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Abstract

We study games in which principals simultaneously post mechanisms in the presence of sev-

eral agents. We evaluate the role of principals’ communication in these settings. As in Myerson

(1982), each principal may generate incomplete information among agents by sending them pri-

vate signals. We show that this channel of communication, which has not been considered in

standard approaches to competing mechanisms, has relevant strategic effects. Specifically, we

construct an example of a complete information game in which (multiple) equilibria are sus-

tained as in Yamashita (2010) and none of them survives in games in which all principals can

send private signals to agents. The corresponding sets of equilibrium allocations are therefore

disjoint. The role of private communication we document may hence call for extending the

construction of Epstein and Peters (1999) to incorporate this additional element.
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1 Introduction

We study competing mechanism games: principals compete through mechanisms in the presence of

several agents. Such a strategic scenario has become a reference framework to model competition

in a large number of market settings.1

As first pointed out by McAfee (1993) and Peck (1997), the equilibrium allocations derived in

these contexts crucially depend on the set of mechanisms that principals are allowed to post. Typ-

ically, letting agents communicate to principals additional information on top of their exogenous

types supports additional allocations at equilibrium.2 This raises the issue of identifying a class of

mechanisms inducing agents to reveal all their available information. In an important contribution,

Epstein and Peters (1999) introduce a communication device that incorporates the market informa-

tion generated by the competing mechanisms posted by principals. In their general construction, a

mechanism for a principal requires each agent to send messages from a universal type space. The

corresponding set of equilibrium allocations may be very large: Yamashita (2010) has been the

first to show that restricting attention to a subset of such mechanisms, i.e. the recommendation

mechanisms, is sufficient to derive a folk-theorem-like result. In a recommendation mechanism, a

principal commits to post a certain direct mechanism if all but one agent recommend him to do so.

Recommendation mechanisms hence allow to construct a flexible system of punishments: following

a unilateral deviation of a given principal, agents can coordinate to select, amongst his opponents’

decisions, those inducing the most severe punishment to the deviator. As a result, any incentive

compatible allocation yielding each principal a payoff above a given threshold can be supported at

equilibrium, if there are at least three agents.

The present work reconsiders the effect of communication between principals and agents on equi-

librium allocations taking a more traditional mechanism design perspective. That is, we evaluate

the strategic role of a principal privately communicating with agents in the spirit of the canonical

construction of Myerson (1982). The above-mentioned approaches to competing mechanisms disre-

gard this possibility. Indeed, they restrict principals to communicate by posting public mechanisms,

which implement decisions contingent on the private messages received from agents. Yet, to the

extent that he cannot directly contract on his opponents’ mechanisms, a single principal may in

principle gain by sending private signals to agents so to correlate their behaviors with the decisions
1Applications include competing auctions (McAfee, 1993; Peters and Severinov, 1997; Viràg, 2010), competitive

search (Moen, 1997; Guerrieri et al., 2010) and competition in financial markets (Biais et al., 2000; Attar et al., 2011),
among many others.

2This result, which has been documented in single-agent contexts by Martimort and Stole (2002) and Peters
(2001), is often acknowledged as a failure of the revelation principle in games with multiple principals.
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of all principals. We show that this channel of communication has relevant strategic effects.

We establish our result in the simple framework in which principals compete to attract agents

under complete information, and each agent only takes an observable action. In such a scenario,

we construct an example with two principals and three agents and explicitly characterize the set of

equilibrium allocations supportable by recommendation mechanisms. In a next step, we show that

none of the corresponding equilibria survives when all principals can send private signals to agents.

By privately communicating with agents, a principal can make them differently informed of his

final decisions. This uncertainty, which cannot be reproduced by standard stochastic mechanisms

without signals, crucially affects the continuation game played by agents. We exploit this insight

to construct a mechanism with private communication yielding a principal a payoff greater than

any of those available without private communication. The result obtains despite the fact that his

opponent also sends private signals and delegates to the agents the choice of the (worst) punishment

against his mechanism. In the context of the example, this shows that the set of equilibrium

allocations supportable by mechanisms with private signals for principals and the set of those

supported by mechanisms which do not involve such private communication are disjoint. Finally,

we characterize an equilibrium allocation supported by mechanisms with signals, which shows that

this enlarged game admits an equilibrium. Yet, equilibrium allocations are typically not unique as

we shortly discuss.

A direct implication of our main result is that the equilibria characterized by allowing only

agents to privately communicate through possibly large message spaces, as in Epstein and Peters

(1999), may not be robust against unilateral deviations towards mechanisms featuring principals’

private communication. This in turn indicates that such signals may need to be included in any

canonical system of communication, which calls for more theoretical work to identify a correspond-

ing canonical set of equilibrium mechanisms.

To the extent that agents’ observable actions can naturally be interpreted as participation

decisions, the setting of the example is common to a large number of applications of competing

mechanism models in which agents’ participation decisions are strategic.3 Alternatively, our exam-

ple can be reconciled with economic models of competing mechanisms under complete information,

in which agents participate with all principals and principals post incentive schemes that assign a

decision to each profile of agents’ observable actions. This is, for instance, the approach followed by

Prat and Rustichini (2003) to model the lobbying process in the presence of several policy makers.
3We detail this interpretation in Section 4. Observe that participation is strategic in all the applications mentioned

in Footnote 1.
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Under complete information, these incentive schemes are interpreted as direct mechanisms. As we

discuss in Section 4, an implication of our analysis is that the restriction to such direct mecha-

nisms is problematic once principals are allowed to design more sophisticated ones. This stands in

contrast with the result of Han (2007), who establishes the robustness of equilibria supported by

direct mechanisms against unilateral deviations to indirect ones in competing mechanism games

of complete information. Yet, he only considers mechanisms, which allow agents to send private

messages to principals but do not allow principals to send them private signals, a restriction that

we prove to be critical.

Our analysis can be casted within the framework of Yamashita (2010) once agents’ actions are

taken into account. An important limitation of Yamashita (2010) is the focus on deterministic

behaviors. That is, agents play pure strategies in every continuation equilibrium, and principals

cannot post random contracts. Szentes (2010) shows that the latter restriction is critical for the

validity of Yamashita (2010)’s main result by exhibiting equilibrium allocations supported by deter-

ministic mechanisms that yield a principal a payoff below Yamashita (2010)’s relevant threshold.4

We admit instead random contracts and mixed strategy equilibria in the agents’ continuation game.

In our complete information example, if principals do not privately communicate with agents, rec-

ommendation mechanisms allow to re-establish a folk-theorem result in the spirit of Yamashita

(2010).

Several folk-theorem results have recently been established in the competing mechanism lit-

erature. Generalizing the approach of Yamashita (2010), Peters and Troncoso-Valverde (2013)

construct an abstract framework in which all players have commitment power and (privately)

communicate with each other. The equilibrium distributions over players’ decisions can also be

correlated, due to the presence of a public correlating device. Under complete information, they

show that all the allocations characterized by Yamashita (2010) are supported at equilibrium, to-

gether with those arising due to (public) correlation. We consider, instead, the situation in which

only a subset of players (the principals) is able to commit while the remaining ones (the agents) take

actions given the mechanisms. In this context, we allow each principal to correlate his decisions to

the signals he privately sends to each agent. This feature drastically affects equilibrium analysis,

since none of the allocations characterized by recommendation mechanisms can now be supported

at equilibrium.

A different strategy is followed by Kalai et al. (2010), Peters and Szentes (2012), Peters (2015),

and Szentes (2015) who provide attempts at modeling contractible contracts. These works show
4See Peters (2014) for a discussion.
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that by posting contracts that directly refer to each other, a principal may successfully deter his

opponents’ deviations. A folk theorem may hence obtain even if no communication takes place

after mechanisms are posted, which limits the strategic role of agents and the power of the private

communication we exploit.

The feature that principals can send private signals to agents is also key in the literature

on information design with multiple senders in which signals affect agents’ posterior probabilities

over an unknown state of the world. Kamenica and Gentzkow (2017a,b) consider a Bayesian

persuasion game with a single receiver in which each sender’s set of signals is sufficiently large to

include signals that are effectively correlated with those of the other senders. Koessler et al. (2018)

extend this approach in several directions, including the presence of multiple receivers, and focus on

uncorrelated signals. We take a more traditional mechanism design perspective in which principals

do not hold any private information and send signals to affect agents’ beliefs over their realized

decisions, which induces correlated outcomes at equilibrium. Our results hold for arbitrarily rich

sets of signals available to principals.

This paper is organized as follows: Section 2 introduces a general competing mechanism model,

Section 3 presents our example, Section 4 provides a discussion, and Section 5 concludes.

2 The model

We study extensive form games of complete information in which J ≥ 2 principals deal with

I ≥ 2 agents. Each agent i = 1, 2, · · · , I takes an action ai from a finite set Ai, and we denote

a =
(
a1, . . . , aI

)
∈ A =

I
×
i=1

Ai. Let Yj be the finite set of decisions available to principal j with

generic element yj ∈ Yj , and Y =
J
×
j=1

Yj . The payoff functions of agent i and of principal j are

given by ui : A× Y → R and vj : A× Y → R, respectively.

Agents’ actions are observable, so each principal j can choose a decision yj contingent on the

array a. We denote αj : A1×...×AI −→ ∆(Yj) an incentive scheme for principal j, with ∆(Yj) being

the set of probability distributions over Yj . An incentive scheme specifies a (possibly stochastic)

decision for every array of observed actions. We let Yj be the set of incentive schemes for principal

j, with αj ∈ Yj and Y =
J
×
j=1
Yj .
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2.1 Competing mechanism games: equilibrium

We first introduce the standard approach to model communication in competing mechanisms games

of complete information, absent any moral hazard.5 In this framework, communication takes place

via the private messages sent by agents to principals, and via the public mechanisms principals

commit to. Specifically, we let mi
j ∈ M i

j be a message privately sent by agent i to principal j. A

mechanism for principal j is the mapping γj : Mj → Yj , in which Mj =
I
×
i=1
M i
j is the set of message

profiles that principal j receives from agents, with typical element mj =
(
m1
j , . . . ,m

I
j

)
. We denote

ΓMj

j the set of mechanisms available to principal j, and let ΓM =
J
×
j=1

ΓMj

j . If each M i
j set is a

singleton, then γj corresponds to an incentive scheme αj . In this complete information setting, any

such αj is also referred to as a direct mechanism for principal j.

