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1 Introduction

In this paper, we explain how learning about profitability impacts corporate cash manage-
ment. While the trade-off between the costs and benefits of holding cash has received much
attention in recent literature, little is known on the dynamics of this trade-off in a setting
where profitability is difficult to ascertain. Nevertheless, this issue is key for corporations
that are uncertain of the profitability of their project and face important external financing
constraints. The dynamic interaction between learning about profitability and cash man-
agement is most relevant for young firms developing new technologies, conducting intensive
research and development (R&D) and innovative activities.1 For those firms, information
problems and lack of collateral value of intangible assets make external capital very costly.
This leads them to finance their activities with internal cash flow and to issue stock only
when cash flow is exhausted.2

With few exceptions that we comment below, existing studies develop corporate cash
models in a complete information setting and typically remain silent on the intertwining
between holding cash and learning about profitability. Our paper contributes to close this
gap. We develop a stylized continuous-time model of an all-equity firm confronted with
three frictions: imperfect information about profitability, external financing costs and costs
of holding cash. Cash constrained shareholders observe at any time realized earnings and
update theirs beliefs about the firm’s profitability. They control the dynamics of cash through
issuance and payment policies. In such a framework, shareholders must cope with both a
profitability concern (the risk of running a project that is not profitable) and a liquidity
concern (the risk of having to liquidate a profitable project).

Formally, we solve a new two-dimensional singular control problem where the state vari-
ables are the controlled cash reserves and the profitability prospects resulting from Bayesian
learning about the actual profitability. The problem is highly nontrivial. Intuitively, a pos-
itive shock to earnings increases the profitability prospects. This should facilitate external
financing and induce the firm’s management to lower cash target levels. Nevertheless, a firm
has more to lose from liquidity constraints when profitability prospects are high than it does
when they are low. This may induce the firm’s management to accumulate more cash when
the profitability prospects increase. We spell out these interactions and show that they result
in a two-stage corporate life-cycle dynamics of cash holdings that stems from the optimal
equity issuance, payout and liquidation policies that we derive analytically. A rich set of
implications follows. We highlight our primary findings here.

Issuance occurs when cash reserves are depleted if and only if the cost of issuance is not

1A striking textbook case is the funding crisis Intel faced in the early 1980s. At that time, the large
potential of microprocessors was difficult to realize, which is a main reason external financing was extremely
costly for Intel, as for instance documented in Passov (2003). We refer to Hall and Lerner (2010) and Kerr
and Nanda (2015) for surveys on the financing of innovation and the role of learning in running innovative
projects.

2Brown, Fazzari and Petersen (2009) point out this feature and find evidence that young, high-tech firms
almost entirely financed by cash flow or public share issues explain most of the 1994 to 2004 aggregate R&D
cycle. More recently, Graham and Leary (2018) find evidence that a large number of new public Nasdaq
firms from 1980 to 2000 were holding large amounts of cash. They find that this effect was most pronounced
among unprofitable, largely debt-free, high-growth, and high-volatility firms operating in the health care or
high-tech industries.
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too high and profitability prospects are larger than an endogenous threshold. Above that
threshold, we say that the firm is in the “mature stage”: shareholders optimally issues new
shares whenever needed, precisely when cash reserves are depleted. Below that threshold,
we say that the firm is in the “probation stage”: shareholders find never optimal to issue
new shares and liquidate the firm when cash is exhausted. Because of liquidity shocks, the
firm can go back and forth between the two stages. If the cost of issuance is high, the firm
never issues new shares and is therefore limited to the probation stage.

The uncertainty about the firm’s actual profitability impacts the corporate cash policy,
which, in terms of cash target levels, changes as the firm learns about its profitability. We es-
tablish that a continuous non-monotonic function of the profitability prospects, the dividend
boundary, characterizes the cash target levels. We show that when cash reserves reach the
dividend boundary, shareholders pay out as dividends a fraction of the cash above the div-
idend boundary and reinvest the complement into the firm. The fraction that shareholders
receive corresponds to the payout ratio of the firm and is also a function of the profitability
prospects. Our theoretical analysis yields dynamics of cash holdings that are drastically
different in the two different regimes of the corporate life cycle.

In the probation stage, the precautionary motive for holding cash is strong because the
threat of liquidation. The dividend boundary is increasing in the profitability prospects.
The payout ratio is slightly increasing in the profitability prospects and takes very low
value, which means that the firm pays little in dividends. We establish that the firm reaches
its maximum cash target level on the edge between the probation stage and the mature
stage. Shareholders of a firm entering into the mature stage have built a large amount of
cash reserves and have increased profitability prospects. They optimally decide to initiate
dividend payments. This causes a discontinuity in the payout ratio, the firm dis-saves and
uses its reserves to pay more dividends than its last profit. Then, payout ratios and cash
target levels decrease as profitability prospects increase and tend to their values of the
complete information benchmark of our model. We show that target levels, increase with
the cost of external financing and that a high-cost firm dis-saves more aggressively when it
enters into the mature stage. Therefore, our learning model provides in a unified setting a
theoretical ground for empirical evidences that, dividend policy, seasoned equity offerings,
cash flow patterns are related to a firm’s life-cycle stage.3

Additional economic insights follow from the model analysis. The model shows that the
firm’s volatility depends on the firm’s stage in its life cycle. In the probation stage, the
model predicts a positive relationship between the firm’s value and its volatility, while the
relationship is negative for firms with proven profitability. On the edge between the probation
stage and the mature stage, the volatility of the firm is an inverted U-shaped function of
the value of the firm. Overall, our model suggests that most changes in the features of a
firm’s key indicators (volatility, cash target levels, payout ratios) occur at transition phases
between life-cycle stages.

All these results are grounded on a new contribution to the literature on stochastic con-
trol. We solve a two-dimensional Bayesian adaptative control problem that combines singular
control and stopping.4 In stochastic control theory, the route to obtaining value functions

3We relate our results to the empirical literature in section 5.
4The literature on two-dimensional explicitly solvable control and stopping problems relies mainly on
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and optimal control policies involves two steps: (i) derive a Hamilton-Jacobi-Bellman (HJB)
equation whose solution gives a candidate value function, and, as a by-product, a candidate
optimal policy, if any, (ii) leaning on regularity properties of the candidate value function,
apply a verification lemma based on the Itô’s formula which asserts that the candidates are
actually the value function and the optimal control. This procedure is anything but trivial.
Academics have provided a lot of efforts to get sets of simple conditions that guarantee the
regularity of the value function and the existence of optimal strategies for one-dimensional
stopping/control problems.5 Difficulties are increasing in a two-dimensional framework: a
closed form solution to the HJB equation cannot generally be provided and, deriving required
regularity properties to apply the verification lemma and to prove the existence of an optimal
control is very challenging. These technical difficulties reduce the scope of two-dimensional
corporate cash models, which, for the largest majority, rely on numerical approximations that
unfortunately do not characterize optimal policies. In contrast, we solve our two-dimensional
control problem by means of an explicit construction of its value function and prove all the
required regularity properties. We fully characterize the optimal issuance and dividend poli-
cies which involve the analysis of three related highly non linear equations. A first equation
defines the threshold about profitability prospects above which the firm optimally issues new
shares. An intuitive condition of convergence towards the value function associated to the
complete information benchmark of our model dictates this threshold. Two other equations,
one for each stage, characterize the dividend boundary function. In particular, an ordinary
differential equation, which terminal condition accounts for the issuance policy, character-
izes the dividend boundary in the probation stage. The dividend boundary is continuous,
non-monotonic and reaches its maximum at a point where it is not differentiable. This
non-differentiability drives the discontinuity of the payout ratio at the edge between the two
stages. To the best of our knowledge, these results are unique to our study. They allow us to
provide a rigorous model analysis and to obtain the rich set of results that we summarized
above.

Relationship to the literature. Jeanblanc and Shiryaev (1995), Radner and Shepp (1996)
have set the benchmark case for the analysis of corporate cash management in continuous
time. The cumulative net cash flow generated by the firm follows an arithmetic Brownian
motion. The constant drift represents the firm’s profitability per unit of time, and the
Brownian shock is interpreted as a liquidity shock. External financing is costly, which creates
a precautionary demand for cash. Agency costs of free cash flow create a cost of carrying
cash. This results in a unique optimal payout policy that requires paying shareholders 100%
of earnings beyond an endogenous constant cash target level. 6

These contributions have been extended in a number of directions. Lokka and Zervos
(2008) introduce issuance costs into the analysis. Décamps, Mariotti, Rochet and Villeneuve
(DMRV) (2011) study the interaction between cash management, agency costs, issuance
costs and stock price; Bolton, Chen and Wang (2011) extend the model to the case of
flexible firm size in order to study the dynamic patterns of corporate investment. Bolton,

the study of leading examples. See e.g Benes, Shepp and Witsenhausen (1980), Karatzas, Ocone, Wang and
Zervos (2000), Peskir and Shiryaev (2006) Chapter 4, Guo and Zervos (2010).

5See for instance Strulovici and Szydlowski (2015).
6Influential empirical papers driving the theory are Opler, Pinkowitz and Stulz (1999) and Bates, Kahle

and Stulz (2009).
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Chen and Wang (2013) and Hugonnier, Malamud and Morellec (2014) introduce capital
supply uncertainty and the necessary time needed to secure outside funds into the analy-
sis. Décamps, Gryglewicz, Morellec and Villeneuve (2017) assume that the firm’s operating
cash flow is proportional to profitability, the dynamics of which are governed by a geomet-
ric Brownian motion. This leads to a dividend boundary that is linear and increasing in
profitability. Babenko and Tserlukevich (2021) study the relation between investment under
financing constraints and optimal risk management policy. All these contributions develop
one-dimensional models (or can be reduced to one-dimensional models thanks to scaling
properties).

Anderson and Caverhill (2012), Murto and Tervio (2014), Bolton, Wang and Yang (2019),
Reppen, Rochet and Soner (2020) develop in different settings two-dimensional corporate
cash models with random profitability. As in our study, the firm’s decision depends upon
two state variables, the current profitability and the current level of liquid assets. In con-
trast to our study, information about the parameters of the model is complete. In Anderson
and Caverhill (2012) and Reppen, Rochet and Soner (2020) the long-term profitability of
the firm’s project corresponds to the mean parameter of the drift of an Ornstein Uhlenbeck
process. In Murto and Tervio (2014) and Bolton, Wang and Yang (2019), the long-term prof-
itability corresponds to the drift of a Geometric Brownian motion that models the earnings
fundamentals. These models share important common features. First, technical difficulties
do not allow them to characterize the dividend boundary that stems from the trade-off be-
tween the costs and benefits of holding cash. Its existence remains a guess and the analysis
of the model relies on a numerical treatment of the HJB equation that underlies the share-
holders’ problem. Second, the models generate high cash target levels at the profitability
threshold that triggers liquidation. The intuition is simple. The long-term profitability is
known and positive. To avoid costly liquidation or issuance, shareholders increase cash target
levels when the current profitability decreases. In contrast, in our learning model, the cash
target level takes its minimum (which is equal to zero) at the level of profitability prospect
below which the project is liquidated. Here also the intuition is simple. Shareholders de-
crease cash target levels when they become more and more convinced that the firm’s project
is not profitable. Under the optimal policy, there is no more cash inside the firm when it is
liquidated. Furthermore, we provide an analytical characterization of the dividend boundary.
This function is single peaked when issuance costs are low and reaches its maximum on the
edge between the two stages of the corporate life cycle. It is increasing when the issuance
costs are high because of the fear of having to liquidate a profitable project. Therefore, the
two approaches correspond to different economic issues and generate different results. We
take the view of a firm whose profitability is difficult to ascertain. Shareholders estimate it
from cash flow realizations. In our model, cash allows to learn about the actual profitability
of the firm’s project and to avoid costly liquidation and/or issuances.

Our study is naturally related to the corporate finance literature that emphasizes the
role of learning about profitability and its importance for corporate decision-making. Pastor
and Veronesi (2003) study stock prices in a model in which shareholders of an all-equity firm
learn about profitability over time. Their model avoids both the liquidity and liquidation
issues, assuming a peculiar dividend strategy that maintains a positive book value of the
firm’s equity at any time. DeMarzo and Sannikov (2017) study a dynamic contracting model
with learning about the profitability of the firm. In their model, asymmetric information
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arises endogenously because by shirking, an entrepreneur can distort the beliefs of investors
about the project’s profitability. The paper studies the relationship between incentives and
learning.7 Our focus is different. We do not model hidden actions. In our model, information
is incomplete but symmetric between shareholders. We study the interplay between the
evolution of profitability prospects and the evolution of the trade-off between the cost and
benefit of holding cash.

Our problem is very simple in its formulation and is a natural extension of pioneering
models. In our paper the drift parameter of the cumulative cash flow process is a random
variable that can only take two opposite values over which shareholders learn over time.
Our study is closely related to Gryglewicz (2011) and De Angelis (2020) who consider a
similar setting. In Gryglewicz (2011) there are no frictions inside the firm, so holding cash
is not costly. Gryglewicz (2011) studies how this framework impacts the optimal capital
structure that results from the trade-off between tax shields and bankruptcy costs when
equity financing is either costless or infinitely costly. De Angelis (2020) considers cash-
carry costs and infinite issuance costs. De Angelis (2020) establishes a link between optimal
dividends with partial information and the so called problems of optimal stopping with
creation. This connection allows to establish regularity properties of the value function
and to prove for the first time existence and uniqueness of a dividend boundary in a two-
dimensional model with cash-carry costs. However, there is no explicit construction of the
value function nor analytical characterization of the dividend boundary, which limits the
economic analysis. In our paper, holding cash is costly and issuing new shares has a finite
cost. We provide an explicit construction of the value function and of the optimal issuance
and payment policies, which is unique to our study.

The paper is organized as follows. We lay out the model in Section 2. Section 3 studies
benchmarks in which shareholders face profitability and liquidity concerns separately. Sec-
tion 4 solves the model in a closed form and presents the optimal corporate policies. Section
5 develops the model analysis and the relation to the empirical literature. Section 6 further
comments our main assumptions, discusses robustness issues and concludes. All the proofs
are in the Appendix.

2 The model

We consider a probability space (Ω,F ,P) equipped with a one-dimensional Brownian motion
W = {Wt; t ≥ 0}. On the same probability space, we also have a random variable Y which
is independent of W and takes either of the two values −µ < 0 < µ.

2.1 Learning

A firm has a single investment project that generates random cash flows over time. The cu-
mulative cash flow process {Rt; t ≥ 0} follows an arithmetic Brownian motion with unknown
profitability Y and known variance σ

dRt = Y dt+ σ dWt, t ≥ 0.

7See also the related studies Prat and Jovanovic (2014) and He, Wei, Yu and Gao (2017).
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The firm is held by risk-neutral shareholders who observe the cumulative cash flow process
R = {Rt; t ≥ 0}. We denote by (FRt ) the filtration generated by the cash flow process to
model the flow of information available to shareholders.8 The conditional expectation

Yt := E[Y | FRt ], (1)

defines the profitability prospects at time t and Y0 ∈ (−µ, µ), the initial profitability
prospects. It is well-known that the process {Yt; t ≥ 0} satisfies the filtering equation9

dYt =
1

σ
(µ2 − Y 2

t )dBt, (2)

where the so-called innovation process {Bt; t ≥ 0} is a standard Brownian motion with
respect to the filtration {FRt ; t ≥ 0} and defined as

dBt =
1

σ
(dRt − Ytdt). (3)

The cumulative cash flow process is a sufficient statistic for Bayesian updating. Specifically,
a direct application of Itô’s formula yields the relation

dRt = dφ(Yt), (4)

where the function φ(y) =
σ2

2µ
ln

(
µ+ y

µ− y

)
is increasing on (−µ, µ). Finally, we obtain from

(3) that

E
[∫ ∞

0

e−rs dRs

]
= E

[∫ ∞
0

e−rsYs ds

]
≤ µ

r
.

Therefore, the present value of the future cash flows under partial information is lower than
the present value of future cash flows of a project with observed profitability µ.

2.2 The shareholders’ problem

Risk-neutral shareholders discount future payments at the risk-free interest rate r > 0 and
must keep positive liquid reserves at all times if they want to avoid liquidation. The model
builds on the standard cost versus benefit trade-off of holding cash. The firm accumulates
cash for precautionary motives in a costly external financing environment. We allow the firm
to increase its cash holdings or cover operating losses by raising funds in the capital markets.
External financing involves a proportional cost p > 1: for each dollar of new shares issued,
the firm only receives 1/p dollars in cash. Because of internal frictions such as taxes and/or
agency costs of free cash flow, carrying cash is costly. Shareholders can reduce these costs
by deciding to distribute cash. To capture in a simple and tractable way carrying costs, we

8Two filtrations on (Ω,F ,P) are worth emphasizing: one is the filtration generated by Y and W which
corresponds to the information available to the modeller. The other is the filtration generated by R. The
process W is not (FRt ) adapted and thus is not a Brownian motion under this filtration.

9See, for instance, Liptser and Shiryaev (2001), Theorem 12.7 for Equations (2) and (3).
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consider that the cash inside the firm is not remunerated.10 In addition to this trade-off,
shareholders do not know the profitability, positive or negative, of the firm’s project and
use realized earnings to learn about the actual profitability. Thus, shareholders face both
a profitability concern (the risk of running a project that is not profitable) and a liquidity
concern (the risk of having to liquidate a profitable project).

