3.27 (3) 3.37 (3) 100.00 (3) 4.82 (3) (3)
Lee–Carter 0.94 (5) 0.94 (5) 3.46 (5) 3.56 (5) 103.71 (5) 5.10 (5) (5)
Hyndman–Ullah 0.92 (4) 0.93 (4) 3.41 (4) 3.51 (4) 102.27 (4) 5.03 (4) (4)
Oeppen 0.79 (2) 0.80 (2) 3.01 (2) 3.10 (2) 93.97 (2) 4.38 (2) (2)
MEM–5 0.34 (1) 0.41 (1) 2.05 (1) 2.10 (1) 72.98 (1) 2.63 (1) (1)
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Figure 4.9: Out–of–sample forecast of the remaining life expectancy and central death rates at
various ages using the five mortality models (Italy, Male population, Scenario 16:
1975–1994–2014)
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Out–of–sample forecasts: The Netherlands, Male population, 1960–2016

Table 4.7: Forecast accuracy measures aggregated over 18 scenarios in the 1960–2016 period

Model ME MAE MAPE sMAPE sMRAE MASE GC

M.Random-Walk w Drift 0.81 (5) 0.84 (5) 3.36 (5) 3.46 (5) 100.00 (5) 5.10 (5) (5)
Lee–Carter 0.80 (4) 0.82 (4) 3.25 (4) 3.34 (4) 98.56 (4) 4.92 (4) (4)
Hyndman–Ullah 0.79 (3) 0.81 (3) 3.24 (3) 3.33 (3) 98.33 (3) 4.88 (3) (3)
Oeppen 0.76 (2) 0.79 (2) 3.17 (2) 3.26 (2) 96.94 (2) 4.76 (2) (2)
MEM–5 0.54 (1) 0.59 (1) 2.54 (1) 2.60 (1) 84.66 (1) 3.70 (1) (1)
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Figure 4.10: Out–of–sample forecast of the remaining life expectancy and central death rates
at various ages using the five mortality models (The Netherlands, Male population, Scenario 18:
1977–1996–2016)
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Out–of–sample forecasts: Spain, Male population, 1960–2014

Table 4.8: Forecast accuracy measures aggregated over 16 scenarios in the 1960–2014 period

Model ME MAE MAPE sMAPE sMRAE MASE GC

M.Random-Walk w Drift 0.10 (1) 0.33 (1) 1.22 (3) 1.22 (3) 100.00 (3) 2.18 (2) (2)
Lee–Carter 0.11 (2) 0.33 (2) 1.15 (1) 1.15 (1) 97.74 (1) 2.15 (1) (1)
Hyndman–Ullah 0.13 (3) 0.34 (3) 1.18 (2) 1.18 (2) 98.76 (2) 2.21 (3) (2)
Oeppen -0.15 (4) 0.38 (4) 1.38 (4) 1.37 (4) 108.45 (4) 2.56 (4) (4)
MEM–5 -0.29 (5) 0.50 (5) 1.60 (5) 1.59 (5) 112.71 (5) 3.40 (5) (5)
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Figure 4.11: Out–of–sample forecast of the remaining life expectancy and central death rates
at various ages using the five mortality models (Spain, Male population, Scenario 16:
1975–1994–2014)
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Out–of–sample forecasts: Switzerland, Male population, 1960–2016

Table 4.9: Forecast accuracy measures aggregated over 18 scenarios in the 1960–2016 period

Model ME MAE MAPE sMAPE sMRAE MASE GC

M.Random-Walk w Drift 0.58 (3) 0.61 (3) 2.12 (3) 2.15 (3) 100.00 (3) 3.29 (3) (3)
Lee–Carter 0.64 (4) 0.66 (4) 2.24 (4) 2.27 (4) 104.34 (4) 3.55 (4) (4)
Hyndman–Ullah 0.66 (5) 0.68 (5) 2.30 (5) 2.34 (5) 107.12 (5) 3.65 (5) (5)
Oeppen 0.44 (2) 0.48 (2) 1.67 (2) 1.69 (2) 90.50 (2) 2.58 (2) (2)
MEM–5 0.32 (1) 0.41 (1) 1.50 (1) 1.51 (1) 85.97 (1) 2.25 (1) (1)
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Figure 4.12: Out–of–sample forecast of the remaining life expectancy and central death rates
at various ages using the five mortality models (Switzerland, Male population, Scenario 18:
1977–1996–2016)
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Out–of–sample forecasts: Sweden, Male population, 1960–2016