The competing mechanism game unfolds as follows. First, principals simultaneously post mech-

anisms. Then, agents simultaneously take their communication decisions, which determine a profile

of incentive schemes (α1, ..., αJ). Given the public mechanisms and the messages she sent to prin-

cipals, each agent takes an action, and payoffs are determined. We let µi : ΓM → ∆
(
M i
)
be the

message strategy of agent i, with M i =
J
×
j=1

M i
j , and ηi : ΓM ×M i → ∆

(
Ai
)
be her action strategy.

We take βi = (µi, ηi) to be a strategy for agent i, and β = (β1, . . . , βI) a profile of strategies. A

pure strategy for principal j is a mechanism γj ∈ ΓMj

j . We let U i(γj , γ−j , β) and Vj(γj , γ−j , β) be

the corresponding expected utilities for agent i and principal j, respectively. We denote GM the

game in which agents send messages to principals through the sets (M1, ...,M I) and principals post

mechanisms γ = (γj , γ−j) ∈ ΓM . We consider the subgame perfect Nash equilibria (SPNE) of GM

in which principals play pure strategies. The agents’ strategies β = (βi, β−i) constitute a continu-

ation equilibrium relative to ΓM if, for every i and for every γ ∈ ΓM , βi maximizes U i
(
γ, βi, β−i

)
given β−i. The strategies (γ, β) constitute a SPNE in GM if β is a continuation equilibrium and

if, given γ−j and β, for every j = 1, . . . , J : γj ∈ argmax
γ′j∈Γ

Mj
j

Vj
(
γ′j , γ−j , β

)
. That is, at the stage of

designing his mechanism, each principal must anticipate the Nash equilibrium of the agents’ game

induced by the whole array of principals’ mechanisms.

As first documented by McAfee (1993) and Peck (1997), the set of equilibrium allocations of such

games is crucially affected by the characteristics of the message spaces (M1, ...,M I). Letting agents

communicate, on top of their (exogenous) private information, the market information generated by

the presence of several competing mechanisms allows principals to implement additional threats,
5We follow Epstein and Peters (1999), Peters (2001) and Han (2007).
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thereby supporting additional allocations at equilibrium. Epstein and Peters (1999) construct

the (universal) message spaces that embed this market information. Importantly, the punishments

implemented using such sophisticated agents’ reports against a deviating principal can be replicated

by focusing on a simpler class of mechanisms.6 These are the recommendation mechanisms exhibited

in Yamashita (2010). To properly describe them, let Yj ⊆ M i
j for each i and j. That is, let the

message spaces be sufficiently rich to allow every agent to communicate a direct mechanism to each

principal j. Then, γRj is a recommendation mechanism for principal j if:

γRj (m1
j , . . . ,m

I
j ) =

 αj if |
{
i : mi

j = αj
}
| ≥ I − 1

any ᾱj ∈ Yj otherwise.
(1)

A recommendation mechanism can be understood as having agents suggest to a principal the direct

mechanism to be implemented, and having the principal commit to follow any such recommendation

if it is sent by at least I − 1 agents.

2.2 Principals’ private communication: equilibrium and robustness

We now extend the construction above to cope with principals’ private communication. In principle,

there are many ways to enrich communication and incorporate this additional channel. Along the

lines of Myerson (1982), we consider the simple case, in which each principal j sends a private

signal sij ∈ Sij to each agent i after having received agents’ messages mj ∈ Mj . Our aim is to

evaluate whether the equilibrium allocations of a given game GM survive in enlarged games in

which principals can also privately communicate to agents.

A mechanism with signals for principal j is the mapping γ̂j : Mj → ∆ (Yj × Sj), in which

Sj =
I
×
i=1
Sij is the set of signals available to principal j. Thus, given the messages mj he receives,

γ̂j determines a joint probability distribution over principal j’s incentive schemes in Yj and signals

in Sj . As in Myerson (1982), each agent i privately observes the realization of each signal sij , and

revises her prior information accordingly. Since a mechanism with signals for principal j cannot be

made contingent on his opponents’ mechanisms, agent i constructs her posteriors over principal j’s

decisions only relying on the private signal sij she gets from him. We take ΓMjSj
j to be the set of

mechanisms with signals available to principal j, and denote ΓMS =
J
×
j=1

ΓMjSj
j .

Mechanisms with signals are publicly observed, but the message from agent i to principal

j and the signal from principal j to agent i are only observed by i and j. Since signals are
6The formal argument is provided in Lemma 2 of Yamashita (2010).

7



private, a principal can generate incomplete information among agents at the stage in which they

choose actions. We denote GMS the extensive form game in which principals post mechanisms

γ̂ ∈ ΓMS , receive messages from agents through the sets (M1, ...,M I), and send signals through

the sets (S1, ..., SJ). As in any GM game, there are two stages in which agent i moves in a GMS

game. First, having observed the mechanisms γ̂ = (γ̂1, . . . , γ̂J), she sends an array of messages

mi =
(
mi

1, . . . ,m
i
J

)
to the principals. Second, having observed her private signals si =

(
si1, . . . , s

i
J

)
,

she chooses an action ai. We take µ̂i : ΓMS → ∆
(
M i
)
to be the message strategy of agent i and

η̂i : ΓMS ×M i × Si → ∆
(
Ai
)
to be her strategy in the action game, with Si =

J
×
j=1

Sij . We let

β̂i = (µ̂i, η̂i) be a strategy for agent i, and we extend the notion of continuation equilibrium given in

Section 3.1, accordingly. For a given profile of mechanisms, agents’ messages, and realized signals,

we hence consider the Nash equilibria of the induced action game. Since, in any GMS game, each

principal may independently correlate his signals with his decisions, the equilibrium distributions

of players’ decisions will typically not be independent.

If there is only one principal, i.e. J = 1, a game GMS corresponds to a complete information

version of the generalized principal-agent problems analyzed in Myerson (1982).7 In that spirit, we

refer to a direct mechanism with signals as to a mechanism in which a principal does not ask for any

message and privately signals to each agent an action to take. Formally, we denote ˆ̂γj ∈ ∆(A×Yj)

a direct mechanism with signals and ˆ̂Γj ⊆ ΓMjSj
j the set of such mechanisms for principal j.

One should observe that, for each (M1, ...,M I), the corresponding game GM can be inter-

preted as a degenerate game GMS in which each Sij set is a singleton. In particular, we can write

ΓMj

j ⊆ ΓMjSj
j for each j and Sj , and specify any mechanism without signals γj as a degenerate

mechanism with signals γ̂j in which, for every pair (mj , a), the probability distribution over Yj
coincides with γj(mj , a) for each sij ∈ Sij .8 Following Epstein and Peters (1999) and Peters (2001),

we say that an equilibrium (γ, β) of GM is robust if, when considering “larger” games in which ad-

ditional mechanisms are feasible, the original equilibrium survives to any unilateral deviation of a

principal toward a more sophisticated mechanism. That is, if there exists at least one continuation

equilibrium of each of these larger games which makes the deviation unprofitable.9

7In Myerson (1982), agents may also have private information and take non-observable actions.
8A similar reasoning is used by Peters (2001) and Han (2007) to specify a direct mechanism as a degenerate

indirect one.
9See Epstein and Peters (1999, p. 133-134), and Peters (2001, p. 1364) for a formal definition.
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3 The role of two-sided private communication: an example

This section establishes our main result. The argument is developed by means of an example which

achieves two distinct objectives. First, it characterizes the equilibrium allocations supported by

recommendation mechanisms. As in the incomplete information scenario of Yamashita (2010), we

get a folk-theorem like result: each incentive feasible allocation yielding each principal a payoff

above a given threshold can be supported at equilibrium. Second, it shows that none of these

allocations can be supported at equilibrium in any game in which all principals can use private

communication.

Consider a setting with five players: two principals, P1 and P2, and three agents, A1, A2

and A3, who take actions in the sets A1 = A2 = {ā, a} and A3 = {ā}. Let P1’s decision set be

Y1 = {y11, y12}, and P2’s one be Y2 = {y21, y22}. Payoffs are represented in Table 1, in which

the first two numbers in each cell denote the payoffs to P1 and P2, who respectively choose rows

and columns in the outer matrix. A1 and A2, respectively, choose rows and columns in the inner

matrices. The payoffs to A1, A2 and A3 are represented by the last three numbers in each cell.

y21 y22
ā a ā a

y11 ā (2, 95, 10, 5, 1) (2, ζ, 3/2, 8, 1) ā (2, ζ,−1/10, 0, 1) (2, ζ,−1/10, 8, 1)
a (2,−1, 0, 0, 1) (2, ζ, 0, 10, 1) a (2,−1, 5, 5, 1) (2, ζ, 1,−10, 1)

ā a ā a
y12 ā (2, 95, 10, 5, 1) (2, ζ, 3/2, 8, 1) ā (2, ζ,−1, 4, 1) (2, ζ,−1, 8, 1)

a (2, 5, 5, 5, 1) (2, ζ,−1, 4, 1) a (2,−1, 0, 0, 1) (2, ζ, 0,−10, 1)

Table 1: The full payoff matrix of the game

The payoffs to P1 and A3 are constantly equal to 2 and to 1 respectively, and ζ ≤ −1 is a loss

to P2.10 For the sake of simplicity, we henceforth refer to the reduced matrix below, which only

includes the payoffs to P2, A1 and A2.