Formally, at each date, shareholders decide whether to continue the project, whether to
distribute dividends and whether to issue new shares. For simplicity, we assume that the
liquidation value of the project is equal to 0. Let D = {Dt; t ≥ 0} and I = {It; t ≥ 0}
be two (FRt )t≥0-adapted, nondecreasing, right-continuous processes with D0− = I0− = 0.
The process D = {Dt; t ≥ 0} represents the cumulative amount of dividends paid by the
firm up to time t, while I = {It; t ≥ 0} represents the cumulative amount of equities issued
by the firm up to time t. Under the policy (D, I), the cumulative cash reserve process
X = {Xt; t ≥ 0} evolves according to the dynamics

dXt = dRt +
dIt
p
− dDt. (5)

Thus, dXt, the cash reserves at time t, corresponds to the operating cash flow dRt plus

the cash flow from financing activities
dIt
p
− dDt, that is, the cash received from issuing

securities minus the cash paid as dividends. Using (4), we rewrite (5) in the form

Xt = φ(Yt)− φ(Y0) +X0 +
It
p
−Dt. (6)

Equation (6) is an accounting identity that specifies the relationships between cash re-
serves, profitability prospects, cumulative issuance and cumulative dividend. Its properties
are instrumental for solving explicitly the shareholders’ problem. Observe that since φ is
an increasing function, by holding the cash reserves Xt fixed and the cumulative issuance
It fixed, the higher the cumulative dividend Dt is, the larger the profitability prospects Yt.
Thus, Equation (6) shows a positive relationship between cumulative dividend and profitabil-
ity prospects, all else being equal. Similarly, there is a negative relationship between the
cumulative issuance and the profitability prospects, all else being equal. Finally, by holding
the cumulative dividend and the cumulative issuance fixed, the cumulative cash reserves at
t depend on the profitability prospects at t but do not depend on the time elapsed up to t.
This property of time-invariance follows from two assumptions. First, because Y ∈ {−µ, µ},
(4) shows a time-invariant relationship between cash flows and profitability prospects.11 Sec-
ond, because the cash inside the firm is not remunerated, there is no additional term in dt
in the cumulative cash reserve process (5).12

10Agency costs of free cash flow can be notably important in the innovation sector due, for instance, to
moral hazard between the inventor and financiers. See, e.g., Allen and Michaely (2003), DeAngelo, DeAngelo
and Skinner (2008), and Hall and Lerner (2010) for insightful surveys of the literature.

11For instance, if Y ∈ {µ, µ̄} with µ < 0 < µ̄, then (4) writes in the form dRt = dφ(Yt) +
µ+µ̄

2 dt,
yielding a time-dependant relationship between cash flows and profitability prospects. Within this setting,
see Gryglewicz (2011) for a learning model with no costs of holding cash, and De Angelis (2020) for a learning
model with infinite issuance costs.

12In particular, if cash reserves earn a rate of interest r − λ where λ ∈ (0, r] represents a carry cost of
liquidity, then the additional term (r − λ) dt appears in (5). Thus, we consider in our study the case λ = r.
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The firm ceases its activity for two reasons: (i) the firm cannot meet its short-term
operating costs by issuing new shares or by drawing cash from its reserves, and/or (ii)
shareholders strategically decide to liquidate because the profitability prospects are not high
enough. Thus, given a policy (I,D), equation (5) represents the dynamics of the cash reserves
up to the liquidation time τ0 defined as

τ0 = inf{t ≥ 0 |Xt = 0}.

For current cash reserves x ∈ [0,∞) and current profitability prospects y ∈ (−µ, µ), the
value of the firm corresponds to the expected present value of all future dividends minus the
expected present value of all future gross issuance proceeds

V(x, y; I,D) = E
[∫ τ0

0

e−rt(dDt − dIt)
]
, (7)

with Dτ0 −Dτ−0
= max(Xτ−0

, 0). The case Dτ0 −Dτ−0
= Xτ−0

> 0 corresponds to a strategic

liquidation.13 The shareholders’ problem is to find the optimal value function defined as the
supremum of (7) over all admissible issuance and dividend policies

V ∗(x, y) = sup
(I,D)∈A

V(x, y; I,D), (8)

where A is the set of policies (I,D) such that the associated cash reserves {Xt,FRt ; t ≥ 0}
satisfy Xt ≥ 0, e−rtXt integrable and, limt→∞ E[e−rtXt] = 0.

3 Benchmarks

Our model with learning nests two polar cases which themselves are of interest: (i) the case
where shareholders face only a profitability concern and, (ii) the case where the shareholders
face only a liquidity concern.

3.1 First-best benchmark

Let us consider that shareholders do not observe the actual profitability but face no frictions,
that is p = 1 in (5). In this framework, accumulating cash does not bring any benefit. The
firm’s value V̂ is equal to the sum of current cash reserves plus the option value to liquidate
the firm14:

V̂ (x, y) ≡ x+ sup
τ∈T R

E
[∫ τ

0

e−rsYsds

]
. (9)

An optimal policy is to distribute all of firm’s initial cash reserves x as a special payment at
date 0, to hold no cash beyond that time, and to liquidate when the profitability prospects
hit the so-called first best liquidation threshold ŷ, which can be explicitly computed. The
shareholders’ value function V ∗ in (8) is bounded above by the first-best benchmark V̂ . To
summarize,

13In that case, shareholders take the remaining cash reserves Xτ−
0
> 0 as dividends.

14In (9), we denote by T R the set of FR-stopping times.
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Proposition 3.1 Suppose that shareholders face only a profitability concern then,

(i) The value of the firm, V̂ (x, y), is an increasing and convex function of the level y of
the profitability prospects.

(ii) Distributing all initial cash reserves x at time 0, holding no cash beyond that time, and
liquidating at the stopping time τ̂ = inf{t ≥ 0 : Yt = ŷ} with ŷ = −µ

1−2γ
< 0 where γ is

the negative root of the equation x2 − x− rσ2

2µ2
= 0, is an optimal policy.

(iii) V ∗(x, y) ≤ V̂ (x, y) for any (x, y) ∈ [0,∞)× (−µ, µ).

It follows from assertion (iii) that, if the profitability prospects are lower than the first-best
liquidation threshold ŷ, then the firm is liquidated regardless of the amount of cash within
the firm. Formally, V ∗(x, y) = V̂ (x, y) = x for all x ≥ 0 and y ≤ ŷ.

3.2 Complete information benchmark

Another useful benchmark is the complete information setting in which shareholders face
only a liquidity concern. This corresponds to the case where y = −µ or y = µ with µ > 0 in
the main problem (8).15 We shall denote by V−µ(x) and Vµ(x) the associated values of the
firm.

When y = −µ, the firm’s profitability is negative, and it is optimal for shareholders
to take the initial cash reserves and to liquidate the firm at time t = 0. We have that
V−µ(x) = x, ∀x ≥ 0. When y = µ, the dynamics of the cash reserve process take the form

dXt = µ dt+ σ dBt +
dIt
p
− dDt.

and we revert to a classic case studied by many authors.16 The value of the firm, Vµ(x), is an
increasing and concave function of the level x of its cash reserves. The concavity of the value
function reflects the fact that the marginal value of cash, V ′µ(x), is decreasing in the level of
cash within the firm. It is strictly greater than one up to xµ = inf{x > 0 |V ′µ(x) = 1} which
corresponds to the firm’s cash target level at which dividends are paid. If cash holdings x
exceed xµ, the firm places no premium on internal funds, and it is optimal to make a lump
sum payment x− xµ to shareholders. Accordingly, Vµ(x) = x− xµ + Vµ(xµ) for any x ≥ xµ.

Because external financing is costly, it is optimal to postpone the issuance of new shares
for as long as possible: equity issuance only takes place whenever cash reserves are depleted
and occurs if and only if the cost of issuance is not too high. Specifically, there exists a
threshold p such that there is equity issuance every time Xt = 0 if and only if p < p.17 In
that case, the marginal benefit, V ′µ(0), is equal to the proportional issuance cost, p. Given

15Precisely, if Y0 = µ (resp. Y0 = −µ), then Yt = µ a.s (resp. Yt = −µ a.s) and, for any Y0 ∈ (−µ, µ),
inf{t ≥ 0 |Yt /∈ (−µ, µ)} =∞, P-almost surely (it is not possible to learn the true value of profitability Y in
finite time).

16See, for instance, the textbook by Moreno-Bromberg and Rochet (2018).
17The analysis yields that p = V

′
µ(0), where V µ corresponds to the value of the firm if issuance of new

shares is not allowed (see the Appendix).
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that the value of the firm is concave in x, one obtains V ′µ(x) < p for x > 0. This means that
it is indeed never optimal to issue new shares before cash reserves are depleted. Finally, the
optimal issuance strategy induces a reflection at level zero of the cash reserve process so that
infinitesimal amounts of new equity are issued every time Xt = 0.

The following proposition summarizes these standard results, first established in Lokka
and Zervos (2008) and then used and generalized in several studies, especially in DMRV
(2011) and Bolton, Chen and Wang (2011). We provide a rigorous statement in the Ap-
pendix, useful for the analysis of our model.

Proposition 3.2 Suppose that shareholders face only a liquidity concern, so y = µ. Then,
the value of the firm, Vµ(x), is an increasing and concave function of the level x of its cash
reserves. Any excess of cash over the dividend boundary xµ is paid out to shareholders, so
the firm’s payout ratio is 100%. Furthermore,

(i) If issuance costs are high such that p ≥ p, then it is never optimal to issue new equities,
and the firm is liquidated as soon as it runs out of cash.

(ii) If issuance costs are low such that p < p, then equity issuance takes place whenever the
firm runs out of cash, so that the cash reserve process is reflected back whenever it hits
0, and the firm is never liquidated.

In the complete information benchmark, when p < p, firms are never liquidated and the
use of cash is simply to delay costly issuances. Things are more intricate in our model because
shareholders face also the risk of running a project that is not profitable. A decrease of cash
also decreases the belief about the actual profitability of the firm’s project and liquidation
can be optimal. In contrast to the complete information benchmark, when p < p, we will see
that firms either optimally issue new equity or are liquidated. We will show that learning
about profitability dramatically impacts Proposition 3.2: the cash target level, the decision
to issue new shares, the payout ratio, the volatility of the firm will be functions of the current
profitability prospects that we are able to fully characterize.

4 Model solution

The next section is heuristic and leads to a variational system that should satisfy the value
of the firm V ∗ given by (8).

4.1 Heuristic discussion

Taking the cash reserve and liquidating is an admissible policy, thus the value function V ∗

satisfies the inequality V ∗(x, y) ≥ x for all (x, y) ∈ (0,∞)× (−µ, µ). From Proposition 3.1,
V ∗(x, y) = x for all y ≤ ŷ, where ŷ is the first-best liquidation threshold. To proceed further,
we assume in this section that V ∗ is as smooth as necessary, and we derive some properties
that V ∗ should satisfy.

Dynamic programming. Let us fix some pair (x, y) ∈ (0,∞) × (−µ, µ). Let us consider
the policy that consists of abstaining from issuing new shares and paying dividends for t∧ τ0
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units of time and, then, in applying the optimal policy associated with the resulting couple

(x+

∫ t∧τ0

0

Ys ds+ σdBs, y +

∫ t∧τ0

0

1

σ
(µ2 − Y 2

s )dBs), implied by dynamics (2) and (3). This

policy must yield no more than the optimal policy:

0 ≥ E
[
e−r(t∧τ0)V ∗

(
x+

∫ t∧τ0

0

Ys ds+ σdBs, y +

∫ t∧τ0

0

1

σ
(µ2 − Y 2

s )dBs

)]
− V ∗(x, y)

= E
[∫ t∧τ0

0

e−rs (LV ∗(Xs, Ys)− rV ∗(Xs, Ys)) ds

]
. (10)

The last equality follows from Itô’s formula, where L denotes the partial differential operator
defined by

LV (x, y) =
1

2σ2
(µ2 − y2)2Vyy +

1

2
σ2Vxx + (µ2 − y2)Vxy + yVx.

Letting t go to zero in (10) yields

LV ∗(x, y)− rV ∗(x, y) ≤ 0

for all (x, y) ∈ (0,∞)× (−µ, µ).
Dividend boundary. The intuition that underlies the complete information benchmark

applies: fix some (x, y) ∈ (0,∞) × (−µ, µ); the policy that consists of making a payment
ε ∈ (0, x), and then immediately executing the optimal policy associated with cash reserves
x − ε must yield no more than the optimal policy. That is, V ∗(x, y) ≥ V ∗(x − ε, y) + ε.
Subtracting V ∗(x− ε, y) from both sides of this inequality, dividing through by ε and letting
ε approach 0 yield

V ∗x (x, y) ≥ 1

for all (x, y) ∈ (0,∞)× (−µ, µ). It is expected that the inequality V ∗x (x, y) > 1 holds for any
x ∈ (0, b∗(y)), where b∗(y) = inf{x, V ∗x (x, y) = 1} > 0. Intuitively, for any fixed profitability
prospects y, any excess of cash above b∗(y) should be paid out. Therefore, the optimal cash
policy should not be characterized by a constant threshold, as in the complete information
benchmark, but rather by a dividend boundary y −→ b∗(y).

Issuance policy. If it is never optimal to issue new shares when the firm’s profitability
is known and equal to µ, then it should also never be optimal to issue new shares in the
incomplete information setting. Thus, if p ≥ p, we expect that the firm is liquidated when
it runs out of cash. If 1 < p < p, the logic of the complete information benchmark applies
again: if there is any issuance activity, this must be when cash reserves drop down to zero
to avoid liquidation. In such a situation, the marginal value of cash should be equal to the
proportional issuance cost p, formally, V ∗x (0, y) = p. Intuitively, this latter equality should
require that the profitability prospects when the cash reserves are depleted are sufficiently
high. Accordingly, we conjecture the existence of an (endogenous) threshold y∗i such that
V ∗x (0, y) = p for any y ≥ y∗i , whereas V ∗(0, y) = 0 for any y ≤ y∗i . In this latter case, the
profitability prospects are too low with regard to the cost of external financing, and the firm
defaults when the cash reserves are depleted.18

18The subscript “i” in y∗i and throughout the paper stands for issuance.
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Convergence toward the complete information benchmark. Finally, we expect that when
shareholders are increasingly confident that the profitability of the firm is µ, the value of the
firm tends to the one derived in the complete information benchmark. We should have for
all x ≥ 0

lim
y−→µ

V ∗(x, y) = Vµ(x). (11)

One thus expects that the value function of the shareholders’ problem (8) satisfies on
[0,∞)× (−µ, µ) the HJB Equation

max(LV − rV, 1− Vx, Vx − p) ≤ 0,

the condition max(−V (0, y), Vx(0, y)− p) = 0 on y ∈ (−µ, µ), and the limit condition (11).
We rephrase this guess in terms of the following variational system: find a smooth function
V , a constant yi ∈ (−µ, µ) and a positive function b continuously differentiable almost
everywhere over (−µ, µ) that solve

LV (x, y)− rV (x, y) = 0 on the domain {(x, y), 0 < x < b(y), −µ < y < µ}, (12)

V (0, y) = 0 ∀y ∈ (−µ, yi], (13)

Vx(0, y) = p ∀y ∈ [yi, µ), (14)

Vx(x, y) = 1, for x ≥ b(y), (15)

Vxy(b(y), y) = 0, (16)

lim
y−→µ

V (x, y) = Vµ(x) ∀x ≥ 0. (17)

Condition (15) and (16) follow from the heuristics on the dividend boundary b∗ together
with the “principle of smooth-fit”, which postulates sufficient smoothness of the value func-
tion of stochastic control problem. We will see that the system (12), (13), (14), (15), (16) has
an uncountable set of solutions that are twice continuous differentiable on any open set in
(0,∞)× (−µ, µ). It will turn out that, the limit condition (17) pins down the only solution
of system (12)-(16) that is twice continuous differentiable on any open set in (0,∞)×(−µ, µ)
and has bounded first derivatives. This result allows us to develop a verification procedure
and to show that the unique solution (V, y∗i , b

∗) to the system (12)-(17) coincides with the
value function V ∗ of the shareholders’ problem, and that y∗i and b∗ characterize the optimal
issuance and dividend policies. We obtain a closed form expression for V given y∗i and b∗, and
show that three highly non linear equations characterize the threshold y∗i and the function
b∗. A rich set of implications follows.

4.2 Solution to the shareholders’ problem

In this section, we focus on the case 1 < p < p and explain how we solve the system (12)-
(17).19 Then, we state our main result. Our analysis relies on a simple change of variable,
which will be proved very useful for both the mathematical treatment and the economic
analysis of the model.

As we explained, it follows from (6) that, holding the cumulative dividend and the cu-
mulative issuance fixed, there is a time-invariant relationship between the cash reserves and

19We refer the reader to the Appendix for the complete analysis.
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the profitability prospects. That is, as long as the controls I and D are not activated, the
process Z = {Zt; t ≥ 0} with

Zt ≡ φ(Yt)−Xt (18)

remains constant. The change of variable (18) allows us to restate problem (12)-(17) in the
(z, y)-space and to solve it analytically.20 The change of variable (18) also provides new
economic insights that we comment on below.

To develop the intuition, let us consider some admissible issuance and dividend policies
I and D leading to cash reserve process

Xt = φ(Yt)− φ(Y0) +X0 −Dt +
It
p
.

It follows that

Zt = φ(Yt)−Xt = Dt −
It
p

+ (φ(Y0)−X0).

The process Zt corresponds to the cash outflows from financing activities, Dt − It
p

, cor-

rected for the initial amount φ(Y0)−X0. The process Zt increases whenever the firm reaches
a cash target level and decreases whenever the firm issues new shares. It measures the per-
formance record of the firm at time t and defines a one-to-one mapping between profitability
prospects and cash reserves that holds true as long as the firm neither pays dividends nor
issues new securities.

It is worth noting that the current cash outflow from financing activities, Dt−It/p, is not
a sufficient statistic to define the performance of the firm at date t. The firm’s performance at
date t also depends on the initial profitability prospects Y0 through the relation φ(Y0)−X0.
The initial profitability prospects Y0 are not directly observable and follow, for instance,
from a specific analysis by financial analysts of the relevance of the firm’s project at the
early stage of the firm’s life. Thus, the performance of the firm is defined in light of the
initial assessment of the profitability prospects. We will see that the firm’s performance
process Z indicates whether the firm can optimally issue new shares if needed.