Table 4.10: Forecast accuracy measures aggregated over 18 scenarios in the 1960–2016 period

Model ME MAE MAPE sMAPE sMRAE MASE GC

M.Random-Walk w Drift 0.85 (3) 0.86 (3) 3.03 (3) 3.10 (3) 100.00 (3) 5.26 (3) (3)
Lee–Carter 0.89 (4) 0.90 (4) 3.12 (4) 3.21 (4) 101.10 (4) 5.46 (4) (4)
Hyndman–Ullah 0.92 (5) 0.92 (5) 3.19 (5) 3.28 (5) 103.79 (5) 5.60 (5) (5)
Oeppen 0.84 (2) 0.84 (2) 2.94 (2) 3.01 (2) 97.04 (2) 5.12 (2) (2)
MEM–5 0.61 (1) 0.65 (1) 2.53 (1) 2.59 (1) 86.42 (1) 4.08 (1) (1)
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Figure 4.13: Out–of–sample forecast of the remaining life expectancy and central death rates
at various ages using the five mortality models (Sweden, Male population, Scenario 18:
1977–1996–2016)
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Out–of–sample forecasts: USA, Male population, 1960–2016

Table 4.11: Forecast accuracy measures aggregated over 18 scenarios in the 1960–2016 period

Model ME MAE MAPE sMAPE sMRAE MASE GC

M.Random-Walk w Drift 0.21 (4) 0.28 (3) 1.23 (3) 1.24 (3) 100.00 (3) 2.39 (3) (3)
Lee–Carter 0.25 (5) 0.31 (4) 1.33 (4) 1.34 (4) 104.51 (4) 2.59 (4) (4)
Hyndman–Ullah 0.15 (3) 0.42 (5) 1.76 (5) 1.78 (5) 115.63 (5) 3.49 (5) (5)
Oeppen 0.02 (1) 0.24 (1) 1.16 (2) 1.16 (2) 94.18 (1) 2.21 (2) (1)
MEM–6 -0.09 (2) 0.24 (2) 0.95 (1) 0.95 (1) 94.82 (2) 1.92 (1) (1)

●
●

●●
●

●
●●●●●●

●
●●

●●●
●

●
●

●●●●●●
●●

●
●●

●
●●●●●●

●

●●
●●

●●●
●●●●●

●
●●

●●
●●●●●●

●
●

●
●

●●
●

●●
●●●●●●●●

●
●

●●
●

●●●●●●●
●

●●
●●●●

●

●
●●

●●●●
●●

●
●●

●
●●●●●●

●

●●
●

●
●●●

●●●●●
●

●
●

●
●

●●●
●●●

●
●

●
●

●
●

●
●●

●●●
●●●●●

●●
●●

●
●●

●●
●●●

●
●●

●●
●●

●
●

●●
●

●●●
●●

●
●●

●●●●●●●●

●●

●

●
●

●
●

●
●●●●

●
●●

●

●
●●●●

●
●

●
●●

●

●●

●

●●

●
●

●
●●

●
●●

65 75 85

0 25 45

1977 1996 2016 1977 1996 2016 1977 1996 2016

28

29

30

31

32

33

34

4.2

4.4

4.6

4.8

48

50

52

8.5

9.0

9.5

10.0

10.5

69

71

73

75

77

14

15

16

17

Time period (Years)

T
he

 e
xp

ec
ta

tio
n 

of
 li

fe
 a

t a
ge

 x
, 

e[
x]