3.1 No private communication for principals: feasibility and equilibrium

We first consider the situation in which principals cannot send private signals to agents. In this

context, we fix agents’ message sets to be sufficiently large to include the set of direct mechanisms

that each principal j can post, i.e. Yj ⊆ M i
j for i = 1, 2, 3 and j = 1, 2, so that recommendation

10The value of ζ is used to identify the threshold for P2’s payoff along the lines of Yamashita (2010). See Proposition
1 and, specifically, equation (2) for its explicit characterization.
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y21 y22
ā a ā a

y11 ā (95, 10, 5) (ζ, 3/2, 8) ā (ζ,−1/10, 0) (ζ,−1/10, 8)
a (−1, 0, 0) (ζ, 0, 10) a (−1, 5, 5) (ζ, 1,−10)

ā a ā a
y12 ā (95, 10, 5) (ζ, 3/2, 8) ā (ζ,−1, 4) (ζ,−1, 8)

a (5, 5, 5) (ζ,−1, 4) a (−1, 0, 0) (ζ, 0,−10)

Table 2: The reduced payoff matrix

mechanisms are available to both principals. In the next paragraphs, we characterize the set of

allocations supported by recommendation mechanisms in an equilibrium of this GM game.

We first identify the set of incentive feasible allocations. Since principals do not privately

communicate, a direct mechanism can be conveniently represented by means of four binary dis-

tributions over principals’ decisions, one for each pair of agents’ actions. In what follows, we let

πa1a2 ≡ prob(y11|a1, a2) be the probability with which P1 plays y11 if the actions (a1, a2) ∈ {ā, a}2

are observed. A direct mechanism for P1 is therefore an array α1 = (πāā, πāa, πaā, πaa) ∈ [0, 1]4.

Similarly, we let σa1a2 ≡ prob(y21|a1, a2) be the probability with which P2 plays y21 if (a1, a2) ∈

{ā, a}2 are observed, and we write α2 = (σāā, σāa, σaā, σaa) ∈ [0, 1]4. An (stochastic) allocation

induced by the direct mechanisms (α1, α2) and by the strategies (η1, η2, η3) is a probability distri-

bution over final choices in Y1 × Y2 ×A1 ×A2 ×A3 defined by the array

z =
((
πa1a2

)
(a1,a2)∈{ā,a}2 ,

(
σa1a2

)
(a1,a2)∈{ā,a}2 , η

1(.|α1, α2), η2(.|α1, α2), η3(ā|α1, α2) = 1
)
,

in which ηi(.|α1, α2) denotes the probability distribution over Ai for agent i = 1, 2 given (α1, α2).

We then say that an (stochastic) allocation z is incentive feasible if the strategies (η1, η2, η3) form

an (Nash) equilibrium of the agents’ action game induced by (α1, α2).11 We denote ZIF the set of

incentive feasible allocations. The two remarks below are key for equilibrium characterization.

Remark 1 Any allocation supported in an equilibrium of GM is incentive feasible.

Remark 2 ZIF is non-empty. In particular, it includes the allocation inducing the deterministic

choices (y12, y21, ā, a, ā). Indeed, if P1 commits to play y12 for each profile of agents’ actions, and

P2 makes the same commitment to y21, then it is an equilibrium for A1 to play ā, for A2 to play a
11Yamashita (2010) restricts attention to deterministic allocations. That is, agents play pure strategies in every

continuation equilibrium, and principals cannot randomize over their decisions. Under this restriction, existence of
a continuation equilibrium is not guaranteed. We enlarge the analysis to random behaviors, therefore allowing for
mixed strategy equilibria in each continuation game played by the agents.
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(with A3 playing ā). This yields the payoffs (2, ζ, 3/2, 8, 1). A similar reasoning guarantees that ZIF

includes the allocation inducing the choices (y11, y22, a, ā, ā), which yield the payoffs (2,−1, 5, 5, 1).

Finally, it also includes the allocation sustained by the direct mechanisms in which P1 commits to

play y12 when observing the actions (a, ā, ā), and y11 otherwise, and P2 commits to play y21 when

observing the actions (a, ā, ā), and y22 otherwise. Given these offers, (a, ā, ā) is an equilibrium

of the agents’ action game. The induced choices are (y12, y21, a, ā, ā), corresponding to the payoffs

(2, 5, 5, 5, 1).

Remark 1, which directly follows from the definition of incentive feasibility, parallels Lemma 1

in Yamashita (2010). The multiplicity of incentive feasible allocations documented in Remark 2

suggests the possibility of using recommendation mechanisms to derive a folk-theorem result in the

example. This is established in the following proposition.

Proposition 1 Every incentive feasible allocation yielding at least −1 to P2 can be sustained in

an equilibrium of the game GM .

Proof. Let each principal j = 1, 2 use the recommendation mechanism γRj as defined in (1). To

develop the proof, we first establish the following lemma.

Lemma 1 If P1 posts the recommendation mechanism γR1 then, for every mechanism γ2 ∈ ΓM2
2

posted by P2, there exists an equilibrium of the agents’ game yielding P2 at most -1.

Proof. Let P1 post γR1 . For each γ2 ∈ ΓM2
2 posted by P2, agents play a continuation game over

the messages to send to principals and over their actions. Let the message profile m1 ∈ M1 be

such that agents select in γR1 the direct mechanism α1 ∈ Y1 in which πāā = πāa = πaā = 1 and

πaa = 0. In addition, let µ denote a probability distribution over the messages sent to P2 and

σµ = (σµāā, σ
µ
āa, σ

µ
aā, σ

µ
aa) be the profile of probability distributions over P2’s decisions induced by

such µ, given γ2.

Consider the agents’ action game induced by the mechanisms (γR1 , γ2), given the messages m1

sent to P1 and the distribution µ over the messages sent to P2. In this game, A3 can only take

the action {ā}, and the strategic interaction between A1 and A2 is represented in Table 3.

The game has no pure strategy equilibrium in which A1 and A2 play (ā, ā). Indeed, if A1 plays

ā, A2 will choose a since 8 > 5σµāā for every σµāā ∈ [0, 1]. The following situations may hence arise.

1. The game has a pure strategy equilibrium in which A1 plays ā and A2 plays a, with A3

playing ā. This is for instance the case if σµāa ≥ 1/16. The equilibrium yields P2 the payoff ζ ≤ −1.

11



ā a

ā 11σµāā + 9
10(1− σµāā)− 1, 5σµāā 8

5σ
µ
āa − 1

10 , 8

a 5(1− σµaā), 5(1− σµaā) −σµaa, 6σµaa − 10

Table 3: Agents’ action game induced by (γR1 , γ2) given m1 and µ.

2. The game has a pure strategy equilibrium in which A1 plays a and A2 plays a, with A3

playing ā. This is never the case since 6σµaa − 10 < 0 ≤ 5(1− σµaā) for every σµaā and σµaa.

3. The game has a pure strategy equilibrium in which A1 plays a and A2 plays ā, with A3

playing ā. This is the case if 11σµāā + 9/10(1− σµāā)− 1 ≤ 5(1− σµaā) which is for instance satisfied

if σµāā = σµaā = 0. Since πaā = 1, the equilibrium yields P2 the payoff −1.

4. The game has a mixed strategy equilibrium in which A1 plays ā with probability φ, A2 plays

ā with probability τ , and A3 plays ā with probability one. To have at least one player randomizing

at equilibrium it must be that either

8
5σ

µ
āa −

1
10 ≥ −σ

µ
aa and 11σµāā + 9/10(1− σµāā)− 1 ≤ 5(1− σµaā),

or
8
5σ

µ
āa −

1
10 ≤ −σ

µ
aa and 11σµāā + 9/10(1− σµāā)− 1 ≥ 5(1− σµaā).

The expected payoff to P2 in a mixed strategy equilibrium is:

φτ(95σµāā + ζ(1− σµāā))− (1− φ)τ + (1− τ)ζ,

which is lower than −1 whenever

ζ [φτ(1− σµāā) + (1− τ)] + τ [φ 95σµāā − (1− φ)] ≤ −1. (2)

The term [φτ(1− σµāā) + (1− τ)] in the left-hand side of (2) is positive and bounded away from 0 in

any mixed strategy equilibrium of the action game.12 In addition, since the term τ [φ 95σµāā − (1− φ)]

is bounded above by 95, given σµ, (2) is satisfied for every (φ, τ) ∈ [0, 1]2 if the loss ζ is large enough.
12Indeed, φ is bounded away from zero in any mixed strategy equilibrium, as one can verify by inspection of Table

3. For [φτ(1− σµāā) + (1− τ)] to be arbitrarily close to zero, one then needs to have σµāā converging to one and
inducing an equilibrium in which τ is arbitrarily close to one. Yet, the equilibrium value of τ is decreasing in σµāā,
and it is bounded away from one when σµāā converges to one. Finally, observe that if σµāā = 1 the agents’ action game
only admits a pure strategy equilibrium, in which φ = 1 and τ = 0, and P2’s payoff is exactly equal to ζ.

12



We therefore set ζ = min{−1, ζ̄}. This guarantees that P2 cannot achieve a payoff above −1 in

any equilibrium of the action game induced by a deviation to any mechanism γ2 ∈ ΓM2
2 , if agents

send messages to P1 selecting πāā = πaā = πāa = 1, and πaa = 0, and choose the distribution

µ ∈ ∆(M2) to communicate with him.

To complete of the proof of Lemma 1, we argue that, for every γ2, there exists an equilibrium

of the continuation game induced by (γR1 , γ2), in which agents send the message profile m1 to P1,

recommending to select the direct mechanism α1 = (1, 1, 1, 0). That these behaviors are part of

an equilibrium is indeed a direct implication of P1 posting a recommendation mechanism in the

presence of three agents, which guarantees that the majority rule in (1) applies. �

To complete the proof of Proposition 1, we specify the agents’ equilibrium strategies in such a

way that, following each deviation of P2, they recommend α1 = (1, 1, 1, 0) to P1 and coordinate

on a profile of actions yielding P2 a payoff of at most −1. �

The above reasoning reproduces that of Lemma 2 in Yamashita (2010). We argue that the

payoff −1 is the minmax value for P2 over incentive schemes taking into account the subsequent

action game played by agents. Indeed, for each direct mechanism posted by P1, P2 can always

guarantee himself the payoff −1, as clarified in the following remark.