Using the change of variable (18), we define

U(z, y) ≡ V (φ(y)− z, y),

and we restate problem (12)-(17) in the (z, y)-space. In the (z, y)-space, the partial differ-
ential equation

LV (x, y)− rV (x, y) = 0

becomes
1

2σ2
(µ2 − y2)2Uyy(z, y)− rU(z, y) = 0. (19)

The solution to (19) writes in the form

U(z, y) = A(z)h1(y) +B(z)h2(y), (20)

20The property that one of the two state variables remains constant over the inaction region arises
naturally in stopping problems involving the running maximum of a diffusion (e.g Peskir and Shiryaev
(2006)) and in the so called finite fuel control problems (e.g Karatzas, Ocone, Wang, Zervos (2000)). Our
study suggests that some Bayesian adaptive singular control problems can be framed to satisfy this property
as well, leading to full characterization of optimal controls.
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where h1(y) = (µ+ y)γ(µ− y)1−γ and h2(y) = (y+ µ)1−γ(µ− y)γ, with γ being the negative
root of the equation x2 − x− rσ2

2µ2
= 0, are two fundamental solutions to the equation

1

2σ2
(µ2 − y2)2u′′(y)− ru(y) = 0, (21)

and where A and B are two functions that boundary conditions will specify. Thus, be-
cause the process Z remains constant as long as controls are not activated, studying the
shareholder’s value function in the inaction region leads, in the (z, y)-space, to solve the
ordinary differential equation (21) and not a partial differential equation as it is the case in
the (x, y)-space.

The condition V (0, y) = 0 for all y ≤ yi becomes

U(φ(y), y) = U(z, ψ(z)) = 0, for all z ≤ zi,

where zi ≡ φ(yi) and where ψ(z) ≡ φ−1(z) = µ
e

2µ

σ2
z − 1

e
2µ

σ2
z + 1

. Thus, for a given performance

z, the real number ψ(z) ∈ (−µ,+µ) corresponds to the profitability prospects when cash
reserves are depleted, that is, when x = 0.

The condition Vx(0, y) = p becomes

Uz(z, ψ(z)) = −p,

which holds for any z ≥ zi. In other words, the firm issues new shares when cash reserves are
depleted only if its performance is higher than zi (equivalently, if the profitability prospects
when the cash reserves are depleted are higher than yi). We call zi, the market threshold.

The condition Vx(b(y), y) = 1 becomes

Uz((φ− b)(y), y) = Uz(z, k(z)) = −1,

where k(z) ≡ inf{y | (φ − b)(y) = z}. Thus, according to the change of variable (18), k(z)
corresponds to the profitability prospects at the cash target level b(k(z)) = φ(k(z)) − z.
Therefore, in our two-dimensional setting, each performance z defines a cash target level
b(k(z)), the set of which forms the dividend boundary. We will see that the function φ− b is
invertible, so k(z) = (φ− b)−1(z). We will prove that k is an increasing function. Intuitively,
the higher the firm’s performance is, the higher the profitability prospects at the cash target
level.

The contact condition Vxy(b(y), y) = 0 becomes

Uzy((φ− b)(y), y) = Uzy(z, k(z)) = 0.

The convergence condition to the complete information benchmark, lim
y−→µ

V (x, y) = Vµ(x),

becomes
lim
z−→∞

U(z, ψ(x+ z)) = Vµ(x).
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Indeed, the change of variable (18) leads to y = ψ(x + z) and, in turn, V (x, ψ(x + z)) =
U(z, ψ(x+ z)).

Overall, the free boundary problem (12)-(17) writes in the (z, y)-space in the following
form: find a function U , a constant zi, and a function k that solve the variational system

1

2σ2
(µ2 − y2)2Uyy(z, y)− rU(z, y) = 0 on the domain

{(z, y), z ∈ R, ψ(z) < y < k(z)}, (22)

U(z, ψ(z)) = 0 ∀z ≤ zi, (23)

Uz(z, ψ(z)) = −p ∀z ≥ zi, (24)

Uz(z, y) = −1, for k(z) ≤ y, (25)

Uzy(z, k(z)) = 0. (26)

lim
z−→∞

U(z, ψ(x+ z)) = Vµ(x). (27)

We find the unique solution (U, z∗i , k
∗) to the system (22)-(27). We obtain the solution

(V, y∗i , b
∗) to the system (12)-(17) through the relations U(z, y) = V (φ(y) − z, y), k∗(z) =

(φ− b∗)−1(z) and, z∗i = φ(y∗i ). We show that this solution coincides with the value function
of the shareholders’ problem and we characterize the optimal strategies. We establish these
results in a series of Propositions in the Appendix. To ease its reading, we present informally
below the main ideas that underly the proofs.

Let us consider a solution (U, zi, k), if any, to the system (22)-(26). Note that we do not
take into account for the moment the condition (27). We obtain from (20), (24), (25), (26)
that the function k satisfies for z ≥ zi

−h′1(k(z))h2(ψ(z)) + h′2(k(z))h1(ψ(z)) +
2µ2

ŷ
p = 0. (28)

Proposition 8.11, assertion (i) establishes that (28) defines over [zi,+∞) a unique continu-
ously differentiable increasing function k. Proposition 8.11, assertion (ii) characterizes the
unique z∗i that satisfies (27). We obtain from (20), (23), (25), (26) that, for z ≤ z∗i , the
function k satisfies an ordinary differential equation, which terminal condition ensures the
continuity of k at z∗i . This uniquely defines a function k∗ associated to the system (22)-(27).
Getting this ordinary differential equation is quite involved and requires the analysis of the
case where shareholders are not allowed to issue new shares, which we develop as a prelim-
inary step in section 8.3.1. Equation (95) in Proposition 8.11, provides the full description
of the function k∗ which therefore involves three highly non linear equations.21 Proposi-
tion 8.12 establishes that the above procedure determines a unique solution (V, y∗i , b

∗) to
the system (12)-(17). The function V has a closed form expression given z∗i = φ(y∗i ) and
k∗ = (φ− b∗)−1. The function b∗ is not differentiable at k∗(φ(y∗i )). We check that the value
function V solution to the system (12)-(17) coincides with the value function V ∗ solution to
the shareholder’s problem. To this end, Proposition 8.13 shows that the solution to (12)-(17)

21Precisely, Equation (28), Equation (94) in Proposition 8.11 that characterizes z∗i and, the ordinary
differential equation studied in Lemma 8.5 with the terminal terminal condition that ensures the continuity
of k∗ at z∗i as stated in assertion (iii) of Proposition 8.11.
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satisfies the verification Lemma 8.9. Notably, Proposition 8.13 shows that a solution V to
the system (12)-(16) has bounded first derivatives if and only if V converges to the value
function of the complete information benchmark, that is, if and only if condition (17) holds.
Thus, a remarkable feature of our two-dimensional control problem is that the condition
(17) pins down the unique solution to the system (12)-(16) which coincides with the value
function of the shareholder’s problem. Proposition 8.14 describes the optimal issuance and
dividend policies. Finally, Proposition 8.15 establishes that the dividend boundary function
b∗ is increasing in the profitability prospects when issuance costs are large (in which case
y∗i = µ), and nonmonotonic in the profitability prospects when issuance costs are low (p < p).
It reaches its maximum at k∗(z∗i ) = k∗(φ(y∗i ))

The next Theorem summarizes our results. Its statement is in mirror of Proposition 3.2.

Theorem 4.1 The value of the firm V ∗ given by (8) coincides with the unique solution
(V, y∗i , b

∗) to the system (12)-(17). The threshold y∗i corresponds to the required profitability
prospects above which the firm optimally issues new shares when the cash reserves are de-
pleted and below which the firm is liquidated when it runs out of cash. Payments are made
whenever cash reserves hit the dividend boundary function b∗. The function b∗ is contin-
uous over [−µ, µ] and satisfies b∗(y) = 0 for y ≤ y∗ and b∗(µ) = xµ. The threshold xµ
is the constant dividend boundary of the complete information benchmark. The threshold
y∗ = max{y ∈ (−µ, µ) | y = b∗−1(0)} > ŷ corresponds to the minimum profitability prospects
required by shareholders to run the project. The optimal cash reserve process is reflected
along the function b∗ in a horizontal direction on the (x, y)-plane. Furthermore:

(i) If the proportional issuance cost p satisfies p ≥ p,

• y∗i = µ, so it is never optimal to recapitalize the firm. The firm is liquidated when it
runs out of cash, V ∗(0, y) = 0 for all y ∈ (−µ, µ).

• The dividend b∗ is continuously increasing and differentiable.

(ii) If the proportional issuance cost p satisfies 1 < p < p,

• y∗i ∈ (y∗, µ), so that equity issuance takes place whenever the firm runs out of cash
if and only if the profitability prospects are greater than the threshold y∗i . At issuance
dates, the optimal cash reserve process is reflected in a horizontal direction on the
(x, y)-plane, the marginal value of cash V ∗x (0, y) is equal to the issuance cost p, and
V ∗(0, y) > 0 for all y > y∗i .

• The dividend boundary b∗ is increasing for y ≤ k∗(z∗i ) and decreasing for y ≥ k∗(z∗i ),
where z∗i = φ(y∗i ) and k∗ = (φ − b∗)−1. The maximum cash target level, b∗(k∗(z∗i )),
satisfies b∗(k∗(z∗i )) > xµ. The dividend boundary is not differentiable at k∗(z∗i ).

Theorem 4.1 delivers several results. In our model, uncertainty about the firm’s prof-
itability impacts the corporate cash policy, which, in terms of cash target levels, changes as
the firm learns about its profitability. Two opposite effects are at work. First, a positive
shock to earnings increases profitability prospects and may induce the firm’s management to
lower cash target levels because of the cost of accumulating cash. Second, a firm has more
to lose from liquidity constraints when profitability prospects are high than when they are
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low. This may induce the firm’s management to accumulate more cash when profitability
prospects increase. Theorem 4.1 shows that the second effect dominates when the firm can-
not tap the capital markets, while the first effect dominates when the firm can optimally
resort to the capital markets. As a consequence, the dividend boundary b∗ is increasing in
the profitability prospects for high issuance costs (when p ≥ p) and is non-monotonic in the
profitability prospects for low issuance costs (when p < p). In the latter case, the corporate
cash target level is at its highest value at the market threshold z∗i . At that moment, the firm
has a higher cash target level than what would have been optimal in a complete information
setting with profitability µ that is, b∗(k∗(z∗i )) > xµ. Another salient feature that we comment
on in the next section is the non-differentiability of b∗ at k∗(z∗i ).

When p < p, if the profitability prospects when cash reserves are depleted are above y∗i ,
then the firm issues new shares, whereas the firm is liquidated if profitability prospects are
lower than y∗i . Thus, in our learning model, profitability issues create liquidity issues, and
ultimately, the firm is liquidated for liquidity reasons.

Finally, let us note that the profitability prospects y∗ required to run the project are
strictly larger than the first-best liquidation threshold ŷ. A negative exogenous shock that
leads to profitability prospects below y∗ triggers liquidation even if cash reserves are abun-
dant.

In the next section, we alleviate the notations and we write V, yi, zi, k and b instead of
V ∗, y∗i , z

∗
i , k

∗ and b∗. Theorem 4.1 allows this shortcut since it establishes that the solution
to the system (12)-(17) coincides with the value function of the shareholders problem and
characterizes optimal policies.

5 Model Analysis

Our analytical formulae allow simple numerical illustrations. Figure 1 plots on the (x, y)-
plane the dividend boundary b and the curves z = φ(y) − x that link cash reserves and
profitability prospects for a firm’s different performance levels, z. It illustrates the joint
dynamics of cash and profitability prospects. The parameters r, µ and σ are annualized; σ
and µ are expressed in millions of dollars.

The joint dynamics of cash and profitability prospects: an illustration based on Figure 1.
Assume that, at date t = 0, the cash reserves X0 and the profitability prospects Y0 satisfy
the equation Z0 = φ(Y0) − X0 with Z0 = −0.40 such that the pair (X0, Y0) is on the long
dashed curve in Figure 1. The amount Z0 = −0.40 corresponds to the initial value of the
performance process Zt = φ(Yt)−Xt = Z0 +Dt−It/p. As long as there are neither payments
nor issuances, Dt = It = 0, the performance process Z remains constant. Therefore, the
two-dimensional process (Xt, Yt) satisfies φ(Yt) − Xt = Z0 and thus evolves on the long
dashed curve. If the cash reserves increase to the point of exceeding the dividend boundary
b (solid curve), cash is paid out, the cash reserve process is reflected back in the horizontal
direction on the (x, y)-plane, and the performance process increases. If performance records
accumulate, the process Zt will eventually increase to the value z = 0, so that the process
(Xt, Yt) will satisfy φ(Yt)−Xt = 0 and thus will evolve on the short dashed curve.

Consider now that the cash reserves decrease after a series of negative shocks on cash
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Figure 1: The dividend boundary b (solid curve) and three performance level curves z = φ(y) − x with
z = −0.40 (long dashed curve), z = zi (dash-dotted curve), z = 0 (short dashed curve). The parameters are
r = 0.1, σ = 0.3, µ = 0.2 and p = 3. For those parameters, yi = −0.049, zi = −0.1135, k(zi) = k(φ(yi)) =
0.1845, b(k(zi)) = 0.8374 and xµ = 0.6762. Accordingly, zi = φ(yi) corresponds to the minimum level of
performance that allows the firm to issue new shares when cash reserves are depleted, and k(zi) = (φ−b)−1(zi)
corresponds to the profitability prospects at the cash target level when the performance is zi.

flows to hit zero. Shareholders then decide whether to issue new shares. They do so whenever
the profitability prospects are larger than yi or, equivalently, whenever the performance of
the firm is above the market threshold zi. When the firm issues new shares, the cash reserve
process is reflected back in the horizontal direction on the (x, y)-plane, and the performance
process decreases accordingly. If, as time passes, cumulative issuances become too large,
the process (Xt, Yt) will eventually evolve on a constant-performance curve below the dash-
dotted curve zi = φ(y)−x. The firm then runs the risk of being liquidated because, for such
a level of performance, the profitability prospects are too low compared to the financing cost
p to allow shareholders to issue new shares when cash reserves are depleted.

Thus, our model results in a two-stage life cycle for the firm: a “probation” stage (below
the dash-dotted curve) in which the firm cannot resort to the market to meet short-term
obligations and a “mature” stage (above the dash-dotted curve) in which the firm can raise
new funds from the market if needed. In the probation stage, cash target levels are increasing
in the profitability prospects. In the mature stage, the precautionary motive for holding cash
weakens, and cash target levels decline when the profitability prospects increase. Therefore,
the dividend boundary b attains its maximum when the firm is at the market threshold zi.
Figure 1 also illustrates that the function b attains its maximum at a kink, meaning that it
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is non-differentiable at its maximum as stated in Theorem 4.1. We comment further these
results in the next paragraph.

Finally, let us observe that, two identical firms with the same cash outflow from financing
activities, Dt − It/p > 0, but with different initial profitability prospects and thus different
values for Z0, for example, Z1

0 < zi < Z2
0 , can be in drastically different situations when cash

reserves are depleted: it can happen that firm 1 is liquidated because Z1
t = Z1

0 +Dt−It/p < zi,
whereas firm 2 issues new shares because Z2

t = Z2
0 + Dt − It/p ≥ zi. Thus, the initial prof-

itability prospects, which may result from financial analysts, have lasting effects on the
corporate cash policy.

Payout ratios. What does a firm do with a marginal $1 when it is at its target level of
cash? In the complete information benchmark, the firm pays out $1 as a dividend. This
generates the prediction that the payout ratio of a firm is constant and equal to 100%. In our
learning model, one expects that the payout ratio is a function of the profitability prospects.
Because we provide an analytical characterization of the dividend boundary, we are able to
study the payout ratio that our two-dimensional model induces. This is a unique feature of
our paper. Specifically, suppose that the firm is at its cash target level x = b(y) and consider
what happens after a positive shock to the cash flow. To account for the sign of the change
in cash flow over a small period of time h, we consider a Euler approximation of the model,

Xh = x+ σ
√
hB1, and Yh = y +

µ2 − y2

σ

√
hB1,

where B1 is a standard Gaussian variable. Therefore, Xh − x, the amount of cash available
for distribution at time h, and Xh − b(Yh), the amount paid out to shareholders at time h,
satisfy

Xh − b(Yh) = Xh − (b(y) + b′(y)(Yh − y)) = Xh − x− b′(y)
µ2 − y2

σ

√
hB1

= P (y)(Xh − x),

with

P (y) = 1− b′(y)
µ2 − y2

σ2
. (29)

The function P (y) indicates, for profitability prospects y, the percentage of each dollar earned
above the dividend boundary that is distributed to shareholders in the form of cash. It
corresponds to the firm’s payout ratio. Therefore, in our two-dimensional model, a dividend
decision is made when cash reserves reach the cash target level b(y). Shareholders then
receive P (y) percent of the cash above b(y) and reinvest the complement into the firm.

Formula (29) relates the payout ratio to the derivative of the dividend boundary b and
yields the following result. In the probation stage, after a new performance record the firm
increases its cash target level, (the derivative of the dividend boundary is positive). It follows
from (29) that the payout ratio is lower than 100%. In the mature stage, the firm can raise
funds from the market. It decreases its cash target level after a performance record (the
derivative of the dividend boundary is negative). The firm has a payout ratio larger than
100% meaning that the firm dis-saves and uses its reserves to pay more dividends than its last
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profit. The decision to decrease cash target levels yields a discontinuity in the payout ratio
at k(zi) that originates from the non-differentiability of b at k(zi). This break reflects the
change in the cash management policy when changing between corporate life-cycle stages.
When its performance level allows the firm to enter the mature stage, the cost of holding
cash becomes prominent, leading to a change in the payout policy. It is worth noting that the
jump in the payout ratio is not related to a jump in firm value, which continuously evolves
as a function of cash reserves and profitability prospects. Let us also observe that because
the dividend boundary is non-monotone, the cash target level is not a sufficient statistic to
infer the payout ratio. We must know what stage the firm is in to deduce the payout ratio
from cash target levels. Finally, the payout ratio tends toward 100% when y tends toward
µ, reflecting the fact that the model converges to the complete information benchmark.