Demographic Data
●

●

Training Set
Validation Set

Mortality Forecasting
Models

M.Random−Walk w Drift
Lee−Carter
Hyndman−Ullah
Oeppen
MEM−6

●
●

●
●

●●
●●●

●●●●
●

●
●●

●
●●●●●●●●●●●●●●●

●●●●●●●

●
●●●

●
●●

●
●

●
●●

●●
●

●●

●●
●●●

●
●●

●●
●●●●●●

●
●●●●●●

●●
●●

●

●

●●●
●

●
●●●

●

●●
●

●
●●

●
●

●
●●●

●●
●

●●

●●●●●
●

●

●

●
●

●●
●●

●

●●
●

●●
●

●●
●●

●●
●●

●●
●

●●●

●●
●●●

●●●●●●●●

●
●

●
●

●

●

●
●

●●●●●

●
●

●

●

●●

●

●
●

●
●●●●●●

●●

●●

●
●

●●●
●

●

●●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●●●

●
●

●

●
●

●

●

●

●

●●
●

●●
●●

●
●

●●

65 75 85

0 25 45

1977 1996 2016 1977 1996 2016 1977 1996 2016

0.0035

0.0040

0.0045

0.0050

0.11

0.12

0.13

0.14

0.15

0.16

0.0010

0.0015

0.0020

0.04

0.05

0.06

0.07

0.004

0.008

0.012

0.016

0.015

0.020

0.025

0.030

Time period (Years)

C
en

tr
al

 d
ea

th
 r

at
e 

at
 a

ge
 x

, 
m

[x
]

Demographic Data
●

●

Training Set
Validation Set

Mortality Forecasting
Models

M.Random−Walk w Drift
Lee−Carter
Hyndman−Ullah
Oeppen
MEM−6

Figure 4.14: Out–of–sample forecast of the remaining life expectancy and central death rates
at various ages using the five mortality models (USA, Male population, Scenario 18:
1977–1996–2016)
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2 ahmd
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predict.MortalityLaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
ReadHMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Index 19

ahmd MortalityLaws Test Data

Description

Dataset containing altered death rates (mx), death counts (Dx) and exposures (Ex) for the female
population living in England & Wales in four different years: 1850, 1900, 1950 and 2010. The
data-set is provided for testing purposes only. Download the actual data free of charge from https:

//www.mortality.org. Once a username and a password are created on the website the function
ReadHMD can be used for downloading.

Usage

ahmd

Format

An object of class list of length 3.

Source

Human Mortality Database

See Also

ReadHMD

Examples

head(ahmd$mx)
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availableHMD Check Data Availability in HMD

Description

The function returns information about available data in HMD (period life tables etc.), with the
range of years covered by the life tables.

Usage

availableHMD(username, password, ...)

Arguments

username Your HMD username. If you don’t have one you can sign up for free on the
Human Mortality Database website.

password Your HMD password.

... Other parameters to be passed in ReadHMD function.

Value

An availableHMD object.

Author(s)

Marius D. Pascariu

See Also

ReadHMD

Examples

## Not run:

# This will take few seconds...

datainfo <- availableHMD(username = "your_username",

password = "your_password")

datainfo

## End(Not run)



4 availableLaws

availableLaws Check Available Mortality Laws

Description

The function returns information about the parametric models that can be called and fitted in the
MortalityLaw function. For a comprehensive review of the most important mortality laws, Tabeau
(2001) is a good starting point.

Usage

availableLaws(law = NULL)

Arguments

law Optional. Default: NULL. One can extract details about a certain model by spec-
ifying its codename.

Value

The output is of the "availableLaws" class with the components:

table Table with mortality models and codes to be used in MortalityLaw

legend Table with details about the section of the mortality curve

Author(s)

Marius D. Pascariu

References

1. Gompertz, B. (1825). On the Nature of the Function Expressive of the Law of Human Mor-
tality, and on a New Mode of Determining the Value of Life Contingencies. Philosophical
Transactions of the Royal Society of London, 115, 513-583.

2. Makeham, W. (1860). On the Law of Mortality and Construction of Annuity Tables. The
Assurance Magazine and Journal of the Institute of Actuaries, 8(6), 301-310.

3. Thiele, T. (1871). On a Mathematical Formula to express the Rate of Mortality throughout the
whole of Life, tested by a Series of Observations made use of by the Danish Life Insurance
Company of 1871. Journal of the Institute of Actuaries and Assurance Magazine, 16(5), 313-
329.

4. Oppermann, L. H. F. (1870). On the graduation of life tables, with special application to the
rate of mortality in infancy and childhood. The Insurance Record Minutes from a meeting in
the Institute of Actuaries., 42.