Remark 3 Take any α1 = (πāā, πāa, πaā, πaa) ∈ [0, 1]4, and let P2 post a direct mechanism α2

such that σāā = σāa = σaa = 0. Then, (a, ā) is the only equilibrium of the agents’ action game.

That is, the game induced by the direct mechanisms (α1, α2), has an equilibrium yielding −1 to P2.

Thus, there is no direct mechanism for P1 which allows to punish P2 with a payoff below −1. In

addition, as shown in the proof of Lemma 1, there is an α1 which prevents P2 from achieving a

payoff above −1 for every direct mechanism α2 she may choose. These observations guarantee that

the minmax payoff value for P2 is exactly −1.

The value −1 also corresponds to the minimal equilibrium payoff for P2 in a complete informa-

tion game in which each principal posts recommendation mechanisms and agents take actions and

coordinate on the worst continuation equilibrium for P2, in analogy with the threshold identified

by Yamashita (2010).13

Key to our analysis is to characterize the maximal payoff that P2 can attain at equilibrium if he

cannot privately communicate with agents. Given Proposition 1, this corresponds to his maximal

payoff computed over the set ZIF and it is characterized in the following lemma.
13See Peters (2014) for a general discussion of the minmax characterized by Yamashita (2010) in terms of the

primitives of a competing mechanism game.
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Lemma 2 The maximal payoff to P2 over all allocations z ∈ ZIF is 5.

Proof. Table 4 below depicts the action game played by A1 and A2 for a given profile of direct

mechanisms, α1 = (πāā, πāa, πaā, πaa) and α2 = (σāā, σāa, σaā, σaa), recalling that A3 can only play

{ā}.

ā a

ā 11σāā + 9
10πāā(1− σāā)− 1, 5

2σāa + 9
10πāa(1− σāa)− 1, 8

σāā + 4(1− πāā + πāāσāā)
a 5(σaā + πaā)− 10σaāπaā, πaa − σaa,

5(σaā + πaā)− 10σaāπaā σaa(6πaa + 10)− 6

Table 4: The actions’ game played by A1 and A2, induced by (α1, α2)

As pointed out in Remark 2, there exists an allocation z ∈ ZIF yielding 5 to P2. For P2 to

achieve a payoff strictly above 5, principals’ mechanisms should be designed to induce agents to

choose (ā, ā) with positive probability. Yet, in any equilibrium of the above game in which at least

one agent randomizes, the payoff to P2 is smaller than 5. That is:

φτ(95σāā + ζ(1− σāā)) + (1− φ)τ [6σaā(1− πaā)− 1] + (1− τ)ζ =

ζ [φτ(1− σāā) + (1− τ)] + τ [φ 95σāā − (1− φ)] + τ(1− φ)6σaā(1− πaā) ≤ 5 (3)

for every mixed strategy equilibrium (φ, τ) induced by any (α1, α2). To establish the inequality in

(3), recall that, by (2), ζ [φτ(1− σāā) + (1− τ)]+τ [φ 95σāā − (1− φ)] ≤ −1 in any mixed strategy

equilibrium. It follows that:

ζ [φτ(1− σāā) + (1− τ)]+τ [φ 95σāā − (1− φ)]+τ(1−φ)6σaā(1−πaā) ≤ τ(1−φ)6σaā(1−πaā)−1 ≤ 5

holds for every (α1, α2). To conclude the proof it remains to show that (ā, ā, ā) cannot be an (pure

strategy) equilibrium of the agents’ action game. Indeed, since σāā + 4(1 − πāā + πāāσāā) < 8 for

each (σāā, πāā), if A1 plays ā, A2 strictly prefers to play a. Hence, there is no z ∈ ZIF yielding P2

a payoff strictly greater than 5. �

One should observe that, to achieve his maximal payoff, P2 crucially exploits the possibility to

contract on agents’ observable actions (see Remark 2). If principals’ decisions were not contingent

on agents’ actions, then there would not be a feasible allocation yielding P2 the (maximal) payoff

of 5. Indeed, any such allocation would necessarily involve P1 playing y12 and P2 playing y21 with
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probability one, A1 and A2 playing the pure strategies (a, ā). One can then check that, given these

principals’ decisions, (a, ā) would not be an equilibrium of the agents’ action game.

Taken together, Proposition 1 and Lemma 2 imply that recommendation mechanisms support

all incentive feasible allocations yielding a payoff above -1 and at most equal to 5 to P2 in an

equilibrium of the above game GM . This provides an instance of Yamashita (2010)’s Theorem 1 in

a complete information setting in which random behaviors are allowed.14 We remark that the lower

bound of P2’s payoff coincides with −1 in any GM in which the message sets of P1 are sufficiently

rich to include all his direct mechanisms. The upper bound, instead, is equal to 5 regardless of the

size of any principal’s message sets, as the proof of Lemma 2 shows.

3.2 Principals’ private communication: equilibrium analysis

We now consider the situation in which each principal j posts a mechanism with signals γ̂j ∈ ΓMjSj
j ,

recalling that ΓMj

j ⊆ ΓMjSj
j . In such enlarged setting, we show that for every mechanism with signals

posted by P1, there is a mechanism with signals yielding P2 a payoff strictly greater than 5. Hence,

none of the allocations characterized in Proposition 1 can be supported at equilibrium. That is,

that the set of equilibrium allocations of any game GMS and the set of those of the corresponding

game GM are disjoint. The result is established in the following proposition.

Proposition 2 Consider a game GMS, in which Sij is a finite set and Ai ⊆ Sij for every (i, j).

Let P1 post an arbitrary mechanism γ̂1 ∈ ΓM1S1
1 . Then, there exists γ̂2 ∈ ΓM2S2

2 which yields P2 a

payoff strictly greater than 5 in every continuation equilibrium.

Proof. The proof shows that P2 can always attain a payoff greater than 5 by means of a simple

mechanism, in which he sends to each agent a private signal on the action she should take and he

commits to a joint probability distribution over signals and incentive schemes that is not contingent

on agents’ messages. Therefore, γ̂2 is a direct mechanism with signals. Specifically, it prescribes

that:

i.) P2 privately communicates {ā} to all agents and chooses y21 for every profile of agents’

actions, with probability k > 0;

ii.) P2 privately communicates {a} to A1 and {ā} to A2 and A3 and chooses y22 for every profile

of agents’ actions, with probability (1− k).
14See also Xiong (2013) for a version of the folk theorem of Yamashita (2010) that does not rely on the restriction

to deterministic behaviors.
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The mechanism γ̂2 implements the above distribution for every profile of agents’ messages received

by P2. Given the signal she privately receives from P2, each agent i is able to construct the

conditional joint probability over {y21, y22} and signals sent by P2 to her opponents. In particular,

γ̂2 is such that, given her private signal, A1 knows exactly which decision P2 is implementing, while

A2 remains uninformed. We let q 1
2 (y21, ā|ā) be the conditional probability formed by A1 on P2

choosing y21 and signaling ā to A2, when she receives ā from him.15 Observe that given γ̂2, one

has q 1
2 (y21, ā|ā) = 1 for A1. Similarly, we let q1

2(y22, ā|a) be the conditional probability formed by

A1 on P2 choosing y22 and signaling ā to A2, when she gets a from him. This is also equal to 1

when P2 commits to γ̂2. All other posteriors probabilities for A1 are null given i.)-ii.).

On the contrary, A2 only receives the signal ā with positive probability in γ̂2, which implies

that her posteriors are equal to the priors, i.e. q 2
2 (y21, ā|ā) = k and q 2

2 (y22, a|ā) = 1− k.

We now show that γ̂2 yields P2 a payoff greater than 5, for every mechanism γ̂1 ∈ ΓM1S1
1 posted

by P1. To do so, we have to consider P1’s probability distribution over incentive schemes and

signals as determined by the messages that agents send him in the game induced by (γ̂1, γ̂2). We

denote this joint probability q1 ∈ ∆(Y1 × S1), with S1 = S1
1 × S2

1 × S3
1 .

Given the (private) signal received from P1, each agent i = 1, 2, 3 constructs the conditional

probabilities over incentive schemes in α1 ∈ Y1 and signals to her opponents s−i1 ∈ S
−i
1 . Specifically,

we let q i1 (α1, s
−i
1 |si1) be the conditional probability that agent i assigns to P1 choosing the incentive

scheme α1 and signaling the array s−i1 to her opponents, when she receives the signal si1 ∈ Si1.

We develop the argument in two steps. First, we consider distributions in which P1 directly

signals an action to each agent, that is q1 ∈ ∆(Y1 × A1 × A2), recalling that A3 takes only one

action. Then, we extend the proof to the general case in which P1 uses arbitrary signals in Si1 for

every i = 1, 2.16

Step 1. Given (γ̂1, γ̂2), let the agents’ messages select a q1 ∈ ∆(Y1×A1×A2). Then, q i1 (α1, a
j |ai)

is the conditional probability that agent i = 1, 2 assigns to P1 choosing the incentive scheme α1

and signaling aj ∈ {ā, a} to agent j 6= i, when she receives the signal ai ∈ {ā, a} from P1. In

addition, we denote πα1
a1a2 the probability that the incentive scheme α1 assigns to y11 given the

agents’ actions (a1, a2) ∈ {ā, a}2.

Given (γ̂1, γ̂2), we henceforth refer to the agents’ action game induced by any profile of messages

which select q1. In this game, agents take actions given the realization of principals’ private signals.
15As clarified in Section 3.2, the private signal that agent i receives from principal j is the only relevant information

to construct her posterior probabilities on principal j’s decisions.
16There is no loss of generality in assuming that S3

1 is a singleton. Indeed, the private signals sent to an agent
affect her opponents’ payoffs only to the extent that they effectively modify her actions.
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We show that playing in accordance with the signal she gets from P2 is a dominant strategy for A1.