Figure 2: The payout ratio as a function of profitability prospects. (Left) The parameters are r = 0.1,
σ = 0.3, µ = 0.2 and p = 1.5. (Right) The parameters are r = 0.1, σ = 0.3, µ = 0.2 and p = 1.05

Numerical simulations provide additional insights. Figure 2 is representative of our nu-
merical simulations and plots the payout ratio for proportional issuance costs p = 1.5 and
p = 1.05 (with other baseline parameters remaining the same). Our model suggests that a
cash-constrained firm which profitability is difficult to ascertain pays very little in dividends
as long as it cannot tap the market and initiates dividend when it can resort to the market.
This effect is even more true when the cost of external financing is high. In particular a firm
in a costly issuance environment has a larger payout ratio when it enters into the mature
stage than a firm in a cheap issuance environment. The reason is that both the firm’s opti-
mal level of cash and required profitability prospects to reach the mature stage increase with
the cost of external financing. It follows that a high-cost firm has more slack with which to
respond to positive shocks to earnings and initiates high payments (equivalently dis-saves
aggressively) in the mature stage to counteract the cost of holding cash.

Relationsip to the empirical literature. Our results are consistent with several empirical
findings on which our learning model sheds new light. The study of DeAngelo, DeAngelo
and Stulz (2006) suggests that, if well-established firms had not paid dividends as observed,
their cash balances would be enormous, thus granting extreme discretion to managers of

20



these firms. They find also that the relation between cash holdings and propensity to pay
dividends is ambiguous. Their proposed explanation for this is that cash holdings “could
indicate a build-up of excess funds (best suited for distribution) or of resources to fund an
abundance of new investments (best suited for retention)”. In our model the learning about
the actual long term profitability of the project drives the build-up and the decrease of cash
holdings. It results that the propensity to pay dividends can be different for the same level
of cash holdings. Bulan, Subramanian and Tanlu (2007) document that firms that initiate
dividends have increased their profitability and have greater cash reserves. In our model
the firm initiates dividends to fit cash holdings with beliefs about the actual profitability.
DeAngelo, DeAngelo, and Stulz (2010) document that a SEO reflects the corporate life cycle
and that, without the offer proceeds, most firms would run out of cash the year after the
SEO. Our model provides this prediction where the optimality of SEO follows from Bayesian
learning about the firm’s profitability. Dickinson (2011) documents that cash flow patterns
are related to the firm life cycle. Faff, Kwok, Podolski and Wong (2016) point out the non-
monotonicity of the firm’s cash holdings across the corporate life-cycles and question the
relevance of cash holdings as a good proxy of the stages of the life-cycle. Drobetz, Halling
and Schroder (2015) find evidence of increases in cash holdings in stages of the life cycle where
external financing is more difficult and of decreases in cash holdings when the firms move
toward maturity. Our model suggests a possible explanation to the above empirical findings
on which theoretical models are scarce. Notably, the non-monotonicity of cash target levels
that we derive explains that the cash target level per se do not allow indeed to infer the firm’s
life cycle. More generally, our study suggests that learning models could potentially explain
documented facts on the relationship between the corporate life cycle and the dynamics and
valuation of cash holdings. Additionally, our model suggests that the initial assessment of
the firm’s profitability has long lasting consequences on its corporate cash management and
matters for evaluating its performance at any future date. This feature is consistent with the
important role of specialized intermediaries in the financing of innovation as, for instance,
pointed in Kerr and Nanda (2015).

The next paragraph explains the relationship between the value of the firm, its volatility
and the volatility of the cash flow that results from our learning model. In doing so, we
propose new empirical predictions grounded on the Bayesian learning about the firm’s prof-
itability.

Firm dynamics. Our model delivers new insights into the dynamics of firm value across
life stages. Let us consider the firm value process between two consecutive dates of issuance
decision and payment decision. We saw that for a given performance z ∈ [φ(y∗),∞), payment
occurs at time τz ≡ {t ≥ 0 |Xt = b(k(z))}, and issuance (or liquidation) at time τ0 = {t ≥
0 |Xt− = 0}. Thus, the firm value process can be written on time interval [0, τ0 ∧ τz] as a
function of the cash reserve process {Xt, t ≥ 0}. We use the change of variable (18) to obtain
that V (x, y) = V (x, ψ(x+ z)), and we denote W (x, z) ≡ V (x, ψ(x+ z)). Then, by applying
Itô’s formula to the process {W (Xt, z), t ≥ 0}, we easily obtain the following proposition.

Proposition 5.1 For a given performance, z ≥ φ(y∗), the mapping x −→ W (x, z) is
increasing on [0, b(k(z))]. The firm value process {W (Xt, z), t ≥ 0} satisfies, for any
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t ∈ [0, τ0 ∧ τz], the dynamics

dW (Xt, z) = rW (Xt, z) dt + σWx(Xt, z) dBt,

with
σWx(x, z) = σVx(x, ψ(x+ z)) + σψ′(x+ z)Vy(x, ψ(x+ z)), (30)

so that the volatility of the firm at cash target b(k(z)) satisfies

σWx(b(k(z)), z) = σ +
µ2 − k(z)2

σ
Vy(b(k(z)), k(z)). (31)

Thus, for a fixed level of performance z, the mapping x −→ W (x, z) represents the value
of the firm as a function of the cash reserves between two consecutive dates of issuance
decision and payment decision. Between these two dates, an increase in cash also increases
profitability prospects so that the relation x− φ(y) = z holds true.

Figure 3 depicts, for different issuance costs, the volatility of the firm as a function of
the cash reserves with different levels of performance z (Equation (30)). For a z sufficiently
above zi, the volatility of the firm is decreasing in the cash reserves. For z sufficiently
below zi, the volatility of the firm is increasing in the cash reserves. Close to the market
threshold (when z is around zi), neither effects fully dominate and the volatility of the
firm is increasing and then decreasing in the cash reserves. Then, noting that the mapping

Figure 3: The volatility of the firm as a function of cash reserves. The parameters are r = 0.1, µ = 0.2,
σ = 0.3, z = −0.4 (dotted curve), z = zi (dash-dotted curve) and z = 0 (dashed curve) and p = 1.5.
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x −→ W (x, z) is increasing, we get new testable results on the relationship between the
value of the firm and its volatility across firm life-cycle stages. Our model predicts that,
for firms in the mature stage, we should observe a negative relationship between firm value
and volatility. For firms with performance still far from the market threshold, we should
observe a positive relationship between firm value and volatility. The negative relationship
between the firm’s value and its volatility is a standard feature of corporate cash models
with complete information.22 The positive relationship between the volatility of the firm
and its value is a well-known feature of corporate models with deep-pocketed shareholders23

and holds true in our first-best benchmark. Our study shows that the result still holds for
cash-constrained shareholders who learn about profitability and cannot resort to the market
to raise new funds. Close to the market threshold zi, the volatility of the firm is an inverted
U-shaped function of the value of the firm, reflecting the two effects. Therefore, our model
suggests that the relationships between the value of the firm and its volatility can drastically
change in transition phases between life-cycle stages.

In the complete information benchmark, the volatility of the firm, σV ′µ(x), and the volatil-
ity of cash flows, σ, coincide at the cash target level. In our model, because of the second
term of the right-hand side of (30) which reflects Bayesian learning, the volatility of the firm
is larger than the volatility of cash flows.24

Two additional insights on the firm’s volatility follow from our model. First, we observe
in Figure 3 that the volatility of the firm when cash reserves are depleted is increasing in the
performance level z. Thus, the model predicts that the higher the profitability prospects, the
higher the volatility of the firm is at issuance dates. Second, at cash target levels, the firm
reaches its higher level of volatility when it is at the market threshold zi. This is consistent
with the prediction that the dynamics of cash holdings change drastically when the firm’s
performance crosses the threshold zi.

6 Conclusion and Discussion

This paper studies how Bayesian learning about the firm’s profitability interacts with the
precautionary motive for holding cash. The shareholders’ problem takes the form of a two-
dimensional control problem that we solve by means of an explicit construction of its value
function. This allows a complete and rigorous analysis of the model based on analytical
characterizations of optimal issuance and payment policies which is unique to our paper.
We show that learning generates a corporate life-cycle with two stages: a “probation stage”
where it is never optimal for the firm to issue new shares, and a “mature stage” where the
firm resorts to the market whenever needed. The firm’s key indicators cash target levels,
payout ratios, volatility of the firm feature different properties and relationships across the
corporate life cycles.

22In the complete information benchmark, the volatility of the firm corresponds to the volatility of the
cash flows times the marginal value of cash (that is, σV ′µ(x) with the notations of Proposition 2).

23We refer to the literature initiated by Merton (1973) and Leland (1994).
24Technically, at the limit, for z =∞, the model coincides with the complete information benchmark. We

show in the Appendix (see Propositions 8.7 and 8.13) that lim
z−→∞

W (x, z) = Vµ(x) and that lim
z−→∞

Wx(x, z) =

V ′µ(x). In particular, we have the equality σ lim
z−→∞

Wx(b(k(z)), z), z) = σ.
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The dynamics of the cash reserve process (Equation (6)) is instrumental for our analysis.
It shows a time-invariant relationship between cash reserves and profitability prospects as
long as controls (issuances and payments) are not activated. This property follows from two
main assumptions: An arithmetic Brownian motion with unobservable drift Y ∈ {−µ, µ}
models the cumulative cash flow process and, the cash is not remunerated inside the firm.
Introducing cash-carry costs into two-dimensional corporate cash models raises major issues
regarding the regularity of the value function, the existence and the characterization of op-
timal policies. Reppen, Rochet and Soner (2020) are the first to prove the continuity of
the value function of the shareholders’ problem in a two-dimensional model with complete
information and where cash is not remunerated inside the firm. However, similarly to other
two-dimensional models, the existence of an optimal payment policy is not proven. We could
consider other modeling assumptions on the unobserved profitability provided that the filter-
ing Equation (4) features a time-invariant relationship between cash flows and profitability
prospects, in order to obtain an analogous to Equation (6). For instance, we could intro-
duce into the model a geometric Brownian motion with unobserved drift to study permanent
shocks to profitability or to cash holdings. Depending on the modeling choices, several cor-
porate models with complete information can serve as benchmarks.25,26 Exploring this idea
could be a topic for future research.

Our assumptions are simple and natural given the objective to study analytically how
incomplete information impacts pioneering corporate cash models. We briefly discuss two
possible generalizations. We have assumed proportional issuance costs which implies that
equity issues occur in infinitisimal amounts. Intuitively, a combination of fixed and pro-
portional issuance costs would imply lumpy equity issuance. Introducing fixed issuance
costs in corporate cash model leads to the study of mixed singular/impulse control problems
which are difficult even in a complete information setting.27 In our learning model adding
fixed issuance costs does not impact the time-invariant relationship between cash reserves
and profitability prospects as long as controls are not activated. The main intuition is un-
changed: when profitability prospects are high, the cost of holding cash dominates equity
issuance costs while the opposite occurs for low profitability prospects. We therefore expect
a corporate life cycle with two stages and a dividend boundary which is non-monotonic in
the belief. However, solving explicitly the problem is challenging and worth of interest both
from a mathematical and economic point of views: considering fixed issuance costs should
lead to an additional free boundary characterizing the gross financing raised by the investor
when cash is depleted and should provide more insights on the impact of learning on the
amount of cash raised by investors, a question not yet addressed in the literature.

Another natural question is the ability of our model to incorporate investment into the
analysis. Models with complete information suggest different ways to consider investment in
corporate cash models.28 In the spirit of Babenko and Tserlukevich (2021), let us consider a

25See for instance Murto and Tervio (2014), Décamps, Gryglewicz, Morellec and Villeneuve (2017), Bolton,
Wang and Yang (2019), Babenko and Tserlukevich (2021) for corporate models with permanent shocks.

26We thank the referee for this suggestion.
27See DMRV (2011) for a complete mathematical analysis in a one-dimensional model. See Reppen,

Rochet and Soner (2020) for numerical approximations in a two-dimensional model.
28See for instance Décamps and Villeneuve (2007), Bolton Chen and Wang (2011), Bolton, Wang and

Yang (2019), Babenko and Tserlukevich (2021).
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sudden opportunity that requires cash.26 Let us assume for instance that, at a random time
cash constrained shareholders have the possibility to secure the firm’s project by paying I
and getting a positive non-random payment θ ≤ µ

r
. In this extended setting, the dynamics

of the cash reserves follow Equation (6) and the cash policy aims to 1) delay liquidation,
2) learn about profitability, 3) seize the opportunity to secure the project. Intuitively, in
the first best case where shareholders are deep pocket the firm finds itself in two different
regions when the opportunity arises: 1) profitability prospects are high so that shareholders
are confident about the actual profitability and seizing the opportunity to secure the project
is not optimal whatever the level of cash reserves, 2) profitability prospects are low and
securing the project is optimal. A financially constrained firm may not be able to secure
its project because of lack of liquidity. A computation shows that if there is no cost of
holding cash, a payout policy that maintains the level of cash reserves on a critical curve
is optimal and yields the first best value of the firm. This finding generalizes a result of
Gryglewicz (2011) to the case where an investment opportunity is available. Interestingly,
an analogous property holds also in the two-dimensional model with complete information of
Bolton, Wang and Yang (2019) where the profitability process follows a Geometric Brownian
Motion and where there is no additional brownian shock in the dynamics of the cumulative
cash flow process (with our notations, σ = 0). The full analysis with cost of holding cash
requires further work. It is worth noting that, existing models focus either on investment and
learning (see Andrei, Mann, Moyen (2019) for a recent contribution) either on investment
and financial constraints.The above preliminary thoughts suggest that our model can serve
as a workhorse model to study corporate investment and learning in a financially constrained
framework.

Finally, as explained in the introduction, our model addresses the case of all-equity young
firms that have little collateral to offer. Well-established firms with more elaborated financial
structure face also corporate cash management issues, and learn about their profitability
when they launch new projects or engage in major restructurings. Clearly, future learning
models should integrate into the analysis a wider range of financial tools, especially debt
issuance and the use of credit lines. Other learning issues arise in corporate finance. For
instance, some studies focus on learning about the state of the economy, or learning about
a rival’s charateristics, nevertheless avoiding cash management considerations.29 We lack of
studies that integrate these learning issues in a setting of constrained financing. These and
related questions must await for future work.

29See for instance, Grenadier and Malenko (2010), Décamps and Mariotti (2004).
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8 Appendix

8.1 First-best benchmark

Proposition 3.1 relies on the following Lemma.

Lemma 8.1 The value of the firm V ∗ can be written in the form

V ∗(x, y) = x+ sup
(I,D)∈A

E
[∫ τ0

0

e−rs (Ys − rXs) ds

]
≤ x+

µ

r
. (32)

Proof of Lemma 8.1. For all t > 0 and all admissible controls I and D, we have

e−r(t∧τ0)Xt∧τ0 = x+

∫ t∧τ0

0

e−rsdXs − r
∫ t∧τ0

0

e−rsXs ds.

Because Xt is nonnegative for t ≤ τ0 and Y is bounded above by µ, we get

e−r(t∧τ0)Xt∧τ0 +

∫ t∧τ0

0

e−rs(dDs − dIs) = x+

∫ t∧τ0

0

e−rsdRs − r
∫ t∧τ0

0

e−rsXs ds (33)

≤ x+
µ

r
+ σ

∫ t∧τ0

0

e−rsdBs.

Applying the optional sampling theorem to the uniformly FR-martingale

(∫ t

0

e−rsdBs

)
t≥0

and taking expectations lead to

E
[
e−r(t∧τ0)Xt∧τ0 +

∫ t∧τ0

0

e−rs(dDs − dIs)
]
≤ x+

µ

r
.

Letting t goes to +∞, we obtain for all (x, y) ∈ [0,∞)× (−µ, µ)

V(x, y; I,D) ≤ x+
µ

r
<∞.

Thus, the value function V ∗ is finite. We obtain (32) from equations (3) and (33). 2

Proof of Proposition 3.1. Let us define

Γ(y) = sup
τ∈T R

E
[∫ τ

0

e−rsYsds

]
.

Standard results in optimal stopping theory30 yield that the optimal value function Γ is C1

on (−µ, µ) and that a threshold strategy τ̂ = inf{t ≥ 0 |Yt = ŷ} is optimal. The value
function Γ and the threshold ŷ can be written in terms of the free boundary problem: Find
Γ ∈ C1((−µ, µ)) and ŷ ∈ (−µ, µ) such that,{

1
2σ2 (y + µ)2(µ− y)2Γ

′′
(y)− rΓ(y) + y = 0, y ≥ ŷ,

Γ(ŷ) = 0, Γ
′
(ŷ) = 0.

30See for instance Peskir and Shiryaev (2006).
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Standard computations yield{
V̂ (x, y) = x, −µ < y ≤ ŷ,

V̂ (x, y) = x+ y
r
− h1(y)

h1(ŷ)
ŷ
r

ŷ ≤ y < µ,
(34)

where

h1(y) = (µ+ y)γ(µ− y)1−γ, ŷ =
−µ

1− 2γ
< 0, (35)

and where γ is the negative root of the equation x2 − x− rσ2

2µ2
= 0. (36)

Noting that ŷ < 0 and that h1 is convex, we deduce from (34), that V̂ (x, y) is increasing and
convex in y.

Finally, we show that the function V ∗ is bounded above by V̂ . Because the cash reserves
are positive for all admissible controls, it follows from (32) that,

x+ sup
(I,D)∈A

E
[∫ τ0

0

e−rsYs ds

]
is an upper bound for V ∗. From Equation (3), any admissible control (I,D) acts on

E
[∫ τ0

0

e−rsYs ds

]
by modifying only the FR-stopping time τ0. Thus,

sup
(I,D)∈A

E
[∫ τ0

0

e−rsYs ds

]
≤ sup

τ∈T R
E
[∫ τ

0

e−rsYsds

]
,

which yields the desired inequality. 2

8.2 Complete information benchmark.

In this section, we consider that the firm’s profitability is known and is equal to µ. We
develop the mathematical formulation of Proposition 3.2. This formulation yields useful
formulae for the proof of Theorem 4.1.

8.2.1 No equity issuance

We start the analysis with the case where security issuances are not allowed. The dynamics
of the cash reserves satisfy

dXt = µ dt+ σdBt − dDt,

and the shareholders’ problem writes

V µ(x) = sup
D∈A

E
[∫ τ0

0

e−rsdDs

]
, (37)

where τ0 = inf{t ≥ 0 |Xt = 0}. The following result is due to Jeanblanc and Shiryaev (1995).
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Proposition 8.2 The value function V µ of problem (37) is concave, twice continuously
differentiable and it satisfies the following HJB equation on (0,+∞):

max

{
σ2

2
V
′′

µ + µV
′
µ − rV µ, 1− V

′
µ

}
= 0.