5. Wittstein, T. and D. Bumsted. (1883). The Mathematical Law of Mortality. Journal of the
Institute of Actuaries and Assurance Magazine, 24(3), 153-173.
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6. Steffensen, J. (1930). Infantile mortality from an actuarial point of view. Skandinavisk Aktu-
arietidskrift 13, 272-286.

7. Perks, W. (1932). On Some Experiments in the Graduation of Mortality Statistics. Journal of
the Institute of Actuaries, 63(1), 12-57.

8. Harper, F. S. (1936). An actuarial study of infant mortality. Scandinavian Actuarial Journal
1936 (3-4), 234-270.

9. Weibull, W. (1951). A statistical distribution function of wide applicability. Journal of applied
mechanics 103, 293-297.

10. Beard, R. E. (1971). Some aspects of theories of mortality, cause of death analysis, forecasting
and stochastic processes. Biological aspects of demography 999, 57-68.

11. Vaupel, J., Manton, K.G., and Stallard, E. (1979). The impact of heterogeneity in individual
frailty on the dynamics of mortality. Demography 16(3): 439-454.

12. Siler, W. (1979), A Competing-Risk Model for Animal Mortality. Ecology, 60: 750-757.

13. Heligman, L., & Pollard, J. (1980). The age pattern of mortality. Journal of the Institute of
Actuaries, 107(1), 49-80.

14. Rogers A and Planck F (1983). MODEL: A General Program for Estimating Parametrized
Model Schedules of Fertility, Mortality, Migration, and Marital and Labor Force Status Tran-
sitions. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-83-102

15. Martinelle S. (1987). A generalized Perks formula for old-age mortality. Stockholm, Sweden,
Statistiska Centralbyran, 1987. 55 p. (R&D Report, Research-Methods-Development, U/STM
No. 38)

16. Carriere J.F. (1992). Parametric models for life tables. Transactions of the Society of Actuar-
ies. Vol.44

17. Kostaki A. (1992). A nine-parameter version of the Heligman-Pollard formula. Mathematical
Population Studies. Vol. 3 277-288

18. Thatcher AR, Kannisto V and Vaupel JW (1998). The force of mortality at ages 80 to 120.
Odense Monographs on Population Aging Vol. 5 Odense University Press, 1998. 104, 20 p.
Odense, Denmark

19. Tabeau E. (2001) A Review of Demographic Forecasting Models for Mortality. In: Tabeau
E., van den Berg Jeths A., Heathcote C. (eds) Forecasting Mortality in Developed Countries.
European Studies of Population, vol 9. Springer, Dordrecht

See Also

MortalityLaw

Examples

availableLaws()
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availableLF Check Available Loss Function

Description

The function returns information about the implemented loss function used by the optimization
procedure in the MortalityLaw function.

Usage

availableLF()

Value

A list of class availableLF with the components:

table Table with loss functions and codes to be used in MortalityLaw.

legend Table with details about the abbreviation used.

Author(s)

Marius D. Pascariu

See Also

MortalityLaw

Examples

availableLF()

convertFx Convert Life Table Indicators

Description

Easy conversion between the life table indicators. This function is based on the LifeTable function
and methods behind it.

Usage

convertFx(x, data, from, to, ...)
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Arguments

x Vector of ages at the beginning of the age interval.

data Vector or data.frame/matrix containing the mortality indicators.

from Specify the life table indicator in the input data. Character. Options: mx, qx, dx, lx.

to What indicator would you like to obtain? Character. Options: mx, qx, dx, lx, Lx, Tx, ex.

... Further arguments to be passed to the LifeTable function with impact on the
results to be produced.