That is, she strictly prefers to follow P2’s private signal for every pure strategy chosen by A2 in

the action game. To do so, we consider the four cases corresponding to the possible combinations

of principals’ signals she may receive.

1.) A1 receives the signal ā from both principals. Given these signals, and since q 1
2 (y21, ā|ā) = 1,

her expected payoff when choosing a1 ∈ {ā, a} against the pure action strategy η̂2 of her opponent,

is:17

∫
α1
q1

1(α1, ā|ā))
[
πα1
a1η̂2(ā) u

1(y11, y21, a
1, η̂2(ā)) + (1− πα1

a1η̂2(ā)) u
1(y12, y21, a

1, η̂2(ā))
]
dα1

+
∫
α1
q1

1(α1, a|ā)
[
πα1
a1η̂2(a) u

1(y11, y21, a
1, η̂2(a)) + (1− πα1

a1η̂2(a)) u
1(y12, y21, a

1, η̂2(a))
]
dα1, (4)

in which, with some abuse of notation, we let η̂2(s) ∈ {ā, a} be the action that the strategy η̂2

prescribes to A2 when receiving the signal s ∈ {ā, a} from P1. We now determine A1’s optimal

actions given her beliefs on A2’s behavior, which leads to consider the following four sub-cases.

1a.) η̂2 prescribes to A2 to play ā for every signal she receives from P1, i.e. η̂2(ā) = η̂2(a) = ā. In

this case, one can check from Table 2 that A1 gets
∫
α1

10
(
q1

1(α1, ā|ā) + q1
1(α1, a|ā)

)
dα1 by playing

ā, and she would get
∫
α1

5(1 − πα1
aā )

(
q1

1(α1, ā|ā) + q1
1(α1, a|ā)

)
dα1 by playing a. Since πα1

aā ∈ [0, 1]

for each α1,

∫
α1

10
(
q1

1(α1, ā|ā) + q1
1(α1, a|ā)

)
dα1 >

∫
α1

5(1− πα1
aā )

(
q1

1(α1, ā|ā) + q1
1(α1, a|ā)

)
dα1,

hence, A1 strictly prefers ā to a for every q1
1(α1, a|ā), q1

1(α1, ā|ā) and πα1
aā .

1b.) η̂2 prescribes to A2 to play ā (a) if she gets the signal ā (a) from P1, i.e. η̂2(ā) = ā, η̂2(a) =

a. In this case, A1 gets
∫
α1

[
10q1

1(α1, ā|ā) + 3
2q

1
1(α1, a|ā)

]
dα1 by playing ā, and she would get∫

α1

[
5(1− πα1

aā )q1
1(α1, ā|ā)− (1− πα1

aa )q1
1(α1, a|ā)

]
dα1 by playing a. Since πα1

aā and πα1
aa are smaller

than one for each α1,

∫
α1

[
10q1

1(α1, ā|ā) + 3
2q

1
1(α1, a|ā)

]
dα1 >

∫
α1

[
5(1− πα1

aā )q1
1(α1, ā|ā)− (1− πα1

aa )q1
1(α1, a|ā)

]
dα1,

and A1 strictly prefers ā to a for every q1
1(α1, a|ā), q1

1(α1, ā|ā) and (πα1
aā , π

α1
aa ).

1c.) η̂2 prescribes to A2 to play ā (a) if she gets the signal a (ā) from P1, i.e. η̂2(ā) = a,

η̂2(a) = ā. In this case, A1 gets
∫
α1

[
3
2q

1
1(α1, ā|ā) + 10q1

1(α1, a|ā)
]
dα1 by playing ā, and she would

17To simplify notation, throughout the proof we deliberately omit to specify the action {ā} taken by A3 in the
expressions of A1’s and A2’s expected payoffs.
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get
∫
α1

[
−(1− πα1

aa )q1
1(α1, ā|ā) + 5(1− πα1

aā )q1
1(α1, a|ā)

]
dα1 by playing a. Since πα1

aā and πα1
aa are

smaller than one for each α1,

∫
α1

[
3/2q1

1(α1, ā|ā) + 10q1
1(α1, a|ā)

]
dα1 >

∫
α1

[
−(1− πα1

aa )q1
1(α1, ā|ā) + 5(1− πα1

aā )q1
1(α1, a|ā)

]
dα1,

which leads to the same conclusion of 1b.).

1d.) η̂2 prescribes to A2 to play a for every signal she receives from P1, i.e. η̂2(ā) = η̂2(a) =

a. In this case, A1 gets
∫
α1

3/2
[
q1

1(α1, ā|ā) + q1
1(α1, a|ā)

]
dα1 by playing ā, and she would get

−
∫
α1

(1 − πα1
aa )

[
q1

1(α1, ā|ā) + q1
1(α1, a|ā)

]
dα1 by playing a. Since πα1

aa is smaller than one for each

α1,

∫
α1

3/2
[
q1

1(α1, ā|ā) + q1
1(α1, a|ā)

]
dα1 > −

∫
α1

(1− πα1
aa )

[
q1

1(α1, ā|ā) + q1
1(α1, a|ā)

]
dα1,

and A1 strictly prefers ā to a for every q1
1(α1, a|ā), q1

1(α1, ā|ā) and πα1
aa .

To resume, upon getting (ā, ā) from both principals, it is optimal for A1 to play ā for every

A2’s pure action strategy η̂2.

2.) A1 receives the signal a from P1 and the signal ā from P2. In this case, her expected payoff

can be derived from (4) by substituting (q1
1(α1, a|ā), q1

1(α1, ā|ā)) with (q1
1(α1, a|a), q1

1(α1, ā|a)). As

a consequence, to determine A1’s optimal actions one can follow the analysis developed in 1a.)-1d.),

which leads to the conclusion that it is optimal for A1 to follow P2’s signal playing ā for every

A2’s pure action strategy η̂2.

3.) A1 receives the signal a from both principals. Given these signals and since q 1
2 (y22, ā|a) = 1,

her expected payoff when choosing a1 ∈ {ā, a} for a given pure action strategy η̂2 of her opponent,

is

∫
α1
q1

1(α1, ā|a))
[
πα1
a1η̂2(ā) u

1(y11, y22, a
1, η̂2(ā)) + (1− πα1

a1η̂2(ā)) u
1(y12, y22, a

1, η̂2(ā))
]
dα1

+
∫
α1
q1

1(α1, a|a)
[
πα1
a1η̂2(a) u

1(y11, y22, a
1, η̂2(a)) + (1− πα1

a1η̂2(a)) u
1(y12, y22, a

1, η̂2(a))
]
dα1, (5)

in which, we again abuse notation and let η̂2(s) ∈ {ā, a} be the action that the strategy η̂2 prescribes

to A2 when receiving the signal s ∈ {ā, a} from P1. To determine A1’s optimal actions given her

beliefs on A2’s behavior, we consider again the relevant four sub-cases.

3a.) η̂2(ā) = η̂2(a) = ā. In this case, A1 gets
∫
α1

(
9
10π

α1
āā − 1

) [
q1

1(α1, ā|a) + q1
1(α1, a|a)

]
dα1 by
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playing ā, and she would get
∫
α1

5πα1
aā

[
q1

1(α1, ā|a) + q1
1(α1, a|a)

]
dα1 by playing a. Since πα1

āā and

πα1
aā are smaller than one for each α1,

∫
α1

( 9
10π

α1
āā − 1

) [
q1

1(α1, ā|a) + q1
1(α1, a|a)

]
dα1 <

∫
α1

5πα1
aā

[
q1

1(α1, ā|a) + q1
1(α1, a|a)

]
dα1,

hence, A1 strictly prefers a to ā for every q1
1(α1, ā|a), q1

1(α1, a|a) and (πα1
āā , π

α1
aā ).

3b.) η̂2(ā) = ā, η̂2(a) = a. In this case, A1 gets−
∫
α1

[(
1− 9

10π
α1
āā

)
q1

1(α1, ā|a) +
(
1− 9

10π
α1
āa

)
q1

1(α1, a|a)
]
dα1

by playing ā, and she would get
∫
α1

[
5πα1

aā q
1
1(α1, ā|a) + πα1

aa q
1
1(α1, a|a)

]
dα1 by playing a. Since

πα1
a1a2 ∈ [0, 1] for every (a1, a2) ∈ {ā, a}2 and for every α1,

−
∫
α1

[(
1− 9

10π
α1
āā

)
q1

1(α1, ā|a) +
(

1− 9
10π

α1
āa

)
q1

1(α1, a|a)
]
dα1 <

∫
α1

[
5πα1

aā q
1
1(α1, ā|a) + πα1

aa q
1
1(α1, a|a)

]
dα1,

and A1 strictly prefers a to ā for every q1
1(α1, ā|a), q1

1(α1, a|a) and (πα1
āā , π

α1
aā , π

α1
āa , π

α1
aa ).

3c.) η̂2(ā) = a, η̂2(a) = ā. In this case, A1 gets−
∫
α1

[(
1− 9

10π
α1
āa

)
q1

1(α1, ā|a) +
(
1− 9

10π
α1
āā

)
q1

1(α1, a|a)
]
dα1

by playing ā, and she would get
∫
α1

[
πα1
aa q

1
1(α1, ā|a) + 5πα1

aā q
1
1(α1, a|a)

]
dα1 by playing a. Since

πα1
a1a2 ∈ [0, 1] for every (a1, a2) ∈ {ā, a}2 and for every α1, one has

−
∫
α1

[(
1− 9

10π
α1
āa

)
q1

1(α1, ā|a) +
(

1− 9
10π

α1
āā

)
q1

1(α1, a|a)
]
dα1 <

∫
α1

[
πα1
aa q

1
1(α1, ā|a) + 5πα1

aā q
1
1(α1, a|a)

]
dα1,

which leads to the same conclusion of 3b.).