Moreover, we have V µ(x) =
e−βγx − eβ(γ−1)x

−βγe−βγxµ + (1− γ)βeβ(γ−1)xµ
0 ≤ x ≤ xµ,

V µ(x) = x− xµ + µ
r
, x ≥ xµ,

(38)

with

xµ =
1

β(1− 2γ)
ln(

1− γ
γ

)2 = 2
ŷ

µ
φ(ŷ), (39)

where (35) and (36) define ŷ and γ and where β = 2µ
σ2 . Any excess of cash over the dividend

boundary xµ is paid out to shareholders, such that the cash reserve process is reflected back
each time it reaches xµ. The process D = {Dt; t ≥ 0} with

Dt = (x− xµ)+11t=0 + L
xµ
t 11t>0 (40)

is the optimal dividend payment process. In equation (40), Lxµ denotes the so-called local
time process solution to the Skohorod problem31 at xµ for the drifted Brownian motion µt+Bt.

8.2.2 Equity issuance

When security issuances are allowed at a proportional issuance cost p > 1, the dynamics of
the cash reserves satisfy

dXt = µ dt+ σdBt − dDt +
dIt
p
,

and shareholders’ problem writes

Vµ(x) = sup
I,D∈A

E
[∫ τ0

0

e−rs(dDs − dIs)
]
, (41)

where τ0 = inf{t ≥ 0 |Xt = 0}. The following proposition is due to Lokka and Zervos (2008)
and provides a rigorous formulation of Proposition 3.2 in the main text.

Proposition 8.3 The value function defined in (41) is concave, twice continously differen-
tiable and it satisfies the following HJB equation on (0,+∞):

max{σ
2

2
V
′′

µ + µV ′µ − rVµ, 1− V ′µ, V ′µ − p} = 0.

Moreover, we have

• If p ≥ V
′
µ(0) then, Vµ(x) = V µ(x) for all x ≥ 0.

31See Karatzas and Shreve (1991) page 210.
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• If p < V
′
µ(0) then, Vµ(x) =

1− γ
βγ

ŷ

µ
e−βγ(x−xµ) +

γ

β(γ − 1)

ŷ

µ
eβ(γ−1)(x−xµ) 0 ≤ x ≤ xµ,

Vµ(x) = x− xµ + µ
r
, x ≥ xµ,

(42)

where xµ is defined as the unique solution to the equation

p = − ŷ
µ

(1− γ)eγβxµ +
ŷ

µ
γe(1−γ)βxµ . (43)

Any excess of cash over the dividend boundary xµ is paid out to shareholders, so that the
cash reserve process is reflected back each time it reaches xµ. There is equity issuance
whenever the firm runs out of cash, so that the cash reserve process is reflected back
each time it reaches 0. The processes D = {Dt; t ≥ 0} and I = {It; t ≥ 0} with

Dt = (x− xµ)+11t=0 + L
xµ
t 11t>0 and It = L0

t11t>0 (44)

are the optimal dividend payment and equity issuance processes. In equation (44), Lxµ

and L0 denote the solution to the Skohorod problem at xµ and at 0 for the drifted
Brownian motion µt+Bt.

Hereafter, we will note p = V
′
µ(0). The thresholds xµ and xµ defined in (39) and (43)

satisfy xµ > xµ. Moreover, equation (38) yields that p = 1−γ
−γ e

γβxµ . We deduce that for
1 < p < p, we have

p <
1− γ
−γ

eβγxµ . (45)

We will use later this inequality.

8.3 Model Solution

We devote this section to the proof of Theorem 4.1. As for the complete information bench-
mark, it is useful to start the analysis under the assumption that the shareholders are not
allowed to issue new shares.

8.3.1 No equity issuance

Thus, in this subsection we solve the problem

V (x, y) = sup
D∈A

E
[∫ τ0

0

e−rtdDt

]
, (46)

where τ0 = inf{t ≥ 0 |Xt = 0} with Xt = φ(Yt)− φ(y) + x−Dt.
As a preliminary but essential step, we establish a standard verification Lemma that

specifies conditions under which a function V defined on [0,∞) × (−µ, µ) is a majorant of
the value function V of the problem (46).

Lemma 8.4 (Verification Lemma) Assume there exists a function V defined on [0,∞) ×
(−µ, µ) that satisfies
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1. V is twice differentiable,

2. V has bounded first derivatives,

3. V (0, y) = 0 for all y ∈ (−µ, µ) and

max(LV − rV, 1− Vx) ≤ 0 on [0,∞)× (−µ, µ),

then V is a majorant of V .

Proof of Lemma 8.4. See the online appendix. 2

Second, we explicitly build such a majorant. To this end, we prove that the following
variational problem

LV (x, y)− rV (x, y) = 0 on the domain {(x, y), 0 < x < b(y), −µ < y < µ}, (47)

V (0, y) = 0 ∀y ∈ (−µ, µ), (48)

Vx(x, y) = 1, for x ≥ b(y), (49)

Vxy(b(y), y) = 0, (50)

lim
y−→µ

V (x, y) = V µ(x) ∀x ≥ 0, (51)

has a unique solution (V, b) (see Proposition 8.6), such that V satisfies Lemma 8.4 (see
Proposition 8.7) and thus dominates V . Finally, we show in Proposition 8.8 that V can be
reached by an admissible policy and thus coincides with the solution V to the problem (46).
This last step also provides the optimal dividend policy and concludes the study of problem
(46).

We start with a technical lemma.

Lemma 8.5 The ordinary differential equation

g′(y) = f(g(y), y), (52)

g(µ) = xµ, (53)

with

f(x, y) =
σ2

µ2 − y2

yŷ +

(
µ− rσ2

(
ŷ
µ

)2
1
µ

)
φ−1

(
−µ
ŷ
x
)

yŷ + µφ−1
(
−µ
ŷ
x
) (54)

defined on the domain {(x, y) ∈ [0,∞) × (−µ, µ) |x > ŷ
µ
φ(y ŷ

µ
)} has a unique solution. The

solution g is C1 and increasing over [y∗, µ] where the threshold y∗ ≡ g−1(0) is well defined
and strictly larger than ŷ. Moreover, if we define b = max(g, 0), then k = (φ − b)−1 :
[φ(y∗),∞) −→ [y∗, µ) is a well defined C1 increasing function. The function k is the unique
solution to the ordinary differential equation

k
′
(z) = Θ(z, k(z)), (55)

lim
z−→∞

φ(k(z))− z = xµ, (56)
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with

Θ(z, y) =
µ3

ŷrσ2

µ2 − y2

σ2

ψ
(
µ
ŷ
(φ(y)− z)

)
µ− yŷ

ŷψ
(
µ
ŷ
(φ(y)− z)

) (57)

defined on the domain {(z, y) ∈ R× (−µ, µ) |φ(y)− z > max(0, ŷ
µ
φ(y ŷ

µ
))}.

Proof of Lemma 8.5. See the online appendix 2

We are now in a position to solve the system (47)-(51).

Proposition 8.6 Let us consider the functions b and k defined in Lemma 8.5 and the func-
tion (x, y) −→ V (x, y) defined on [0,∞)× (−µ, µ) by the relations

V (0, y) = 0, for y ∈ (−µ, µ),

V (x, y) = A (φ(y)− x)

(
h1(y)− e

2
σ2

µ2

ŷ
(φ(y)−x)h2(y)

)
, for 0 ≤ x ≤ b(y), y ∈ (−µ, µ),

V (x, y) = x− b(y) + V (b(y), y), for x ≥ b(y), y ∈ (−µ, µ),
(58)

where

A(z) =
σ2

4

(
ŷ

µ

)2(
1

µ

)2(
h′1(k(z))e−

2
σ2

µ2

ŷ
z − h′2(k(z))

)
. (59)

Then, the couple (V, b) is the unique solution to the system (47)-(51). Furthermore, the
function b : [y∗, µ] −→ [0, xµ] is C1 and increasing.

Proof of Proposition 8.6. Having in mind the change of variable (18), we are looking for
a smooth function U defined on [0,∞) × (−µ, µ) and a C1 function k : R −→ (−µ, µ) that
solve the variational system

1

2σ2
(µ2 − y2)2Uyy(z, y)− rU(z, y) = 0 on {(z, y), z ∈ R, ψ(z) < y < k(z)}, (60)

U(z, ψ(z)) = 0, for z ∈ R, (61)

Uz(z, y) = −1, for k(z) ≤ y, (62)

Uxy(z, k(z)) = 0, (63)

lim
z−→∞

U(z, ψ(x+ z)) = V µ(x). (64)

First, we establish a set of necessary conditions for the existence of such a pair (U, k) by
observing that any solution to the o.d.e. (60) can be written in the form

U(z, y) = A(z)h1(y) +B(z)h2(y), (65)

where h1(y) = (y + µ)γ(µ − y)1−γ and h2(y) = (y + µ)1−γ(µ − y)γ. Using (65), we obtain
from (62) and (63) that

A′(z) = h′2(k(z))
ŷ

2µ2
, and B′(z) = −h′1(k(z))

ŷ

2µ2
. (66)
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Using again (65), we rewrite (61) in the form

A(z) = −B(z)
h2(ψ(z))

h1(ψ(z))
= −B(z)e−

2
σ2

µ2

ŷ
z. (67)

Taking the derivative of (67), we obtain

A′(z) = −B′(z)e−
2
σ2

µ2

ŷ
z +B(z)

2

σ2

µ2

ŷ
e−

2
σ2

µ2

ŷ
z

which yields using again (67),

A(z) = −σ
2ŷ

2µ2

(
A′(z) +B′(z)e−

2
σ2

µ2

ŷ
z

)
. (68)

Using (65) and (67), and plugging (66) into (68) yield that,

U(z, y) = A(z)

(
h1(y)− e

2
σ2

µ2

ŷ
(z)h2(y)

)
, (69)

where

A(z) =
σ2

4

(
ŷ

µ

)2(
1

µ

)2(
h′1(k(z))e−

2
σ2

µ2

ŷ
z − h′2(k(z))

)
. (70)

Taking the derivative of (68) and using (66), we obtain that

k′(z) =
2µ2

σ2ŷ

h′1(k(z))h2(ψ(z)) + h′2(k(z))h1(ψ(z))

h
′′
1(k(z))h2(ψ(z))− h′′2(k(z))h1(ψ(z))

. (71)

A computation yields that

k′(z) =
µ3

ŷrσ2

µ2 − k(z)2

σ2

ψ
(
µ
ŷ
(φ(k(z))− z)

)
µ− k(z)ŷ

ŷψ
(
µ
ŷ
(φ(k(z))− z)

) , (72)

which is positive on the domain φ(k(z))− z > max(0, ŷ
µ
φ( ŷ

µ
k(z))).

Thus, (69), (70) and (72) is a set of necessary conditions for the existence of a smooth
solution (U, k) to (60), (61), (62), (63). It remains to find a necessary condition for a solution
to satisfy (64). Below we prove that U satisfies (64) if and only if lim

z−→∞
φ(k(z)) − z = xµ.

From Lemma 8.5, it will imply that k = k. To do this, we use (69) and (70) to obtain

U(z, ψ(x+ z)) =
σ2

4

(
ŷ

µ

)2(
1

µ

)2

f(x)∆(z)
1 + e−βz

1 + e−β(x+z)
, (73)

with

f(x) = e(γ−1)βx(1− e(1−2γ)βx), ∆(z) = h′1(k(z))h2(ψ(z))− h′2(k(z))h1(ψ(z)).
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Observing that k(z) = ψ((φ(k(z))− z) + z), a computation yields the following asymptotics

h′1(k(z))h2(ψ(z)) ∼z=∞ 2µ(γ−1)eγβ(φ(k(z))−z), h′2(k(z))h1(ψ(z)) ∼z=∞ −2µγe(1−γ)β(φ(k(z))−z),

which imply

lim
z−→∞

∆(z) = lim
z−→∞

2µ
(
(γ − 1)eγβ(φ(k(z))−z) − γe(1−γ)β(φ(k(z))−z)) . (74)

Using (38), we observe that

V µ(x) = f(x)
eβγxµ

β(γ + (γ − 1)e(2γ−1)βxµ)
. (75)

It then follows from (73), (74), (75) that lim
z−→∞

U(z, ψ(x + z)) = V µ(x) is equivalent to

lim
z−→∞

φ(k(z))− z = xµ. Thus, a smooth solution (U, k) to (60)-(64), if it exists, must satisfy

(69), (70) where k = k is uniquely defined in Lemma 8.5. Conversely, a direct computation
shows that the function defined by (69), (70) with k = k is a smooth solution to (60)-(64).
Finally, posing z = φ(y)−x in (69) and (70) leads to (58) and (59) where b is uniquely defined
in Lemma 8.5. Thus, the couple (V, b) defined in Proposition 8.6 is the unique solution to the
system (47)-(51). Observe that the uniqueness of the function V comes from the uniqueness
of the function b which follows from condition (64). 2

To prove that V = V , we proceed in two steps. First, we show in Proposition 8.7 that
the function V solution to (60)-(64) satisfies the assumptions of the verification Lemma 8.4,
which implies that V ≤ V . Second, we construct an admissible policy for problem (46), the
value of which coincides with V . This latter result implies that V ≤ V .

Proposition 8.7 The function V defined in Proposition 8.6 satisfies the assumptions of
Lemma 8.4.

Proof of Proposition 8.7. It is clear from (58) that V is twice continuously differentiable
on any open set in (0,∞) × (−µ, µ) away from the set {(x, y), x = b(y)}. By construction
Vx and Vxx are continuous across the boundary b. Therefore, to prove that V is twice
differentiable on (0,∞) × (−µ, µ), we only have to show that the functions Vy and Vyy are
continuous across the boundary b, that is

lim
x−→b(y)−

Vy(x, y) = −b′(y) + ν ′(y), lim
x−→b(y)−

Vyy(x, y) = −b
′′

(y) + ν
′′
(y), (76)

where the function ν is defined on (−µ, µ) by the relation

ν(y) = A(φ(y)− b(y))

(
h1(y)− e

2
σ2

µ2

ŷ
(φ(y)−b(y))h2(y)

)
.

Let us define

H(y) ≡ e
2
σ2

µ2

ŷ
(φ(y)−b(y)) =

h1(ψ(φ(y)− b(y))

h2(ψ(φ(y)− b(y))
.
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A computation yields

H ′(y) =
2µ2

σ2ŷ
(φ′(y)− b′(y))H(y). (77)

Remembering the relations (66) and (68) and the definition of k, we observe that

A(z) = −σ
2ŷ

2µ2

(
A′(φ(y)− b(y)) +B′(φ(y)− b(y))

1

H(y)

)
.

We are in a position to compute the derivative of ν. We have,

ν ′(y) = A(φ(y)− b(y))(h′1(y)−H(y)h′2(y))

+ (φ′(y)− b′(y))A′(φ(y)− b(y))(h1(y)−H(y)h2(y))− A(φ(y)− b(y))H ′(y)h2(y).

Using the relations (77), (68), (66) and the definition of k, the second term of the right-hand
side is equal to

(φ′(y)− b′(y))
ŷ

2µ2
(h′2(y)h1(y)− h′1(y)h2(y)).

We note that the change of variable V (x, y) = U(φ(y)− x, y) leads to the relations

Vy(x, y) = φ′(y)Uz(φ(y)− x, y) + Uy(φ(y)− x, y), (78)

Vyy(x, y) = φ
′′
(y)Uz(φ(y)− x, y) + φ′(y)2Uzz(φ(y)− x, y)

+2φ′(y)Uzy(φ(y)− x, y) + Uyy(φ(y)− x, y). (79)

As a consequence,

ν ′(y) = (φ′(y)− b′(y))
ŷ

2µ2
((h′2(y)h1(y)− h′1(y)h2(y))

+A(φ(y)− b(y))(h′1(y)− e
2
σ2

µ2

ŷ
(φ(y)−b(y))h′2(y))

= −φ′(y) + b
′
(y) + Uy(φ(y)− b(y), y) = b

′
(y) + lim

x−→b(y)−
Vy(x, y),

where the first equality comes from (66) and the last equality comes from (78) and from the
relation Uz(φ(y)− b(y), y) = −Vx(b(y), y) = −1. Thus (76) is satisfied. Moreover,

ν
′′
(y) = −φ′′(y) + b

′′

(y) + A((φ(y)− b(y))h
′′

1(y) +B((φ(y)− b(y))h
′′

2(y)

+(φ′(y)− b′(y))A′(φ(y)− b(y))(h′1(y)− e
2
σ2

µ2

ŷ
(φ(y)−b(y))h′2(y))

= −φ′′(y) + b
′′

(y) +
2rσ2

(µ2 − y2)2
U((φ(y)− b(y), y)

+(φ′(y)− b′(y))Uzy((φ(y)− b(y), y)

= −φ′′(y) + b
′′

(y) +
2rσ2

(µ2 − y2)2
U((φ(y)− b(y), y) = b

′′

(y) + lim
x−→b(y)−

Vyy(x, y),

where the last equality comes from (79) and from the relations Uzz(φ(y)−b(y), y) = Uzy(φ(y)−
b(y), y) = 0, Uz(φ(y) − b(y), y) = −1 and Uyy(φ(y) − b(y), y) = 2rσ2

(µ2−y2)2
U((φ(y) − b(y), y).

Therefore, V is twice differentiable on (0,∞)× (−µ, µ).
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We show below that the function V has bounded first derivatives Vx and Vy. This amounts
to show that lim

x−→∞
Vx(x, y) < ∞ and lim

y−→µ
Vy(x, y) < ∞. We write the change of variable

x = φ(y)− z in the form y = ψ(x+ z) and define

W (x, z) ≡ V (x, ψ(x+ z)) = U(z, ψ(x+ z)).

We have

Vx(x, y) = Wx(x, φ(y)− x)−Wz(x, φ(y)− x),

Vy(x, y) = φ′(y)Wz(x, φ(y)− x) =
σ2

µ2 − y2
Wz(x, φ(y)− x).