Author(s)

Marius D. Pascariu

See Also

LifeTable

Examples

# Data ---

x <- 0:110

mx <- ahmd$mx

# mx to qx

qx <- convertFx(x, data = mx, from = "mx", to = "qx")

# mx to dx

dx <- convertFx(x, data = mx, from = "mx", to = "dx")

# mx to lx

lx <- convertFx(x, data = mx, from = "mx", to = "lx")

# There are 28 possible combinations --------------------------------

# Let generate all of them.

from <- c("mx", "qx", "dx", "lx")

to <- c("mx", "qx", "dx", "lx", "Lx", "Tx", "ex")

K <- expand.grid(from = from, to = to) # all possible cases/combinations

for (i in 1:nrow(K)) {

In <- as.character(K[i, "from"])

Out <- as.character(K[i, "to"])

N <- paste0(Out, "_from_", In)

cat(i, " Create", N, "\n")

# Create the 28 sets of results

assign(N, convertFx(x = x, data = get(In), from = In, to = Out))

}
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LawTable Compute Life Tables from Parameters of a Mortality Law

Description

Compute Life Tables from Parameters of a Mortality Law

Usage

LawTable(x, par, law, sex = NULL, lx0 = 1e+05, ax = NULL)

Arguments

x Vector of ages at the beginning of the age interval.

par The parameters of the mortality model.

law The name of the mortality law/model to be used. e.g. gompertz, makeham, ...
To investigate all the possible options, see availableLaws function.

sex Sex of the population considered here. Default: NULL. This argument affects
the first two values in the life table ax column. If sex is specified the values
are computed based on the Coale-Demeny method and are slightly different for
males than for females. Options: NULL, male, female, total.

lx0 Radix. Default: 100 000.

ax Numeric scalar. Subject-time alive in age-interval for those who die in the same
interval. If NULL this will be estimated. A common assumption is ax = 0.5, i.e.
the deaths occur in the middle of the interval. Default: NULL.

Details

The "life table" is also called "mortality table" or "actuarial table". This shows, for each age, what
the probability is that a person of that age will die before his or her next birthday, the expectation of
life across different age ranges or the survivorship of people from a certain population.

Value

The output is of the "LifeTable" class with the components:

lt Computed life table;

call Call in which all of the specified arguments are specified by their full names;

process_date Time stamp.

Author(s)

Marius D. Pascariu

See Also

LifeTable MortalityLaw
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Examples

# Example 1 --- Makeham --- 4 tables ----------

x1 = 45:100

L1 = "makeham"

C1 = matrix(c(0.00717, 0.07789, 0.00363,

0.01018, 0.07229, 0.00001,

0.00298, 0.09585, 0.00002,

0.00067, 0.11572, 0.00078),

nrow = 4, dimnames = list(1:4, c("A", "B", "C")))

LawTable(x = 45:100, par = C1, law = L1)

# WARNING!!!

# It is important to know how the coefficients have been estimated. If the

# fitting of the model was done over the [x, x+) age-range, the LawTable

# function can be used to create a life table only for age x onward.

# What can go wrong?

# ** Example 1B - is OK.

LawTable(x = 45:100, par = c(0.00717, 0.07789, 0.00363), law = L1)

# ** Example 1C - Not OK, because the life expectancy at age 25 is

# equal with life expectancy at age 45 in the previous example.

LawTable(x = 25:100, par = c(0.00717, 0.07789, 0.00363), law = L1)

# Why is this happening?

# If we have a model that covers only a part of the human mortality curve

# (e.g. adult mortality), in fitting the x vector is scaled down, meaning age (x) becomes

# (x - min(x) + 1). And, the coefficients are estimated on a scaled x in ordered

# to obtain meaningful estimates. Otherwise the optimization process might

# not converge.

# What can we do about it?

# a). Know which mortality laws are rescaling the x vector in the fitting process.

# If these models are fitted with the MortalityLaw() function, you can find out

# like so:

A <- availableLaws()$table

A[, c("CODE", "SCALE_X")]

# b). If you are using one of the models that are applying scaling,

# be aware over what age-range the coefficients have been estimated. If they

# have been estimated using, say, ages 50 to 80, you can use the

# LawTable() to build a life tables from age 50 onwards.

# Example 2 --- Heligman-Pollard -- 1 table ----

x2 = 0:110

L2 = "HP"
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C2 = c(0.00223, 0.01461, 0.12292, 0.00091,

2.75201, 29.01877, 0.00002, 1.11411)

LawTable(x = x2, par = C2, law = L2)

# Because "HP" is not scaling down the x vector, the output is not affected by

# the problem described above.

# Check

LawTable(x = 3:110, par = C2, law = L2)

# Note the e3 = 70.31 in both tables

LifeTable Compute Life Tables from Mortality Data

Description

Construct either a full or abridged life table with various input choices like: death counts and mid-
interval population estimates (Dx, Ex) or age-specific death rates (mx) or death probabilities (qx)
or survivorship curve (lx) or a distribution of deaths (dx). If one of these options is specified,
the other can be ignored. The input data can be an object of class: numerical vector, matrix or
data.frame.