3d.) η̂2(ā) = η̂2(a) = a. In this case, A1 gets
∫
α1

[
9
10π

α1
āa − 1

] (
q1

1(α1, ā|a) + q1
1(α1, a|a)

)
dα1 by play-

ing ā, and she would get
∫
α1
πα1
aa

(
q1

1(α1, ā|a) + q1
1(α1, a|a)

)
dα1 by playing a. Since

[
9
10π

α1
āa − 1

]
< 0

for every πα1
āa and α1, one has

∫
α1

[ 9
10π

α1
āa − 1

] (
q1

1(α1, ā|a) + q1
1(α1, a|a)

)
dα1 <

∫
α1
πα1
aa

(
q1

1(α1, ā|a) + q1
1(α1, a|a)

)
dα1,

and A1 strictly prefers a to ā for every q1
1(α1, ā|a), q1

1(α1, a|a) and (πα1
āa , π

α1
aa ).

To resume, upon getting (a, a) from both principals, it is optimal for A1 to play a for every

pure action strategy η̂2.

4.) A1 receives the signal ā from P1 and the signal a from P2. In this case, her expected payoff

can be derived from (5) by substituting (q1
1(α1, a|a), q1

1(α1, ā|a)) with (q1
1(α1, a|ā), q1

1(α1, ā|ā)). As

a consequence, to determine A1’s optimal actions one can follow the analysis developed in 3a.)-3d.),

which leads to the conclusion that it is optimal for A1 to follow P2’s signal playing a for every A2’s
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pure action strategy η̂2.

Thus, given (γ̂1, γ̂2), A1 has a strictly dominant strategy in playing according to the signal she

gets from P2 in every action game induced by a q1 ∈ ∆(Y1 ×A1 ×A2).

We now turn to A2’s behavior. Recall that since A2 only receives the signal ā from P2 with

positive probability, therefore, she effectively forms posterior probabilities only relative to P1’s

decisions and signals.

Consider first the case in which A2 receives the signal ā from P1 and P2. Given the equilibrium

behaviour of A1 in the action game, A2 (strictly) prefers to play ā rather than a, whenever

∫
α1

[
5k + (1− k)5πα1

aā

] (
q2

1(α1, ā|ā)+q2
1(α1, a|ā)

)
dα1 >

∫
α1

[8k − 10(1− k)]
(
q2

1(α1, ā|ā)+q2
1(α1, a|ā)

)
dα1,

that is, whenever

∫
α1

[
5k + (1− k)5πα1

aā + 10− 18k
] (
q2

1(α1, ā|ā) + q2
1(α1, a|ā)

)
dα1 =

=
∫
α1

[
(1− k)5πα1

aā + 10− 13k
] (
q2

1(α1, ā|ā) + q2
1(α1, a|ā)

)
dα1 > 0, (6)

which holds for every πα1
aā ∈ [0, 1] if k ∈ (0, 10/13). Consider next the case in which A2 receives

the signal a from P1 and ā from P2. Then, we can rewrite the inequality in (6) by substituting

(q2
1(α1, ā|ā) + q2

1(α1, a|ā)) with (q2
1(α1, ā|a) + q2

1(α1, a|a)), and reestablish that, if k ∈ (0, 10/13), A2

strictly prefers ā to a.

Hence, given (γ̂1, γ̂2) and k ∈ (0, 10/13), and for every q1 ∈ ∆(Y1×A1×A2), the agents’ action

game has a unique equilibrium in which both agents play according to the signal they get from P2,

regardless of the signal received from P1.

The corresponding expected payoff to P2 is 95k − (1 − k) which is strictly greater than 5 for

every k > 1/16. Therefore, setting k ∈ (1/16, 10/13) in γ̂2 as specified i.)-ii.) yields the result.

Step 2. We now consider the case in which P1’s probability distribution over his decisions and the

signals he sends to agents has an arbitrary support in (Y1×S1×S2). That is, q1 ∈ ∆(Y1×S1×S2).

As a consequence, in the corresponding action game, each agent receives more private signals

from P1. This however does not alter the agents’ equilibrium behaviors, as we show in the next

paragraphs.

Let si1 ∈ Si1 be a signal privately sent by P1 to agent i = 1, 2 and s−i1 be any array of signals sent

by P1 to i’s opponent. Then, let η̂2(s2
1) represent the action that the pure strategy η̂2 prescribes

to A2 when receiving the signal s2
1 ∈ S2

1 from P1, and q1
1(α1, s

2
1|s1

1) be the conditional (joint)
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probability formed by A1 on P1’s incentive scheme α1 and signal s2
1 to A2, having received s1

1.

In Step 1, we established the result when Si1 is a binary set of signals for every i = 1, 2. We now

show that the analysis straightforwardly extends to arbitrary sets Si1. Consider first A1: we show

that for every profile of signals received from principals, she strictly prefers to play according to

P2’s signal for every action strategy of her opponent. Indeed, for each pure action strategy η̂2 of

A2, it is possible to partition the set of P1’s signals to A2 in two sub-sets: one including all signals

that induce A2 to play ā, the other those inducing to play a. Let S̄2
1 =

{
s2

1 ∈ S2
1 : η̂2(s2

1) = ā
}
and

S2
1 =

{
s2

1 ∈ S2
1 : η̂2(s2

1) = a
}
be such sub-sets. From the view point of A1, given η̂2, everything

happens as if P1’s set of signals to A2 was binary, with the probability of each of these two signals

equal to the sum of the posteriors probabilities of all signals in Si1 inducing a given action, i.e.

q1
1(α1, ā|s1

1) = Σ
s21∈S̄

2
1

q1
1(α1, s

2
1|s1

1) and q1
1(α1, a|s1

1) = Σ
s21∈S

2
1

q1
1(α1, s

2
1|s1

1).

Thus, the optimal behavior of A1 can be characterized by extending the analysis of Step 1 to this

more general scenario. Consider, as an example, the case in which A1 receives the signal a from P2

and s1
1 from P1: given η̂2, her expected payoff by playing ā will be−

∫
α1

Σ
s21∈S̄

2
1

q1
1(α1, s

2
1|s1

1)
(
1− 9

10π
α1
āā

)
dα1−∫

α1
Σ

s21∈S
2
1

q1
1(α1, s

2
1|s1

1)
(
1− 9

10π
α1
āa

)
dα1, while by playing a it will be

∫
α1

Σ
s21∈S̄

2
1

5πα1
aā q

1
1(α1, s

2
1|s1

1)dα1 +∫
α1

Σ
s21∈S

2
1

πα1
aa q

1
1(α1, s

2
1|s1

1)dα1. Since πα1
a1a2 ∈ [0, 1] for every (a1, a2) ∈ {ā, a}2 and for every α1,

−
∫
α1

[
Σ

s21∈S̄
2
1

(
1− 9

10π
α1
āā

)
q1

1(α1, s
2
1|s1

1)− Σ
s21∈S

2
1

(
1− 9

10π
α1
āa

)
q1

1(α1, s
2
1|s1

1)
]
dα1 <

<

∫
α1

[
Σ

s21∈S̄
2
1

5πα1
aā q

1
1(α1, s

2
1|s1

1) + Σ
s21∈S

2
1

πα1
aa q

1
1(α1, s

2
1|s1

1)
]
dα1 (7)

and A1 strictly prefers a to ā for every q1
1(α1, s

2
1|s1

1) and (πα1
āā , π

α1
aā , π

α1
āa , π

α1
aa ). The inequality (7)

holds for every η̂2 and its corresponding S̄2
1 and S2

1 sets. The same reasoning applies to the case in

which A1 receives ā from P2 and some s1
1 from P1.

It remains to show that given such equilibrium behavior of A1, A2 (strictly) prefers to play ā

rather than a regardless of the private signals received from P1. Let s2
1 ∈ S2

1 be the private signal

she receives from P1 and s1
1 ∈ S1

1 any array of signals that P1 sends to her opponent, and recall

that she receives ā from P2. Given the equilibrium behavior of A1, she (strictly) prefers to play ā

rather than a, whenever

∫
α1

Σ
s11∈S

1
1

q2
1(α1, s

1
1|s2

1)
[
5k + (1− k)5πα1

aā

]
dα1 >

∫
α1

Σ
s11∈S

1
1

q2
1(α1, s

1
1|s2

1) [8k − 10(1− k)] dα1.
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The expected payoff to A2 is affected by P1’s signals only through changes in the conditional

probability Σ
s11∈S

1
1

q2
1(α1, s

1
1|s2

1). This allows to extend the argument developed in Step 1 to this

general case. Thus, given γ̂1, any mechanism γ̂2 with k ∈ (1/16, 10/13) yields P2 a payoff strictly

above 5. �

The proof establishes that P2 achieves a payoff strictly above 5 in any equilibrium of a game with

signals GMS . To illustrate its logic, it is useful to first consider the degenerate case in which γ̂1 puts

positive probability only on one signal. That is, P1 does not privately communicate with agents.

Then, by posting γ̂2, P2 induces some incomplete information in the agents’ action game. Given

their private signals, A1 and A2 have different posterior probability distributions over the decisions

implemented by γ̂2. In particular, P2 correlates his decisions with the signals in such a way that the

signal received by A1 gives her perfect information, while the one received by A2 is uninformative.

The proof points out that the unique Nash equilibrium of the corresponding agents’ action game

induces a stochastic allocation, i.e. a distribution over A, Y1 and Y2, which is not incentive feasible

in the absence of private signals. Thus, γ̂2 yields P2 a payoff greater than 5 even if P1 delegates

to the agents the choice of his incentive scheme, in such a way that they can tailor the punishment

to any P2’s choice.18In other words, mechanisms based on deviation-reporting messages are not

effective to prevent P2 from profitably exploiting private communication.