We then deduce that Vx is bounded if and only if

lim
z−→∞

Wx(x, z)−Wz(x, z) <∞. (80)

A computation shows that Vy is bounded if and only if lim
z−→∞

1

ψ′(x+ z)
Wz(x, z) < ∞, or,

equivalently if and only if

lim
z−→∞

1

ψ′(x+ z)
∆′(z) <∞, (81)

where the latter expression follows from a computation that uses (73). Using (71) we obtain
that (81) is equivalent to

lim
z−→∞

1

ψ′(x+ z)

2µ2

σ2ŷ
(h′1(k(z))h2(ψ(z)) + h′2(k(z))h1(ψ(z)))

+
ψ′(z)

ψ′(x+ z)
(h′1(k(z))h′2(ψ(z))− h′2(k(z))h′1(ψ(z))) <∞. (82)

Recalling that lim
z−→∞

φ(k(z))− z = xµ and observing that k(z) = ψ((φ(k(z))− z), computa-

tions lead to the relations

1

ψ′(x+ z)

2µ2

σ2ŷ
h′1(k(z))h2(ψ(z)) ∼z=∞

µ

ŷ
(γ − 1)eβxeγβxµeβz,

1

ψ′(x+ z)

2µ2

σ2ŷ
h′2(k(z))h1(ψ(z)) ∼z=∞ −

µ

ŷ
γeβxe(1−γ)βxµeβz,

ψ′(z)

ψ′(x+ z)
h′1(k(z))h′2(ψ(z)) ∼z=∞ −γ(γ − 1)eβxeγβxµeβz,

ψ′(z)

ψ′(x+ z)
h′2(k(z))h′1(ψ(z)) ∼z=∞ −γ(γ − 1)eβxe(1−γ)βxµeβz.

Aggregating these relations in (82), we obtain that

lim
z−→∞

1

ψ′(x+ z)
Wz(x, z) = lim

z−→∞
eβxeβz((γ − 1)2eγβxµ − γ2e(1−γ)βxµ) = 0, (83)
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where the last equality follows from (39). Thus, Vy is bounded. We deduce from (83) that
lim
z−→∞

Wz(x, z) = 0 and from (73) that

Wx(x, z) ∼z=∞
σ2

4

(
ŷ

µ

)2(
1

µ

)2

f ′(x)∆(z).

Since lim
z−→∞

φ(k(z))− z = xµ, we obtain from (74) that (80) is satisfied. Thus Vx is bounded.

Finally, we prove below that

max(LV − rV, 1− Vx) ≤ 0 on [0,∞)× (−µ, µ).

Note that, by construction, V (0, y) = 0 for all y ∈ (−µ, µ) and that LV − rV = 0 on the set
{x ≤ b(y)}. We first show that the mapping x −→ V (x, y) is concave on the set {x < b(y)}.
The change of variable (18) and relation (60) yield that, on the set {x ≤ b(y)},

V (x, y) = A(φ(y)− x)h1(y) +B(φ(y)− x)h2(y).

Using (66), we obtain that

Vxx(x, y) = k
′
(φ(y)− x)

ŷ

2µ2
(h
′′

2(k(φ(y)− x)h1(y)− h′′1(k(φ(y)− x)h2(y)). (84)

The right hand side of (84) has the same sign than

k
′
(φ(y)− x)

ŷ

2µ2
(h2(k(φ(y)− x)h1(y)− h1(k(φ(y)− x)h2(y)). (85)

Since h1 is positive decreasing and h2 is positive increasing, the function (h2(k(φ(y) −
x)h1(y) − h1(k(φ(y) − x)h2(y)) is positive if and only if k(φ(y) − x) > y. Since k is in-

creasing, this latter inequality is equivalent to φ(y) − x > k
−1

(y), that is x < b(y). Thus,
(85) is negative since ŷ < 0. Therefore, the mapping x −→ V (x, y) is concave on the set
{x < b(y)}. Because Vx(x, y) = 1 for all x ≥ b(y), we conclude that x −→ V (x, y) is concave
over [0,∞), and in turn that Vx ≥ 1 on [0,∞).

It remains to show that LV − rV < 0 on the set {x > b(y)}. On the set {x > b(y)},
we have that V (x, y) = x − b(y) + ν(y) and Vxy(b(y), y) = 0. We deduce the equalities
Vy(x, y) = Vy(b(y), y) and Vyy(x, y) = Vyy(b(y), y). Therefore, using the fact that V is twice
differentiable across b, we obtain that, on the set {x > b(y)},

(LV − rV )(x, y) =
1

2σ2
(µ2 − y2)2Vyy(b(y), y) + y − rV (x, y)) = −r(x− b(y)) < 0.

The proof of Proposition 8.7 is complete and thus V ≤ V . 2

Finally, we show that the solution V can be reached by an admissible policy. Our guess
is that the optimal cash reserve process is reflected along the free boundary function b on a
horizontal direction in the (x, y)-plane. We formalize this using a 2-dimensional version to
Skorohod’s lemma established by Burdzy and Toby (1995). Specifically, there exists a unique
continuous process {L = (Lt)t; t ≥ 0} defined on (Ω,FR,P) such that, for P-a.e. ω ∈ Ω,

• (φ(Yt(ω))− φ(y) + x− Lt(ω), Yt(ω)) ∈ [0, b(y)]× [y∗, µ), ∀t ∈ [0, τ0], (86)
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where τ0 = inf{t ≥ 0 |φ(Yt)− φ(y) + x− Lt = 0},

• L0(ω) = 0, and t −→ Lt(ω) is nondecreasing on

{t ≥ 0 : φ(Yt)− φ(y) + x− Lt = b(Yt)}, (87)

• t −→ Lt(ω) is constant on

{t ≥ 0 : (φ(Yt(ω))− φ(y) + x− Lt(ω), Yt(ω)) ∈ (0, b(y))× (y∗, µ)}. (88)

Conditions (86)-(88) ensure that the policy L is admissible and that the process
φ(Yt)− φ(y) + x− Lt is reflected in a horizontal direction whenever it hits b(Yt).

Proposition 8.8 The function V can be attained by an admissible policy and thus V ≤ V .

Proof of Proposition 8.8 Let us consider the process D = {Dt; t ≥ 0} with

Dt =
(
(x− b(y))+11y≥y∗ + x11y≤y∗

)
11t=0 + Lt11t>0, (89)

where L is defined by (86)-(88) and let us consider the continuous process

Xt ≡ φ(Yt)− φ(y) + x−Dt.

A computation based on Itô’s formula yields that, for all t ≥ 0,

E
[
e−rt∧τ0V (Xt∧τ0 , Yt∧τ0)

]
= V (x, y)− E

[∫ t∧τ0

0

e−rsVx(Xs, Ys) dDs

]
= V (x, y)− E

[∫ t∧τ0

0

e−rs dDs

]
(90)

where the second equality comes from (87) and (88) along with the fact that Vx(b(y), y) = 1.
Letting t go to ∞ in (90) yields

V (x, y) = E
[∫ t∧τ0

0

e−rs dDs

]
≤ V (x, y).

2

Thus, from Propositions 8.7 and 8.8, the function V defined in Proposition 8.6 coincides
with the value function V of problem (46). Equation (89) provides the optimal dividend
policy: The function b corresponds to the dividend boundary of the shareholders’ problem
(46). The optimal cash reserve process is reflected along the function b on a horizontal
direction in the (x, y)-plane.
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8.3.2 Equity issuance

We are now ready to prove Theorem 4.1 and to solve problem (8):

V ∗(x, y) = sup
(I,D)∈A

E
[∫ τ0

0

e−rt(dDt − dIt)
]
.

We proceed as in the previous section where equity issuance was not allowed. The verification
Lemma 8.4 has to be adapted in the following way.

Lemma 8.9 (Verification Lemma) Assume there exists a function V defined on [0,∞) ×
(−µ, µ) that satisfies

1. V is twice differentiable almost everywhere,

2. V has bounded first derivatives,

3. max(−V (0, y), Vx(0, y)− p) = 0 for all y ∈ (−µ, µ) and,

max(LV − rV, 1− Vx, Vx − p) ≤ 0 almost everywhere on [0,∞)× (−µ, µ),

then V ≥ V ∗.

Proof of Lemma 8.9. See the online appendix.

We first assume that the proportional issuance costs p satisfies p ≥ p = V
′
µ(0). We prove

that the firm value V ∗ solution to (8) coincides with V solution to (46), so that also the
functions b∗ and b coincide. This proves Theorem 4.1 when p ≥ p. The result is a direct
consequence of the following Lemma.

Lemma 8.10 Let us assume that p ≥ p, then p > V x(x, y) for all (x, y) ∈ [0,∞)× ∈
(−µ, µ).

Proof of Lemma 8.10. See the online appendix.

From Lemma 8.10, V satisfies the assumptions of Lemma 8.9. It follows that V ∗(x, y) ≤
V (x, y). On the other hand, considering the policies I∗ = 0 and D∗ defined in (89) lead to
the inequality V ∗(x, y) ≥ V (x, y), thus the result.

The case p ≤ p is much more involved. The analysis relies on the following technical
Proposition.

Proposition 8.11 The following holds.

(i) Fix zi > ẑ = φ(ŷ), the relation

−h′1(k(z))h2(ψ(z)) + h′2(k(z))h1(ψ(z)) +
2µ2

ŷ
p = 0 (91)
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uniquely defines over [zi,∞) a continuously differentiable increasing function k > ψ
that satisfies

lim
z−→∞

φ(k(z))− z = xµ, (92)

k(z) ∼
+∞

ψ(z + xµ). (93)

(ii) The equation
p

ψ′(z)
h1(ψ(z)) +

∫ ∞
z

h′1(k(u)) du = 0 (94)

has a unique solution z∗i ∈ (ẑ,∞).

(iii) Let us denote y∗i = ψ(z∗i ) and let us consider the function k∗ with

k∗(z) = k1(z)11z≤z∗i + k2(z)11z≤z∗i , (95)

where (91) characterizes k2, and where k1 is the solution to the ordinary differential
equation k′1(z) = Θ(k1(z), z) with terminal condition k1(z∗i ) = k2(z∗i ) where Θ is defined
by (57). Then, k∗ is a well defined continuous increasing function over (ẑ,∞) and
continuously differentiable over R \ {z∗i }.

Proof of Proposition 8.11. See the online appendix. 2

We state now the main result of this section.

Proposition 8.12 Let us consider the function k∗ defined by (95) and the function b∗ defined
by the relation

b∗(y) = max(0, b1(y))11y≤y∗i + b2(y)11y≥y∗i , (96)

with b2(y) = (φ − k−1
2 )(y) for any y ≥ y∗i and, b1(y) = (φ − k−1

1 )(y) for any y ≤ y∗i .
The function b∗ is well defined and positive on [y∗, µ) with y∗ = b−1(0). It is differentiable
on (y∗, µ) \ {yi∗} where yi∗ ≡ k1(z∗i ) = k2(z∗i ). Moreover, let us consider the function
(x, y) −→ V (x, y) defined on R+ × (−µ, µ) by the relations

• For y ∈ [y∗i , µ),{
V (x, y) = A (φ(y)− x)h1(y) +B (φ(y)− x)h2(y), ∀ 0 ≤ x ≤ b∗(y),
V (x, y) = x− b∗(y) + V (b∗(y), y), ∀x ≥ b∗(y),

where for z > z∗i : {
A(z) = A(z∗i ) +

∫ z
z∗i

ŷ
2µ2
h′2(k∗(u)) du,

B(z) = B(z∗i )−
∫ z
z∗i

ŷ
2µ2
h′1(k∗(u)) du

(97)

and, {
A(z∗i ) = p

ψ′(z∗i )
ŷ

2µ2
h2(ψ(z∗i )),

B(z∗i ) = − p
ψ′(z∗i )

ŷ
2µ2
h1(ψ(z∗i )).

(98)
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• For y ∈ (−µ, y∗i ],
V (0, y) = 0, ∀ − µ < y < y,

V (x, y) = A (φ(y)− x)

(
h1(y)− e

2
σ2

µ2

ŷ
(φ(y)−x)h2(y)

)
, ∀ 0 ≤ x ≤ b∗(y),

V (x, y) = x− b∗(y) + V (b∗(y), y), ∀x ≥ b∗(y)

where for z ≤ zi,

A(z) =
σ2

4

(
ŷ

µ

)2(
1

µ

)2(
h′1(k∗(z))e−

2
σ2

µ2

ŷ
z − h′2(k∗(z))

)
. (99)

Then, the triple (V, y∗i , b
∗) is the unique solution to the system (12)-(17).

Proof of Proposition 8.12. The proof follows the same route than the proof of Proposition
8.6. We first consider a solution (U, zi, k) to the system

1

2σ2
(µ2 − y2)2Uyy(z, y)− rU(z, y) = 0 on {(z, y), z ∈ R, ψ(z) < y < k(z)}, (100)

U(z, ψ(z)) = 0 ∀z ≤ zi, (101)

Uz(z, ψ(z)) = −p ∀z ≥ zi, (102)

Uz(z, y) = −1, for k(z) ≤ y, (103)

Uxy(z, k(z)) = 0, (104)

lim
z−→∞

U(z, ψ(x+ z)) = Vµ(x). (105)

The relations derived in the proof of Proposition 8.6 hold true for z ≤ zi, so that the
solution (U, zi, k) satisfies (69), (70) and (72) for z ≤ zi. Note that (65) and (66) hold true
for any (z, y) ∈ {(z, y), z ∈ R, ψ(z) < y < k(z)}. We then deduce from (102) that (91)
characterizes the function k on [zi,∞). Consider (101) and take the derivative with respect
to z of U(z, ψ(z)). One get

Uz(z, ψ(z)) + ψ′(z)Uy(z, ψ(z)) = 0. (106)

Then, using (65) and (102), Equations (101) and (106) evaluated at zi yield{
A(zi) = p

ψ′(zi)
ŷ

2µ2
h2(ψ(zi)),

B(zi) = − p
ψ′(zi)

ŷ
2µ2
h1(ψ(zi)).

(107)

We then obtain from (66) that{
A(z) = A(zi) +

∫ z
zi

ŷ
2µ2
h′2(k(u)) du,

B(z) = B(zi)−
∫ z
zi

ŷ
2µ2
h′1(k(u)) du.

(108)

Thus, a smooth solution (U, zi, k) to (100)-(104) satisfies U(z, y) = A(z)h1(y) + B(z)h2(y)
on {(z, y), z ∈ R, ψ(z) < y < k(z)} and the relations (70), (72), (107), (108). We prove
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below that such a smooth solution satisfies (105) if and only if zi = z∗i . This will imply that
k = k∗. We have

U(z, ψ(x+ z)) = A(z)h1(ψ(x+ z)) +B(z)h2(ψ(x+ z)) (109)

where (67) and (70) define A and B for z ≤ zi and (107) and (108) define A and B for
z ≥ zi. We deduce from (93) that

h′1(k(u)) ∼
+∞

(γ − 1)eγβ(u+xµ) and h′2(k(u)) ∼
+∞
−γe(1−γ)β(u+xµ). (110)

It follows that ∫ ∞
zi

ŷ

2µ2
h′2(k(u))du = −∞,

∫ ∞
zi

ŷ

2µ2
h′1(k(u))du <∞, (111)

and also that, ∫ z

zi

h′2(k(u)) du ∼
+∞

∫ z

zi

−γe(1−γ)β(u+xµ) du, (112)

yielding ∫ z

zi

−γe(1−γ)β(u+xµ) du =
γ

γ − 1

1

β
e−(γ−1)β(z+xµ) − γ

γ − 1

1

β
e−(γ−1)β(zi+xµ).

A computation yields

lim
z−→∞

∫ z

zi

ŷ

2µ2
h′2(k(u))du h1(ψ(x+ z))

=
γ

β(γ − 1)

ŷ

µ2
e−(γ−1)βxµe(γ−1)βx − lim

z−→∞

γ

β(γ − 1)

ŷ

µ
e−(γ−1)β(zi+xµ)e(γ−1)β(x+z)

=
γ

β(γ − 1)

ŷ

µ2
e−(γ−1)βxµe(γ−1)βx, (113)

where the last equality comes from the fact that γ < 0. We also have,∫ z

zi

ŷ

2µ2
h′1(k(u)) du =

∫ ∞
zi

ŷ

2µ2
h′1(k(u)) du−

∫ ∞
z

ŷ

2µ2
h′1(k(u)) du

from which we deduce that,

lim
z−→∞

∫ z

zi

ŷ

2µ2
h′1(k(u)) du h2(ψ(x+ z)) =

(
limz−→∞

∫ ∞
zi

ŷ

µ
h′1(k(u)) du e−βγ(x+z)

−
∫ ∞
z

ŷ

µ
eβγ(u+xµ)(γ − 1) du e−βγ(x+z)

)
.

Thus,

lim
z−→∞

∫ z

zi

ŷ

2µ2
h′1(k(u)) du h2(ψ(x+ z)) = −1− γ

βγ

ŷ

µ
eβγxµ + lim

z−→∞
e−βγ(x+z)

∫ ∞
zi

ŷ

µ
h′1(k(u)) du

(114)
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Using (107), (108) and (109) together with (42), (113), (114) we obtain

lim
z−→∞

U(z, ψ(x+ z)) = lim
z−→∞

(∫ z

zi

ŷ

2µ2
h′2(k(u)) du h1(ψ(x+ z)) +B(zi)h2(ψ(x+ z))

−
∫ z

zi

ŷ

2µ2
h′1(k(u)) du h2(ψ(x+ z))

)
= Vµ(x) + lim

z−→∞

(
B(zi)h2(ψ(x+ z))−

∫ ∞
zi

ŷ

2µ2
h′1(k(u)) du 2µe−βγ(x+z)

)
= Vµ(x)− lim

z−→∞

(
p

ψ′(zi)
h1(ψ(zi)) +

∫ ∞
zi

h′1(k(u)) du

)
ŷ

µ
e−βγ(x+z).