Usage

LifeTable(x, Dx = NULL, Ex = NULL,

mx = NULL,

qx = NULL,

lx = NULL,

dx = NULL,

sex = NULL,

lx0 = 1e5,

ax = NULL)

Arguments

x Vector of ages at the beginning of the age interval.

Dx Object containing death counts. An element of the Dx object represents the
number of deaths during the year to persons aged x to x+n.

Ex Exposure in the period. Ex can be approximated by the mid-year population
aged x to x+n.

mx Death rate in age interval [x, x+n).

qx Probability of dying in age interval [x, x+n).

lx Probability of survival up until age x.

dx Deaths by life-table population in the age interval [x, x+n).
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sex Sex of the population considered here. Default: NULL. This argument affects
the first two values in the life table ax column. If sex is specified the values
are computed based on the Coale-Demeny method and are slightly different for
males than for females. Options: NULL, male, female, total.

lx0 Radix. Default: 100 000.

ax Numeric scalar. Subject-time alive in age-interval for those who die in the same
interval. If NULL this will be estimated. A common assumption is ax = 0.5, i.e.
the deaths occur in the middle of the interval. Default: NULL.

Details

The "life table" is also called "mortality table" or "actuarial table". This shows, for each age, what
the probability is that a person of that age will die before his or her next birthday, the expectation of
life across different age ranges or the survivorship of people from a certain population.

Value

The output is of the "LifeTable" class with the components:

lt Computed life table;

call Call in which all of the specified arguments are specified by their full names;

process_date Time stamp.

Author(s)

Marius D. Pascariu

See Also

LawTable convertFx

Examples

# Example 1 --- Full life tables with different inputs ---

y <- 1900

x <- as.numeric(rownames(ahmd$mx))

Dx <- ahmd$Dx[, paste(y)]

Ex <- ahmd$Ex[, paste(y)]

LT1 <- LifeTable(x, Dx = Dx, Ex = Ex)

LT2 <- LifeTable(x, mx = LT1$lt$mx)

LT3 <- LifeTable(x, qx = LT1$lt$qx)

LT4 <- LifeTable(x, lx = LT1$lt$lx)

LT5 <- LifeTable(x, dx = LT1$lt$dx)

LT1

LT5

ls(LT5)
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# Example 2 --- Compute multiple life tables at once ---

LTs = LifeTable(x, mx = ahmd$mx)

LTs

# A warning is printed if the input contains missing values.

# Some of the missing values can be handled by the function.

# Example 3 --- Abridged life table ------------

x = c(0, 1, seq(5, 110, by = 5))

mx = c(.053, .005, .001, .0012, .0018, .002, .003, .004,

.004, .005, .006, .0093, .0129, .019, .031, .049,

.084, .129, .180, .2354, .3085, .390, .478, .551)

lt = LifeTable(x, mx = mx, sex = "female")

lt

MortalityLaw Fit Mortality Laws

Description

Fit parametric mortality models given a set of input data which can be represented by death counts
and mid-interval population estimates (Dx, Ex) or age-specific death rates (mx) or death proba-
bilities (qx). Using the argument law one can specify the model to be fitted. So far more than
27 parametric models have been implemented; check the availableLaws function to learn about
the available options. The models can be fitted under the maximum likelihood methodology or
by selecting a loss function to be optimised. See the implemented loss function by running the
availableLF function.

Usage

MortalityLaw(x, Dx = NULL, Ex = NULL, mx = NULL, qx = NULL,

law = NULL,

opt.method = "LF2",

parS = NULL,

fit.this.x = x,

custom.law = NULL,

show = FALSE, ...)

Arguments

x Vector of ages at the beginning of the age interval.

Dx Object containing death counts. An element of the Dx object represents the
number of deaths during the year to persons aged x to x+n.