What if P1 can additionally send private signals to agents? By doing so, he could generate novel

continuation equilibria that harm his opponent, exploiting the correlation between his decisions and

the agents’ actions. In the example, A1’s preferences over actions, for each decision of P2, do not

depend on P1’s decisions neither on A2’s choice. The construction of γ̂2 guarantees that this

feature can be exploited in such a way to induce A1 to follow P2’s signal no matter the signal she

receives from P1. Given γ̂2 and the induced equilibrium behavior of A1, the proof of Proposition 2

shows that P1’s signals do not affect A2’s equilibrium actions either. The result does not depend

on the size of the signals’ spaces of the game GMS .19 Indeed, the proof shows that the reasoning

developed for the case in which P1 uses a simple binary set of signals extends to the case of an

arbitrary number of signals. In addition, the result neither depends on the size of the message set

that each agent uses to communicate with principals. In particular, it holds for anyM i
j that is large

18Observe that a payoff greater than 5 does not belong to the convex hull of P2’s payoffs associated to the incentive
feasible allocations of games without signals. Hence, it cannot be generated by adding a public correlation device
to the competing mechanism game analysed in Section 3.1, as done for instance by Peters and Troncoso-Valverde
(2013).

19To simplify exposition, the proof of Proposition 2 is developed for the case of finite signal spaces. Furthermore,
the assumption that Ai ⊆ Sij for every (i, j) is made to guarantee that all principals may send meaningful signals.
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in the sense of Yamashita (2010), that is, it includes all direct mechanisms with signals available

to principals.

Furthermore, given (γ̂1, γ̂2), the agents’ action game exhibits a unique equilibrium for every

message they may send to and signal they may receive from P1, which guarantees that the proof

does not rely on any equilibrium selection argument. That is, there is no “babbling” equilibrium

in which agents ignore P2’s signal.

Thus, none of the allocations characterized in Proposition 1 can be sustained at equilibrium in a

competing mechanism game with signals. A straightforward implication is that equilibria sustained

by mechanisms without signals, such as recommendation mechanisms, fail to be robust. This leads

to the following:

Corollary 1 None of the equilibria characterized in Proposition 1, in which principals post the

recommendation mechanisms (γR1 , γR2 ), is robust to unilateral deviations of P2 towards mechanisms

with signals.

To summarize, any equilibrium allocation of a game GMS , in which signals are non-degenerate

for at least one principal, is not an equilibrium allocation of the corresponding game GM , for every

collection of message sets M . We next show that principals’ private communication plays a role at

equilibrium.

3.3 Principals’ private communication: equilibrium existence

The following proposition establishes, in the context of the example, equilibrium existence for games

with private signals.

Proposition 3 Consider any game GMS in which M i
j is arbitrary and Ai ⊆ Sij for every i and j.

The payoffs profile (2, 79, 11
3 , 5, 1) can be supported in an equilibrium of GMS in which principals

play pure strategies.

Proof. Let P1 commit to a degenerate mechanism with signals, γ̂1, such that for every array of

agents’ messages m1, he plays {y11} for every (a1, a2) ∈ A1 ×A2 and sends to each agent the same

signal {s} with probability one. Given γ̂1, the payoffs to P2, A1 and A2 are reported in Table 5.

Since γ̂1 implements a fixed decision irrespective of messages, signals and agents’ actions, from

the viewpoint of P2 finding his best response amounts to solve a single-principal mechanism design

problem as in Myerson (1982). Hence, an optimal mechanism can be characterized in terms of a

direct mechanism with signals ˆ̂γ2, in which P2 commits to the same joint probability distribution
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y21 y22
ā a ā a

y11 ā (95, 10, 5) (ζ, 3/2, 8) ā (ζ,−1/10, 0) (ζ,−1/10, 8)
a (−1, 0, 0) (ζ, 0, 10) a (−1, 5, 5) (ζ, 1,−10)

Table 5: The payoff matrix given γ̂1

on incentive schemes and actions signalled to agents for every profile of received messages. That is,
ˆ̂γ2 ∈ ∆(Y2×A). As in the single-principal setting of Myerson (1982), direct mechanisms with signals

are sufficiently rich to incorporate any randomness in the incentive schemes of P2. Hence, when

characterizing an optimal mechanism for P2 one can safely restrict to joint probability distributions

over deterministic incentive schemes and signals for P2. In addition, in the action game induced

by ˆ̂γ2 and by the degenerate mechanism γ̂1, it is with no loss of generality to focus on equilibria,

in which each agent follows the signal she privately receives from P2.

Since P2 incurs a loss ζ whenever A2 chooses a, any optimal mechanism for him must put

probability zero on signaling the action a to A2. When designing ˆ̂γ2, P2 can exploit the flexibility

of an incentive scheme to alleviate the incentive constraints faced by each of the agents. Indeed, the

support of his mechanism consists of all the possible combinations of the two signal arrays (ā, ā) and

(a, ā) with all deterministic incentive schemes. To simplify notation, let us denote q2(α, ā, ā) ≡ k̄(α)

and q2(α, a, ā) ≡ k(α) the joint probabilities attributed by ˆ̂γ2 to the incentive scheme α ∈ YD2 , with

YD2 ⊂ Y2 being the set of deterministic incentive schemes, and to any of the two relevant profiles

of signals.

We next consider the agents’ incentive constraints. As for A1, when she gets the signal ā

from P2, the expected payoff from taking the action ā has to be no lower than the payoff from

taking a, given the belief on A2’s obedience to P2. The inequality should be satisfied for each α

implemented by ˆ̂γ2 with positive probability when ā is sent to A1. This in turn generates a set of

incentive constraints for A1. We now show that it is optimal for P2 to assign a positive probability

k̄(α) only to those incentive schemes α that implement the decision y21 for every action chosen by

A1 when A2 chooses ā. That is, to any α such that α(ā, ā) = α(a, ā) = y21. The corresponding

incentive constraint for A1 is

k̄(α)
Σ

α′′∈YD2
k̄(α′′)

10 ≥ 0, (8)

in which Σ
α′′∈YD2

k̄(α′′) denotes the marginal probability of receiving the signal ā for A1 and zero

24



is the payoff corresponding to the choice a. Indeed, any incentive scheme α such that either

α(ā, ā) 6= α(a, ā) or α(ā, ā) = α(a, ā) = y22 induces an incentive constraint for A1 when she

receives ā that is different from (8). Yet, one can check that every k̄(α) satisfying any of those

constraints also satisfies (8), but the converse may not be true. This implies that, when designing
ˆ̂γ2, P2 finds optimal to set k̄(α) > 0 only for those α such that α(ā, ā) = α(a, ā) = y21. By doing

so, P2 effectively neutralizes the incentive constraints of A1 when she receives the signal ā.

The set of incentive constraints for A1 when she receives a from P2 can be analyzed in the

same way. Specifically, we show that, in this case, it is optimal to put a positive probability k(α′)

only on those α′ such that α′(ā, ā) = α′(a, ā) = y22. Indeed, the corresponding incentive constraint

for A1 would be

k(α′)
Σ

α′′∈YD2
k(α′′)5 ≥ k(α′)

Σ
α′′∈YD2

k(α′′)(− 1
10). (9)

Once again, we remark that any incentive scheme α′ such that either α′(ā, ā) 6= α′(a, ā) or α′(ā, ā) =

α′(a, ā) = y21 induces an incentive constraint for A1 when she receives a that is different from (9).

Yet, one can check that every k(α′) satisfying any of those constraints also satisfies (9), but the

converse may not be true. This implies that, when designing ˆ̂γ2, P2 finds optimal to set k(α′) > 0

for those α′ such that α′(ā, ā) = α′(a, ā) = y22 therefore neutralizing the incentive constraints of

A1 when she receives the signal a.

An optimal mechanism for P2 hence consists of a distribution (k̄(α), k(α′)) which assigns probability

k̄(α) to any α such that α(ā, ā) = α(a, ā) = y21 together with signals (ā, ā) and probability k(α′)

to any α′ such that α′(ā, ā) = α′(a, ā) = y22 together with signals (a, ā).

Let us now consider the incentive constraints of A2. Since she only gets the signal ā from P2,

she cannot update her prior probabilities. Thus, given ˆ̂γ2, her decisions depend on k̄(α) and k(α′).

We now show that it is optimal for P2 to set α(ā, a) = y21 and α′(a, a) = y22. In this case, an

incentive constraint for A2 can be written as

k̄(α)
K(α′′)5 + k(α′)

K(α′′)5 ≥ k̄(α)
K(α′′)8 + k(α′)

K(α′′)(−10) (10)

in which K(α′′) ≡ Σ
α′′∈YD2

k̄(α′′) + k(α′′) = 1 denotes the marginal probability of receiving the

signal ā for A2. Observe that the left-hand side of (10) is fully determined by the conditions on

α(ā, ā) = y21 and α′(ā, ā) = y22 specified above. In addition, one can check that the expression on

the right-hand side is only affected by α′(a, a), and it is minimized when α′(a, a) = y22.
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We complete the description of an optimal mechanism ˆ̂γ2 specifying the decision that α asso-

ciates to the agents’ actions (a, a), and the decision that α′ associates to the actions (ā, a). With

no loss of generality, we set α(a, a) = y21 and α′(ā, a) = y22. Indeed, neither A1 nor A2’s incen-

tive constraints are affected by these decisions and P2’s payoff is constant and equal to ζ over his

decisions when A2 chooses a.

Thus, when P1 posts the degenerate mechanism with signals γ̂1, it is optimal for P2 to post ˆ̂γ2

which involves a correlation between signals and (uncontingent) incentive schemes. The correspond-

ing correlated distribution implemented by ˆ̂γ2 reduces to the two joint probabilities q2(α, ā, ā) = k̄

and q2(α′, a, ā) = k, with α(a1, a2) = y21, α′(a1, a2) = y22 for all (a1, a2) ∈ {ā, a}2 and k = 1 − k̄.