Since γ < 0, the function U satisfies (105) if and only if zi satisfies (94), or equivalently if
zi = z∗i . Therefore, a smooth solution (U, zi, k) to (100)-(105) satisfies U(z, y) = A(z)h1(y)+
B(z)h2(y) on {(z, y), z ∈ R, ψ(z) < y < k(z)} and the relations (70), (72), (107), (108) with
k = k∗ (and thus zi = z∗i ). Conversely, a computation shows that U(z, y) = A(z)h1(y) +
B(z)h2(y) on {(z, y), z ∈ R, ψ(z) < y < k(z)} and the relations (70), (72), (107), (108)
with k = k∗ is a solution to the system (100)-(105).

Finally, from Proposition 8.11, k1 and k2 in (95) are increasing so that, b∗ in (96) is indeed
a well defined function which is not differentiable at yi∗ from assertion (iii) of Proposition
8.11. Then, using the change of variable z = φ(y)−x, we obtain that (V, y∗i , b

∗) is a solution
to the system (12)-(17). Observe that the uniqueness of the function V comes from the
uniqueness of the function b∗ that follows from condition (105). 2

Proceeding as in the previous section, we show the following

Proposition 8.13 The function V defined in Proposition 8.12 satisfies the assumptions of
Lemma 8.9 and thus V ≥ V ∗.

Proof of Proposition 8.13. The proof relies on arguments developed in Proposition
8.7. We first show that the function V is C1 on the domain (0,∞) × (−µ, µ) and is C2

on the domain (0,∞) × (−µ, µ) \ {(b∗(yi∗), yi∗)}. By construction, V is twice continuously
differentiable on any open set in (0,∞) × (−µ, µ) away from the set {(x, y), x = b∗(y)}.
Since b∗ is differentiable on (y∗, µ) \ {yi∗}, we can proceed as in the proof of Proposition 8.7
to prove that V is of class C2 on [0,∞) × (−µ, µ) \ {(b∗(yi∗), yi∗)}. Also by construction,
the study of the C1-differentiability of V ∗ does not involve the derivative of b∗: to establish
that V is C1 on (0,∞) × (−µ, µ), it is sufficient to check that A and B are continuously
differentiable at z∗i . For the continuity of A (or equivalently of B) at z∗i , observe that (70)
and (91) evaluated at z∗i , lead to (98). The differentiability of A and B at z∗i comes from
(66) and (97). Thus, V is twice differentiable almost everywhere.

Second, let us fix any y ∈ (y∗, µ). We deduce from the proof of Proposition 8.7 that the
mapping x→ V (x, y) is concave on [0,∞) \ {φ(y)− z∗i } if and only if

(k∗)
′
(φ(y)− x)(h2(k∗(φ(y)− x)h1(y)− h1(k∗(φ(y)− x)h2(y)) < 0. (115)

Note that (115) is well defined since φ(y) − x 6= z∗i on the considered domain, such that
the derivative of k∗ is well defined. The reasoning developed in the proof of Proposition 8.7
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shows that (115) holds true. Now, because V is linear in x outside {x < b∗(y)} and that
Vx(b

∗(y), y) = 1 for any y ∈ (−µ, µ), we deduce from the concavity of x → V (x, y) that
Vx(x, y) ≥ 1 on [0,∞) \ {φ(y)− z∗i }. Then, because V is C1 on (0,∞)× (−µ, µ), one obtains
that Vx(x, y) ≥ 1 on (0,∞)× (−µ, µ).

Finally, the concavity and C1-differentiability properties together with the fact that
Vx(0, y) ≤ p for any y ∈ (−µ, µ) lead to Vx(x, y) ≤ p on (0,∞)× (−µ, µ).

The arguments developed in the proof of Proposition 8.7 show that LV − rV ≤ 0 on
(0,∞) × (−µ, µ) \ {(b∗(yi∗), yi∗)}. Aggregating all these results, we obtain that, almost
everywhere on (0,∞)× (−µ, µ),

max(LV − rV, 1− Vx, Vx − p) ≤ 0.

Observe also that V satisfies by construction max(−V (0, y), Vx(0, y) − p) = 0 for all y ∈
(−µ, µ).

To conclude, it remains to show that the function V has bounded first derivatives. We
have Vx(x, y) ≤ p on (0,∞)× (−µ, µ) such that (x, y) −→ Vx(x, y) is bounded over [0,∞)×
(−µ, µ). From the expression of V in Proposition 8.12, we deduce that Vy is bounded if and
only if

lim
y−→µ

Vy(x, y) <∞.

That is, as shown in Proposition 8.7, if and only if

lim
z−→∞

1

ψ′(x+ z)
Wz(x, z) <∞,

where W (x, z) = V (x, ψ(x+ z)) = U(z, ψ(x+ z)). Thus, we have that

W (x, z) = A(z)h1(ψ(x+ z)) +B(z)h2(ψ(x+ z))

= A(z∗i )h1(ψ(x+ z)) +B(z∗i )h2(ψ(x+ z))

+

∫ z

z∗i

ŷ

2µ2
h′2(k(u)) du h1(ψ(x+ z))−

∫ z

z∗i

ŷ

2µ2
h′1(k(u)) du h2(ψ(x+ z)).

This leads to
1

ψ′(x+ z)
Wz(x, z) = A(z∗i )h

′
1(ψ(x+ z)) +B(z∗i )h

′
2(ψ(x+ z))

+
ŷ

2µ2
h′2(k(z))

h1(ψ(x+ z))

ψ′(x+ z)
− ŷ

2µ2
h′1(k(z))

h2(ψ(x+ z))

ψ′(x+ z)

+

∫ z

z∗i

ŷ

2µ2
h′2(k(u)) du h′1(ψ(x+ z))−

∫ z

z∗i

ŷ

2µ2
h′1(k(u)) du h′2(ψ(x+ z)),

or, equivalently,

1

ψ′(x+ z)
Wz(x, z) = A(z∗i )h

′
1(ψ(x+ z)) +B(z∗i )h

′
2(ψ(x+ z))

+
ŷσ2

2µ2

h′2(k(z))

h2(ψ(x+ z))
− ŷσ2

2µ2

h′1(k(z))

h1(ψ(x+ z))
+

∫ z

z∗i

ŷ

2µ2
h′2(k(u)) du h′1(ψ(x+ z))

−
∫ z

z∗i

ŷ

2µ2
h′1(k(u)) du h′2(ψ(x+ z)). (116)
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Using (110), (111), (112), we have that

h′1(ψ(x+ z)) ∼
+∞

(γ − 1)eγβ(x+z), h′2(ψ(x+ z)) ∼
+∞
−γe(1−γ)β(x+z),

ŷσ2

2µ2

h′2(k(z))

h2(ψ(x+ z))
∼

+∞
− ŷ

2µ2

1

β
γe(1−γ)βxµeγβxeβz,

ŷσ2

2µ2

h′1(k(z))

h1(ψ(x+ z))
∼

+∞
− ŷ

2µ2

1

β
(1−γ)eγβxµe(1−γ)βxeβz,∫ z

z∗i

h′2(k(u))
ŷ

2µ2
du h′1(ψ(x+ z)) ∼

+∞

ŷ

2µ2
γ

1

β
eγβxe−(γ−1)βxµeβz.

and

lim
z−→∞

∫ z

z∗i

ŷ

2µ2
h′1(k(u)) du h′2(ψ(x+ z)) = lim

z−→∞

(∫ ∞
z∗i

ŷ

2µ2
h′1(k(u)) du h′2(ψ(x+ z))

−
∫ ∞
z

ŷ

2µ2
h′1(k(u)) du h′2(ψ(x+ z))

)
.

Aggregating all these relations in (116), a last computation shows that proving lim
y−→∞

Vy(x, y) <

∞ is equivalent to prove

lim
z−→∞

(
−B(z∗i ) +

ŷ

2µ2

∫ z

z∗i

h′1(k(u)) du

)
γe(1−γ)β(x+z) <∞.

Noting that β > 0 and using (98), we obtain that lim
y−→∞

Vy(x, y) <∞ if and only if z∗i satisfies

(94), which indeed holds true by definition of z∗i and concludes the proof of Proposition 8.13,
from which it follows that V ∗ ≤ V . 2

The next proposition establishes the converse inequality

Proposition 8.14 The function V can be attained by an admissible policy and thus V ≤ V .

Proof of Proposition 8.14. The proof follows exactly the same arguments than those
developed in Proposition 8.8. Let Lb

∗
and L0 positive continuous increasing processes such

that the process
φ(Yt)− φ(y) + x− Lb∗t + L0

t

is reflected in a horizontal direction whenever Xt = b∗(Yt) and whenever Xt = 0. Following
the results of Burdzy and Toby (1995), the processes Lb

∗
t and L0

t are well-defined. Then, the
policies

D∗t =
(
(x− b∗(y))+11y≥y∗ + x11y≤y∗

)
11t=0 + Lb

∗

t 11t>0,

I∗t = L0
t11Yτ0>y∗i 11t>0,

are admissible and a computation based on Itô’s formula yields

V (x, y) = E
[∫ τ0

0

e−rt(dD∗t − dI∗t )

]
which concludes the proof of Proposition 8.14. 2
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Thus, from Propositions 8.13 and 8.14, the function V defined in Proposition 8.12 co-
incides with the value function V ∗ of problem (8). The function b∗ corresponds to the
dividend boundary of the shareholders’ problem (8). The optimal cash reserve process is
reflected along the function b∗ on a horizontal direction in the (x, y)-plane. The threshold y∗i
corresponds to the level of the profitability prospects above which new shares are issued when
cash reserves are depleted. To conclude the proof of our main Theorem 4.1, it remains to
show the properties of the dividend boundary b∗. The next proposition yields these results.

Proposition 8.15 The function b∗ is increasing for y ≤ yi∗ and decreasing for y ≥ yi∗,
where yi∗ = k∗(z∗i ). The function b∗ attains its maximum at yi∗, b∗(yi∗) > xµ, and y∗ > y∗ >
ŷ.

Proof of Proposition 8.15. Given the previous results, we only need to show that b∗ is
increasing over [y∗, yi∗], decreasing over [yi∗, µ) and that y∗ > y∗ > ŷ. First, we show that b∗

is decreasing over [yi∗, µ). Let us introduce the notation b̃(z) ≡ b∗(k∗(z)) = φ(k∗(z))−z with
z > z∗i . Because (k∗)−1 is increasing, we deduce from the relation b∗(y) = b̃((k∗)−1(y)) that,
for any z > z∗i , b̃

′
(z) = (k∗)

′
(z)φ′(k∗(z)) − 1 has the same sign than b∗

′
(y) for any y > yi∗.

In addition, the relation k∗(z) = ψ(b̃(z) + z) leads to (k∗)
′
(z) = (1 + b̃′(z))ψ′(z + b̃(z)),

that is b̃′(z) = k∗
′
(z)

ψ′(z+b̃(z))
− 1. Therefore, to show that b∗ is decreasing over [yi∗, µ), we prove

that k∗
′
(z)

ψ′(z+b̃(z))
− 1 > 0 for any z > z∗i . This latter inequality follows from a computation

developed in Lemma 8.17 in the additional appendix. Then, since b∗ is decreasing on [yi∗, µ)
and b∗(µ) = xµ, we have that b∗(yi∗) > xµ. It remains to show that b∗ is increasing over
[y∗, yi∗] and that y∗ > y∗ > ŷ. We obtain from our previous results that

V (x, y; b∗) = V ∗(x, y) ≥ E
[∫ τ0

0

e−rtdDt

]
= V (x, y; b),

where V (x, y; b∗) is defined in Proposition 8.12, and V (x, y; b) is defined in Proposition 8.6.
Equation (89) defines the process D. In particular we have that

V (b∗(y∗), y∗; b∗) ≥ V (b(y∗), y∗; b) = V (0, y∗; b),

which implies b∗(y∗) ≥ b(y∗). Let us recall that, for y ≤ yi∗ the functions b∗ and b satisfy
(52) and (54). Then, the non crossing property of ordinary differential equations implies
b∗(y) ≥ b(y), for y ≤ yi∗. It then follows from the proof of Lemma 8.5 that the function b∗ is
increasing for y ≤ yi∗ and that y∗ ≥ y∗. The same reasoning than in the proof of Lemma 8.5
shows that y∗ > ŷ. Finally, a computation shows that yi∗ is increasing in the proportional
issuance cost p. Recalling that V (x, y; b∗) = V (x, y; b) for p = p, we then deduce that y∗ > y∗

for 1 < p < p. This concludes the proof of Proposition 8.15. The proof of Theorem 4.1 is
complete. 2
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ONLINE APPENDIX

Proofs of Lemma 8.9 and Lemma 8.4. The proof of Lemma 8.4 follows from a straight-
forward adaptation of the proof of Lemma 8.9 that we show below.

Let us consider a pair of admissible policies D and I and let us write Dt = Dc
t + Dd

t ,
It = Ict + Idt , where Dc

t (resp. Ict ) is the continuous part of Dt (resp. It) and Dd
t (resp. Idt )

is the pure discontinuous part of Dt (resp. It). We recall the dynamics of the cash reserve
process and of the profitability prospects process:

dXt = Yt dt+ σdBt − dDt +
dIt
p

and, dYt =
µ2 − Y 2

t

σ
dBt.

Applying the generalized Itô’s formula to a function V that satisfies the assumptions of
Lemma 8.9, we can write for τ0 = inf{t ≥ 0, Xt = 0},

e−r(t∧τ0)V (Xt∧τ0 , Yt∧τ0) = V (x, y) +

∫ t∧τ0

0

e−rs (LV (Xs−, Ys)− rV (Xs−, Ys)) ds

+

∫ t∧τ0

0

e−rsVx(Xs−, Ys)σdBs +

∫ t∧τ0

0

e−rsVy(Xs−, Ys)
µ2 − Y 2

s

σ
dWs

−
∫ (t∧τ0)

0

e−rsVx(Xs, Ys) dD
c
s −

∫ (t∧τ0)

0

e−rsVx(Xs, Ys)
dIcs
p

+
∑
s≤t∧τ0

e−rs(V (Xs, Ys)− V (Xs−, Ys))(11(∆X)s>0 + 11(∆X)s<0),

where (∆X)s = Xs−Xs− . By assumption, the second term of the right-hand side is negative
and, because V has bounded first derivatives, the two stochastic integrals are centered square
integrable martingales. Taking expectations and using 1 ≤ Vx ≤ p, we obtain

E
[
e−r(t∧τ0)V (Xt∧τ0 , Yt∧τ0)

]
≤ V (x, y)− E

[∫ t∧τ0

0

e−rs dDc
s

]
+ E

[∫ t∧τ0

0

e−rs
dIcs
p

]
+ E

[ ∑
s≤t∧τ0

e−rs(V (Xs, Ys)− V (Xs−, Ys)(11(∆X)s>0 + 11(∆X)s<0))

]
.

Observe that there are two types of jumps for the cash reserve process (Xt)t≥0. When there
is a dividend distribution, (∆X)s < 0 so that Xs− −Xs = Ds −Ds− > 0. When there is an
issue of shares, (∆X)s > 0 and Xs−Xs− = Is−Is−

p
> 0. Therefore, the Mean-Value theorem

gives the existence of a random variable θ ∈ [Xs, Xs−] when Xs− −Xs = Ds −Ds− > 0 and
a random variable η ∈ [Xs−, Xs] when Xs −Xs− = Is−Is−

p
> 0 such that:

• on the set {Xs− −Xs = Ds −Ds−}, V (Xs, Ys)− V (Xs−, Ys) = −Vx(θ, Ys)(Xs− −Xs),

• on the set {Xs −Xs− = Is−Is−
p
}, V (Xs, Ys)− V (Xs−, Ys) = Vx(η, Ys)(Xs −Xs−).

We deduce that,

V (Xs, Ys)− V (Xs−, Ys) = Vx(η, Ys)(
Is − Is−

p
)11(∆X)s>0 − Vx(θ, Ys)(Ds −Ds−)11(∆X)s<0

≤ Is − Is−
p

11(∆X)s>0 − (Ds −Ds−)11(∆X)s<0.
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Finally, we obtain

V (x, y) ≥ E
[
e−r(t∧τ0)V (X(t∧τ0), Y(t∧τ0))

]
+ E

[∫ t∧τ0

0

e−rs (dDs −
dIs
p

)

]
.

In order to get rid of the first term of the right-hand side, we observe that under the
assumptions of Lemma 8.9, we have V (x, y) ≤ V (0, y) + px that implies

E
[
e−r(t∧τ0)V (X(t∧τ0), Y(t∧τ0))

]
≤ e−rtVµ(0) + pE[e−rtXt].

Letting t go to ∞ yields

lim
t→∞

E
[
e−r(t∧τ0)V (X(t∧τ0), Y(t∧τ0))

]
= 0,

and thus

V (x, y) ≥ E
[∫ τ0

0

e−rs (dDs −
dIs
p

)

]
,

which ends the proof of Lemma 8.9. 2

Proof of Lemma 8.5. Observe that the function f defined in (54) does not satisfy the
Lipschitz condition on an open domain containing (x, µ) with x ≥ 0, so that the existence
and uniqueness of a solution to (52), (53) require a specific analysis.

We remark that, the denominator of (54) is strictly positive if and only if x > l1(y) where

l1(y) =
ŷ

µ
φ(y

ŷ

µ
).

Thus, f satisfies a local Lipschitz condition with respect to x in D, where D = {(x, y) ∈
R × (−µ, µ) |x > l1(y)}. Thus, for any (x, y), there exists a unique solution gx,y to (52)
defined on a maximal interval I ⊂ (−µ, µ) passing through (x, y).

Second, the numerator of (54) is strictly positive if and only if32 x > l2(y) where,

l2(y) =
ŷ

µ
φ

(
yŷ

µ− rσ2( ŷ
µ
)2 1
µ

)
.

The function l2 is continuously increasing on [−µ, µ] and satisfies the inequality l2(y) > l1(y)
for any y ∈ (0, µ]. Furthermore, l1(0) = l2(0) = 0 and l1(µ) < l2(µ) = xµ. To see the last
equality, use (39) and remark that 2φ(ŷ) = φ( ŷ

1−rσ2( ŷ
µ

)2 1
µ2

). This leads to l2(µ) = xµ.