Ex Exposure in the period. Ex can be approximated by the mid-year population
aged x to x+n.

mx Death rate in age interval [x, x+n).
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qx Probability of dying in age interval [x, x+n).

law The name of the mortality law/model to be used. e.g. gompertz, makeham, ...
To investigate all the possible options, see availableLaws function.

opt.method How would you like to find the parameters? Specify the function to be optimize.
Available options: the Poisson likelihood function poissonL; the Binomial like-
lihood function -binomialL; and 6 other loss functions. For more details, check
the availableLF function.

parS Starting parameters used in the optimization process (optional).

fit.this.x Select the ages to be considered in model fitting. By default fit.this.x = x.
One may want to exclude from the fitting procedure, say, the advanced ages
where the data is sparse.

custom.law Allows you to fit a model that is not defined in the package. Accepts as input a
function.

show Choose whether to display a progress bar during the fitting process. Logical.
Default: FALSE.

... Arguments to be passed to or from other methods.

Details

Depending on the complexity of the model, one of following optimization strategies is employed:

1. Nelder-Mead method: approximates a local optimum of a problem with n variables when the
objective function varies smoothly and is unimodal. For details see optim

2. PORT routines: provides unconstrained optimization and optimization subject to box con-
straints for complicated functions. For details check nlminb

3. Levenberg-Marquardt algorithm: damped least-squares method. For details check nls.lm

Value

The output is of the "MortalityLaw" class with the components:

input List with arguments provided in input. Saved for convenience.

info Brief information about the model.

coefficients Estimated coefficients.

fitted.values Fitted values of the selected model.

residuals Deviance residuals.
goodness.of.fit

List containing goodness of fit measures like AIC, BIC and log-Likelihood.

opt.diagnosis Resultant optimization object useful for checking the convergence etc.

stats List containing statistical measures like: parameter correlation, standard errors,
degrees of freedom, deviance, gradient matrix, QR decomposition, covariance
matrix etc.

Author(s)

Marius D. Pascariu
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See Also

availableLaws availableLF LifeTable ReadHMD

Examples

# Example 1: --------------------------

# Fit Makeham Model for Year of 1950.

x <- 45:75

Dx <- ahmd$Dx[paste(x), "1950"]

Ex <- ahmd$Ex[paste(x), "1950"]

M1 <- MortalityLaw(x = x, Dx = Dx, Ex = Ex, law = 'makeham')

M1

ls(M1)

coef(M1)

summary(M1)

fitted(M1)

predict(M1, x = 45:95)

plot(M1)

# Example 2: --------------------------

# We can fit the same model using a different data format

# and a different optimization method.

x <- 45:75

mx <- ahmd$mx[paste(x), ]

M2 <- MortalityLaw(x = x, mx = mx, law = 'makeham', opt.method = 'LF1')

M2

fitted(M2)

predict(M2, x = 55:90)

# Example 3: --------------------------

# Now let's fit a mortality law that is not defined

# in the package, say a reparameterized Gompertz in

# terms of modal age at death

# hx = b*exp(b*(x-m)) (here b and m are the parameters to be estimated)

# A function with 'x' and 'par' as input has to be defined, which returns at least

# an object called 'hx' (hazard rate).

my_gompertz <- function(x, par = c(b = 0.13, M = 45)){

hx <- with(as.list(par), b*exp(b*(x - M)) )

return(as.list(environment()))

}

M3 <- MortalityLaw(x = x, Dx = Dx, Ex = Ex, custom.law = my_gompertz)

summary(M3)

# predict M3 for different ages

predict(M3, x = 85:130)
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# Example 4: --------------------------

# Fit Heligman-Pollard model for a single

# year in the dataset between age 0 and 100 and build a life table.

x <- 0:100

mx <- ahmd$mx[paste(x), "1950"] # select data

M4 <- MortalityLaw(x = x, mx = mx, law = 'HP', opt.method = 'LF2')

M4

plot(M4)

LifeTable(x = x, qx = fitted(M4))

MortalityLaws MortalityLaws: Parametric Mortality Models, Life Tables and HMD

Description

Fit the most popular human mortality ’laws’, and construct full and abridge life tables given various
input indices. A mortality law is a parametric function that describes the dying-out process of indi-
viduals in a population during a significant portion of their life spans. For a comprehensive review
of the most important mortality laws see Tabeau (2001) <doi:10.1007/0-306-47562-6_1>. An ele-
gant function for downloading data from Human Mortality Database <https://www.mortality.org>
is provided as well.