Therefore, the constraints in (8), (9) and (10) become:

10k̄ ≥ 0 which holds for every k̄ ≥ 0

5k ≥ − 1
10k which holds for every k ≥ 0

5(k̄ + k) ≥ 8k̄ − 10k. (11)

An optimal mechanism with signals for P2 should maximize his expected payoff V2 = 95k̄ − k

subject to (11). The unique solution involves k̄ = 15
18 and k = 3

18 , yielding P2 a payoff of

95k̄ − k = 79 > 5. (12)

The corresponding equilibrium payoffs for all players are (2, 79, 11
3 , 5, 1) as claimed. �

The result shows the existence of equilibrium payoffs that do not belong to the set characterized

in Proposition 1. The proof of Proposition 3 crucially exploits the fact that P1’s equilibrium

strategy consists of a degenerate mechanism. This in turn allows to restrict attention to direct

mechanisms with signals for P2. That is, given P1’s strategy, for every set of agents’ messages

and principals’ signals, any allocation which is optimal from the viewpoint of P2 can be supported

by letting P2 privately recommend an action to each agent, and requiring agents to obey such

recommendations. Characterizing an optimal mechanism in this class is quite involved since one

has to consider the set of joint probability distributions over incentive schemes and signals sent to

A1 and A2.

One should observe that the mechanism ˆ̂γ2, which is optimal given that P1 plays γ̂1, turns out

to be formally equivalent to the direct mechanism with signals for P2 exhibited in the proof of

Proposition 2. This allows to directly relate the result of Proposition 3 with that of Proposition 2.
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The proof of Proposition 3 shows that, if P1 posts the degenerate mechanism {y11}, and A1 plays

in accordance to the signal received from P2 , then any k̄ ≤ 15
18 induces A2 to play ā. To establish

Proposition 2, instead, we have to identify the values of k̄ which yield the same implications for all

mechanisms posted by P1. As shown in (6), this requires setting k̄ < 10
13 <

15
18 , which implies that

the corresponding payoff to P2 is bounded above by 9510
13 −

3
13 = 947

13 < 79.

The same reasoning followed in the proof of Proposition 3 can be iterated to determine the

optimal (equilibrium) mechanism of P2 were P1 posting any other deterministic mechanism inde-

pendent of messages and signals. For instance, if P1 commits to the degenerate mechanism {y12},

it can be shown that an optimal mechanism for P2 yields him a payoff of 80.20 This shows that,

in the context of the example, any GMS game exhibits multiple equilibrium allocations.

4 Discussion

1. Our analysis has two main implications. On the one hand, the equilibria of any game GM are

not robust to unilateral deviations of a principal to mechanisms with signals. This suggests that the

general construction derived in Epstein and Peters (1999) may fail to reproduce all communication

opportunities between principals and agents. On the other hand, none of the equilibrium allocations

of a game in which all principals can privately communicate can be supported at equilibrium when

this private communication is unfeasible. This suggests that the restriction to one-sided private

communication is key to establish folk-theorem-like results in the spirit of Yamashita (2010).

2. We consider the simple scenario in which there is no (exogenous) incomplete information and

agents take fully observable actions. Introducing observable actions is a convenient way to model

agents’ participation decisions, as also done by Epstein and Peters (1999).21 Indeed, our example

can be casted in the two-agents framework of Epstein and Peters (1999), in which each agent

is restricted to participate with at most one principal and communication is not constrained by

participation decisions. To do so, one should interpret the action ā as participating with P1 but not

with P2, the action a symmetrically, and let the strategy of not participating with either principal

be dominated.

The possibility for principals to take decisions contingent on agents’ actions is not crucial for our

result. First, as remarked in Section 3.1, in the absence of principals’ private communication any

feasible allocation yields P2 a payoff smaller than 5. This is a fortiori true when agents’ actions are
20The detailed derivation of this result is available from the authors.
21See Epstein and Peters (1999), pp. 123-125.
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not observable. In this case, a direct mechanism for principal j is a flat incentive scheme associating

the same decision to all actions, which implies that the corresponding set of feasible allocations is

included in ZIF . Second, the mechanism with signals γ̂2 used in the proof of Proposition 2 allows

P2 to get a payoff greater than 5 without conditioning on agents’ actions.

3. In the light of the former observation, one could wonder whether mechanisms with signals

keep playing a key role in pure incomplete information settings, with agents taking no actions.

This is the situation considered in Yamashita (2010), who postulates that each agent participates

with all principals from the outset. To answer this question, observe that, when information

is incomplete and principals play recommendation mechanisms, agents take two communication

decisions. First, they recommend to each principal the direct mechanism he should post; second,

they simultaneously report a type to each principal. From the viewpoint of a given principal j,

the messages (types) that agents send to his opponents can be seen as hidden actions. Indeed,

by selecting a profile of decisions in each of the direct mechanisms posted by principals −j, such

messages may indirectly affect principal j’s payoff. He may therefore gain by generating uncertainty

among agents when they play their message game, using the same logic of our example. That is,

principal j may design a mechanism with signals to be privately sent to each agent before he receives

agents’ messages (types). The corresponding continuation equilibrium over messages may induce a

correlation between principals’ decisions that cannot be reproduced without private signals.

4. The example shares with Yamashita (2010) the focus on recommendation mechanisms. An

implication of Proposition 2 is that recommendation mechanisms have a limited power in preventing

P2 from achieving a payoff above 5 at equilibrium if he uses mechanisms with signals. A relevant

issue is whether the result extends to equilibria featuring more sophisticated communication from

agents to principals, possibly involving more than one stage.22 In principle, P1 could exploit the

additional information he may receive from agents to punish P2 in a more effective way. Specifically,

P1 may set up a further round of communication with agents, asking them to communicate the

private information generated by the mechanism with signals γ̂2, and commit to modify his decision

accordingly. This opportunity, however, is not effective in the example since, for any γ̂1, the unique

continuation equilibrium of the agents’ action game induced by γ̂2 is not affected by any further

change in the joint distribution q1.23

22Lemma 2 in Yamashita (2010) guarantees that recommendation mechanisms are sufficiently flexible to reproduce
all the punishments against a deviating principal j which can be generated by arbitrary message spaces of his
opponents.

23We thank Mike Peters for raising this issue to our attention.
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5. The GM game in which eachM i
j space is a singleton plays a central role in economic applications.

In this game, which we denote GD, competition between principals takes place absent any private

communication, and principals post direct mechanisms, which are equivalently labelled pay-for-

effort contracts. The game GD provides, in particular, a generalized version of the traditional

models of lobbying of Bernheim and Whinston (1986), Dixit et al. (1997) and Prat and Rustichini

(2003). It is therefore a relevant question from the viewpoint of applications whether the equilibria

of GD survive when principals deviate to more complex mechanisms involving some communication.

Theorem 1 in Han (2007) provides a positive answer, identifying a set of equilibria that are robust

against unilateral deviations to mechanisms with no signals. These are the pure strategy strongly

robust equilibria of GD, that is, the SPNE in which no principal can profitably deviate to a direct

mechanism, regardless of the continuation equilibrium selected by agents.24 Thus, a strongly robust

equilibrium of GD is also an (strongly robust) equilibrium of any GM game. Going back to the

example, recall that there exists an incentive feasible allocation yielding P2 his maximal payoff of

5 (Remark 2). Then, as an implication of Lemma 2, this allocation can be supported in a strongly

robust equilibrium of GD. At equilibrium, P1 plays y12 when observing the actions (a, ā, ā), and

y11 otherwise; P2 plays y21 when observing the actions (a, ā, ā), and y22 otherwise; A1 plays a, A2

and A3 play ā, respectively. It hence follows by Theorem 1 in Han (2007) that these behaviors

constitute an equilibrium in any GM game. At the same time, however, the proof of Proposition 2

shows that, if P1 plays the mechanism above, then P2 can profitably deviate to the mechanism with

signals γ̂2. Thus, posting these direct mechanisms does not constitute an equilibrium in a game with

signals GMS . Overall, this suggests that pure strategy equilibria of complete information games

in which principals post pay-for-effort contracts may not be robust against unilateral deviations

towards arbitrary indirect mechanisms.

6. Our result crucially exploits the presence of several agents. In single-agent environments,

following a principal’s deviation to a mechanism with signals, any correlation between the agent’s

actions and his opponents’ decisions can be reproduced using mechanisms without signals.

5 Conclusion

This paper shows that principals’ private communication is key for equilibrium characterization in

competing mechanism games even under complete information. Since principals cannot in general
24See Han (2007), p. 613, for a formal definition of strongly robust equilibria. The result of his Theorem 1 does

not extend to equilibria in which principals play mixed strategies, as he shows in Example 1.
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be prevented from privately communicating with agents, further theoretical work may be needed

to identify a universal set of mechanisms for principals in these contexts.

As a preliminary step, one may want to identify a safe class of mechanisms supporting robust

equilibria. To be relevant for applications, the corresponding messages and signals must be suffi-

ciently simple and tractable. In this respect, a natural candidate is the class of direct mechanisms

introduced in Myerson (1982) for generalized principal-agent problems, which we have here denoted

direct mechanisms with signals. Under complete information, a mechanism in this class requires

that the set of signals available to each principal coincides with the set of agents’ actions. This

choice, however, encounters two main obstacles. The first one is immediate to identify: since an

agent can receive conflicting signals from different principals, there is no obvious counterpart to

the notion of obedience to a principal’s recommendation. This would make the characterization ex-

ercise very complex, since one cannot straightforwardly rely on incentive compatibility constraints

when considering a continuation game played by agents. The second one is more fundamental, and

concerns the robustness of equilibria supported by such simple signals. To describe it, consider a

principal, say j, whose opponents post a direct mechanism with signals. Principal j may find prof-

itable to elicit the agents’ private information embedded in all the signals they receive. To do so,

he would need to make his private communication contingent on each array of opponents’ signals, a

construction that requires an enlarged set of signals for him. In these circumstances, identifying a

robust equilibrium may be very demanding. Indeed, some −j principal may further find profitable

to make his signals contingent on the (contingent) signals of principal j, which potentially leads

to an infinite regress problem similar to that described by Epstein and Peters (1999). The above

considerations constitute a challenge for future research.
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