Details

To learn more about the package, start with the vignettes: browseVignettes(package = "MortalityLaws")

Author(s)

Maintainer: Marius D. Pascariu <mpascariu@outlook.com> (0000-0002-2568-6489) [copyright
holder]

Other contributors:

• Vladimir Canudas-Romo [contributor]

See Also

Useful links:

• https://github.com/mpascariu/MortalityLaws

• Report bugs at https://github.com/mpascariu/MortalityLaws/issues
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plot.MortalityLaw Plot Function for MortalityLaw

Description

Plot Function for MortalityLaw

Usage

## S3 method for class 'MortalityLaw'

plot(x, ...)

Arguments

x An object of class MortalityLaw

... Arguments to be passed to methods, such as graphical parameters (see par).

Author(s)

Marius D. Pascariu

See Also

MortalityLaw

Examples

# See complete example in MortalityLaw help page

predict.MortalityLaw Predict function for MortalityLaw

Description

Predict function for MortalityLaw

Usage

## S3 method for class 'MortalityLaw'

predict(object, x, ...)

Arguments

object An object of class "MortalityLaw"

x Vector of ages to be considered in prediction

... Additional arguments affecting the predictions produced.
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Author(s)

Marius D. Pascariu

See Also

MortalityLaw

Examples

# Extrapolate old-age mortality with the Kannisto model

# Fit ages 80-94 and extrapolate up to 120.

Mx <- ahmd$mx[paste(80:94), "1950"]

M1 <- MortalityLaw(x = 80:94, mx = Mx, law = 'kannisto')

fitted(M1)

predict(M1, x = 80:120)

# See more examples in MortalityLaw function help page.

ReadHMD Download Mortality and Population Data (HMD)

Description

Download detailed mortality and population data for different countries and regions in a single
object from the Human Mortality Database.

Usage

ReadHMD(what, countries = NULL, interval = "1x1", username, password,

save = TRUE, show = TRUE)

Arguments

what What type of data are you looking for? There are available: birth records
"births", death counts "Dx", deaths by Lexis triangles "lexis", population
size "population", exposure-to-risk "Ex", death-rates "mx", life tables for fe-
males "LT_f", life tables for males "LT_m", life tables both sexes combined
"LT_t", life expectancy at birth "e0", cohort death-rates "mxc" and cohort ex-
posures "Exc".

countries HMD country codes.

interval HMD data format: (age interval x year interval). Interval options: 1x1, 1x5,
1x10, 5x1, 5x5, 5x10.

username Your HMD username. If you don’t have one you can sign up for free on the
Human Mortality Database website.

password Your HMD password.
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save Do you want to save a copy of the dataset on your local machine? Logical.
Default: FALSE.

show Choose whether to display a progress bar. Logical. Default: TRUE.

Value

A ReadHMD object that contains:

input List with the input values (except the password).

data Data downloaded from HMD.

download.date Time stamp.

years Numerical vector with the years covered in the data.

ages Numerical vector with ages covered in the data.

Author(s)

Marius D. Pascariu

Examples

## Not run:

# Download demographic data for 3 countries in 1x1 format

age_int <- 1 # age interval: 1,5

year_int <- 1 # year interval: 1,5,10

interval <- paste0(age_int, "x", year_int) # --> 1x1

# And the 3 countries: Sweden Denmark and USA. We have to use the HMD codes

cntr <- c('SWE', 'DNK', 'USA')

# Download death counts. We don't want to export data outside R.

HMD_Dx <- ReadHMD(what = "Dx",

countries = cntr,

interval = interval,

username = "user@email.com",

password = "password",

save = FALSE)

ls(HMD_Dx)

HMD_Dx

# Download life tables for female population and export data.

LTF <- ReadHMD(what = "LT_f",

countries = cntr,

interval = interval,

username = "user@email.com",

password = "password",

save = TRUE)

LTF

## End(Not run)
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