We deduce from the above observations, that any solution g to (52) entering in the do-
main {(x, y) ∈ D | l1(y) < x < l2(y)} remains in this domain. Since l2 is bounded above
by xµ on [−µ, µ], it follows also that any solution g to (52) defined on a maximal interval
I and passing through (x0, y0) ∈ {(x, y) ∈ D |x ≥ xµ} is strictly increasing and satisfies
g(y) > l2(y) for all y ∈ I.

32Note that, the definition of ŷ in (35) implies that µ− rσ2( ŷµ )2 1
µ = µ(1− rσ2 1

µ2+2rσ2 ) > 0.
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Now, let (yn)n≥0 an increasing sequence converging to µ. For each n ∈ N there exists
a unique solution gxµ,yn to (52) satisfying gn(xµ) = yn. Let us consider the sequence of
functions (gn)n≥0 defined by the relations{

gn(y) = gxµ,yn(y) ∀y ∈ (0, yn],
gn(y) = xµ ∀y ∈ [yn, µ].

Our previous remarks on the solutions to (52) together with a standard non crossing prop-
erty yield that, (gn)n≥0 is a decreasing sequence of increasing functions defined on (0, µ] and
bounded above by xµ. Thus, it admits a pointwise limit g defined on (0, µ]. The function g
is bounded above by xµ and satisfies g(µ) = xµ. We show below that g satisfies (52).

By construction, for each n ∈ N, for any y ∈ (0, µ) one has

gn(y) = xµ −
∫ µ

y

f(gn(s), s) 11s≤yn ds.

A direct computation shows that, for any fixed y > 0, the mapping x −→ f(x, y) is contin-
uously increasing over {x |x ≥ l2(y)}. We deduce that, for any y ∈ (0, µ),∫ µ

y

lim
n−→∞

f(gn(s), s) 11s≤yn ds =

∫ µ

y

f(g(s), s) ds ≤
∫ µ

y

f(xµ, s) ds <∞,

where the last inequality comes from the fact that the mapping s −→ f(xµ, s) is contin-

uous over (0, µ) with lims−→µ f(xµ, s) = 1
2

1−rσ2( ŷ
µ

)2 1
µ2

r( ŷ
µ

)2
< ∞. It results from the dominated

convergence Theorem that,

g(y) = xµ −
∫ µ

y

f(g(s), s) ds. (117)

Thus, g is defined and increasing on (0, µ], satisfies the ode (52)-(53). A standard extension
argument ensures that g is defined on a maximal interval I ⊂ (−µ, µ) as well.

We show that y∗ ≡ g−1(0) is well defined and satisfies y∗ > ŷ. Take the solution g0,ŷ to
(52) defined on a maximal interval I ⊂ (−µ, µ) passing through (0, ŷ). A computation shows
that the function v1(y) = ŷ

µ
(φ(ŷ) − φ(y)) defined on (−µ, µ) satisfies v1(ŷ) = g0,ŷ(ŷ) = 0

together with the inequality v′1(y) < f(v1(y), y) for any y ∈ (−µ, 0]. We deduce that g0,ŷ(y) >
v1(y) for all y ∈ (ŷ, 0]. From the Cauchy-Lipschitz Theorem it follows that g0,ŷ > gv1(0),0 on
a maximal interval, where gv1(0),0 is the solution to (52) passing through (v1(0), 0).

Now, let us consider the function v2(y) = ŷ
µ
(φ(y ŷ

µ
) + φ(ŷ)) ≥ l2(y) on [0, µ]. Computa-

tions shows that v2(0) = v1(0), v2(µ) = xµ and v′2(y) ≤ f(v2(y), y) for any y ∈ [0, µ]. We
deduce that g0,ŷ(y) ≥ v2(y) for any y ∈ [0, µ]. It follows that g0,ŷ > gv1(0),0 ≥ g which implies
that y∗ ≡ g−1(0) > ŷ.

Finally, we show that g is the unique solution to g′(y) = f(g(y), y) satisfying the boundary
condition g(µ) = xµ. Suppose the contrary, let g and g̃ be two solutions to (52) with
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g(µ) = g̃(µ) = xµ and g̃(y) > g̃(y) over (0, µ). The functions g and g̃ satisfy (117). It follows
that,

g̃(y)− g(y) =

∫ µ

y

f(g(s), s)− f(g̃(s), s) ds. (118)

The right hand side of (118) is strictly positive whereas its left hand side is negative because
the mapping x −→ f(x, y) is increasing for any fixed y > 0, thus, a contradiction.

We now turn to the study of the function k = (φ − b)−1 : [φ(y∗),∞) −→ [y∗, µ). We
observe that

φ′(y)− g′(y) =
σ2

µ2 − y2

1−
yŷ −

(
µ− rσ2

(
ŷ
µ

)2
1
µ

)
ψ
(
µ
ŷ
g(y)

)
yŷ − µψ

(
µ
ŷ
g(y)

)


=
σ2

µ2 − y2

1
µ
rσ2( ŷ

µ
)2ψ

(
µ
ŷ
g(y)

)
−yŷ + µψ

(
µ
ŷ
x
)

is positive for g(y) > max(0, ŷ
µ
φ(g(y) ŷ

µ
), so that φ− b is strictly increasing over [y∗, µ) where

b = max(0, g) with g satisfying (52) and (54). Thus, k = (φ− b)−1 : [φ(y∗),∞) −→ [y∗, µ) is
well defined, increasing and satisfies

k
′
(z) =

1

(φ− b)′(k(z))
=

µ3

ŷrσ2

µ2 − k(z)2

σ2

ψ
(
µ
ŷ
(φ(k(z))− z)

)
µ− yŷ

ŷψ
(
µ
ŷ
(φ(k(z))− z)

) .

Because b > 0 and k = (φ− b)−1 we have that φ(k(z))− z > 0. Because b(y) > ŷ
µ
φ(b(y) ŷ

µ
we

have that ψ
(
µ
ŷ
(φ(k(z))− z)

)
µ−yŷ > 0, so that (z, k(z)) ∈ D̃ = {(z, y) ∈ R×(−µ, µ) |φ(y)−

z > max(0, ŷ
µ
φ(y ŷ

µ
))}. Finally, the relation k = (φ − b)−1 together with lim

y−→µ
b(y) = b(µ) =

xµ <∞ implies that lim
y−→µ

k
−1

(y) =∞ and in turn that lim
z−→∞

k(z) = µ since k is increasing.

Then, posing y = k(z), the relation b(y) = φ(y)−k−1
(y) leads to lim

z−→∞
b(k(z)) = φ(k(z))−z =

xµ.
Conversely, let us consider a C1-function k solution to the ordinary differential equation

(55), (56) on the domain D̃. The function k is increasing so that, b = φ− k−1 is well defined

over (y∗, µ). It is positive since by assumption (z, k(z)) ∈ D̃. A direct computation shows
that b satisfies the ordinary differential equation (55), (56) on the domain D. Thus, we
obtain that b = b and in turn k = k. The proof of Lemma 8.5 is complete. 2

Proof of Lemma 8.10. Since for any y fixed in (−µ, µ), the mapping x −→ V x(x, y) is
concave on [0,∞), we only have to check that V x(0, y) < p for any y ∈ (−µ, µ). Not-

ing that V
′
µ(0) = p and that lim

y−→µ
V x(0, y) = V

′
µ(0), the result follows from the fact
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that the mapping y −→ V x(0, y) is increasing.33 To see that latter point, note that
V (x, y) = U(φ(y) − x, y) where the function U is defined in the proof of Proposition 8.6.
We obtain that V x(0, y) = −Uz(0, φ(y)) and thus that d

dy
V x(0, y) = −φ′(y)Uzz(0, φ(y)). The

result follows since φ is increasing and Uzz(z, y) = ŷ
2µ2
k
′
(z)(h

′′
2(k(z))h1(y) − h′′1(k(z))h2(y))

which we know to be negative from the proof of the concavity of the mapping x −→ V (x, y)
in Proposition 8.7. 2

Proof of Proposition 8.11.

Proof of Assertion (i). A computation shows that the mapping

y −→ G(z, y) = −h′1(y)h2(ψ(z)) + h′2(y)h1(ψ(z)) +
2µ2

ŷ
p

is well defined over [ψ(z),∞), increasing and satisfies the equality G(ψ(z), z) = 2µ2

ŷ
(p−1) < 0

and lim
y−→µ

G(z, y) = +∞. Thus, the function k is well defined over [zi,∞) and satisfies the

inequality k > ψ. Applying the implicit function Theorem, we deduce from the relation
G(z, k(z)) = 0 that, the function k is differentiable and satisfies for any z > zi

k′(z) = ψ′(z)
h′2(k(z))h′1(ψ(z))− h′1(k(z))h′2(ψ(z))

h
′′
1(k(z))h2(ψ(z))− h′′2(k(z)h1(ψ(z))

. (119)

We saw in the proof of Proposition 8.7 that the denominator of the right hand side of (119)
is negative. The numerator of k′ in (119) is also negative. To see this point, remark that
x −→ h′2(x)h′1(y) − h′1(x)h′2(y) is decreasing over [y, µ) since it takes the value 0 at x = y,
and its derivative has the same sign as h2(x)h′1(y) − h1(x)h′2(y) < 0. Thus, k is increasing
over [zi,∞). Then, assertion (i) of Propostion 8.11 follows from the next lemma.

Lemma 8.16 the following holds

(i) ψ(z + xµ) < k(z) ∀z,

(ii) ψ(z + xµ + ε) > k(z) ∀ε > 0 for z sufficiently large.

Proof of Lemma 8.16. We show that, for any z, G(z, ψ(xµ + z)) < 0 and that, for any
ε > 0 and any z sufficiently large, G(z, ψ(xµ + z + ε)) > 0. Computations yield, for x ≥ 0

G(z, ψ(x+ z)) = g1(x) + e−βzg2(x),

with

g1(x) = (−µ
2

ŷ
+ µ)eβγx − (

µ2

ŷ
+ µ)e−(γ−1)βx + p

2µ2

ŷ
,= 2(1− γ)µeβγx − 2γµe−(γ−1)βx + p

2µ2

ŷ
.

g2(x) = (−µ
2

ŷ
+ µ)e−βγx − (

µ2

ŷ
+ µ)e(γ−1)βx + p

2µ2

ŷ

= 2(1− γ)µe−βγx − 2γµe(γ−1)βx + p
2µ2

ŷ
. (120)

33A computation based on (73) and (75) yields lim
y−→µ

V x(0, y) = V
′
µ(0).
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To prove (i) and (ii), we show that the functions g1 and g2 are increasing and satisfiy
g2(xµ) < g1(xµ) = 0. A computation leads to

g′1(x) > 0⇔ e(1−2γ)βx > 1, and g′2(x) > 0⇔ e−(1−2γ)βx < 1.

Both inequalities hold true since (1 − 2γ)β > 0. The relation g1(xµ) = 0 follows from the
definition of xµ. Finally, using (120) and (43) and rearrangging terms yield that

g2(xµ) < 0⇔ g(xµ) > g(xµ) (121)

with g(x) = (1 − γ)(eγβx − e−βγx) and g(x) = γ(e(1−γ)βx − e(γ−1)βx). It is easy to see that
g(0) = g(0) = 0 and that g and g are decreasing. To prove (121), we remark that, for any
x > 0, g′(x) > g′(x). Indeed, this latter inequality is equivalent to

eγβx + e−βγx < eβ(γ−1)x + eβ(1−γ)x,

which, given that −βγ < β(1− γ), follows the properties of the function cosh. 2

Thus, from (i) and (ii) we have that,

∀ε > 0, ∃z, ∀z ≥ z, ψ(z + xµ) < k(z) < ψ(z + xµ + ε).

Assertions (92) and (93) follow by noting that, k(z) = ψ((φ(k(z))− z) + z) and that ψ is a
bounded continuous and increasing function. The proof of assertion (i) is complete.

Proof of Assertion (ii). We start with the existence of a solution z∗i to equation (94). Let
us consider

f(z) =
p

ψ′(z)
h1(ψ(z)) +

∫ ∞
z

h′1(k(u)) du. (122)

To begin, we show that f(z∗i ) > 0 and that lim
z−→∞

f(z) < 0. Since function h′1 is negative

and increasing, we deduce from the inequality ψ < k that∫ ∞
z∗i

h′1(ψ(u)) du <

∫ ∞
z∗i

h′1(k(u)) du. (123)

Thus, to show that f(z∗i ) > 0, we show that

p

ψ′(z∗i )
h1(ψ(ẑ)) +

∫ ∞
z∗i

h′1(ψ(u)) du > 0.

Computations are explicit and yield that (123) is equivalent to

p(1 + e−βz
∗
i )− γ

γ − 1
e−βz

∗
i +

1− γ
γ

> 0. (124)

An easy computation shows that the left hand side of (124) is equal to zero when p = 1.
This implies that f(z∗i ) > 0 for p > 1. We already know that k = ψ when p = 1. We thus
obtained as a by product result that z∗i = ẑ when p = 1.
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We show that lim
z−→∞

f(z) = 0−. From (93), it is sufficient to show that,

p

β
eβγz(1 + e−βz) +

∫ ∞
z

h′1(ψ(u+ xµ)) du < 0 ⇔ p(1 + e−βz) <
1− γ
−γ

eβγxµ .

This latter inequality follows from (45), thus the result. Therefore, there exists z∗i such that
f(z∗i ) = 0.

Uniqueness of z∗i . A direct computation shows that f ′(z) < 0 for z < 0 . Therefore, given
that lim

z−→∞
f(z) < 0, if f has more than one zero, there exists z1 and z2 such that 0 < z1 < z2,

f(z1) = f(z2) = 0 and f ′(z1) > 0 and f ′(z2) < 0. We reason by way of contradiction and
prove that if there are z1 and z2 such that 0 < z1 < z2, f(z1) = f(z2) = 0 and f ′(z1) > 0
then f ′(z2) > 0 which contradicts lim

z−→∞
f(z) < 0.

We consider below g(z) = f(z)h2(ψ(z)) that as the same zeros and the same sign than
f . We have that

g(z) = pσ2 +

∫ ∞
z

h′1(k(u)) du h2(ψ(u)).

Thus,

g′(z) = ψ′(z)h′2(ψ(z))

∫ ∞
z

h′1(k(u)) du− h2(ψ(z))h′1(k(z))

= ψ′(z)h′2(ψ(z))

∫ ∞
z

h′1(k(u)) du− p2µ2

ŷ
− h1(ψ(z))h′2(k(z)),

where the last equality follows from (91). By assumption g(z1) = 0 and g′(z1) > 0, using
(122) we get that

g′(z1)− ph′2(ψ(z1))h1(ψ(z1))− p2µ2

ŷ
− h1(ψ(z1))h′2(k(z1)) > 0.

Any zero z of g satisfies

g′(z) = −ph′2(ψ(z))h1(ψ(z))− p2µ2

ŷ
− h1(ψ(z))h′2(k(z)).

We show that

q1 : z −→ −h′2(ψ(z))h1(ψ(z)) and, q2 : z −→ −h1(ψ(z))h′2(k(z))

are increasing functions which will imply that g′(z2) > 0. We have

sign{q′1(z))} = sign{−2rσ2 − (
µ2

ŷ
− ψ(z))(−µ

2

ŷ
− ψ(z))} = sign{µ2 − ψ2(z)} > 0

Also, we have

q′2(z) = −k′(z)h
′′

2(k(z))h1(ψ(z))− h′1(ψ(z))ψ′(z)h′2(k(z)).

55



It follows that

q′2(z) ≥ 0⇔ k′(z)
2rσ2

µ2 − k(z)2
< ψ′(z)

h′1(ψ(z))h2(k(z))(−µ2

ŷ
− k(z))

−h2(k(z))h1(ψ(z))
. (125)

Using (119), a computation yields that

k′(z)
2rσ2

µ2 − k(z)2
= ψ′(z)

h′1(ψ(z))h2(k(z))(−µ2

ŷ
− k(z))− h1(k(z))h′2(ψ(z))(µ

2

ŷ
− k(z))

h1(k(z))h2(ψ(z))− h2(k(z))h1(ψ(z)
.

(126)
Using (125) and (126), a computation shows that q′2(z) ≥ 0 is equivalent to ψ(z) < k(z),
which we know to be true, thus the result.

Proof of Assertion (iii). Given assertion (i), we only need to prove that the solution k1

to the ordinary differential equation

k′1(z) = Θ(z, k1(z)),

k1(z∗i ) = k2(z∗i ),

with

Θ(z, y) =
µ3

ŷrσ2

µ2 − y2

σ2

ψ
(
µ
ŷ
(φ(y)− z)

)
µ− yŷ

ŷψ
(
µ
ŷ
(φ(y)− z)

)
defined on the domain D̃ = {(z, y) ∈ R × (−µ, µ) |φ(y) − z > max(0, ŷ

µ
φ(y ŷ

µ
))}, is a well

defined continuously differentiable and increasing function over (−∞, z∗i ). We deduce from
the proof of Lemma 8.5 that the ode

k′(z) = Θ(z, k(z)),

k(zi) = yi,

where the couple (zi, yi) satisfies

φ(yi)− zi > max(0,
ŷ

µ
φ(yi

ŷ

µ
)), (127)

has a unique solution that is continuously differentiable and increasing over (−∞, zi). To
establish Assertion (iii), it thus remain to show that the couple (z∗i , k2(z∗i )) satisfies (127).
We deduce from (71) and (72) that this requirement is equivalent to

h′1(k2(z∗i ))h2(ψ(z∗i )) + h′2(k2(z∗i ))h1(ψ(z∗i )) > 0. (128)

Consider first the case z∗i ≤ 0. Let us recall that the mapping y −→ h′1(y)h2(ψ(z)) +
h′2(y)h1(ψ(z)) is increasing and that k2 > ψ. It follows that

h′1(k2(z∗i ))h2(ψ(z∗i )) + h′2(k2(z∗i ))h1(ψ(z∗i )) > h′1(ψ(z∗i ))h2(ψ(z∗i )) + h′2(ψ(z∗i ))h1(ψ(z∗i )).
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The latter term is equal to −2ψ(z∗i ) which is strictly positive, thus, (128) is satisfied. Next,
consider that z∗i > 0. The function k2 satisfies (91). It follows that (128) is equivalent to

h′2(k2(z∗i ))h1(ψ(z∗i )) + µ2

ŷ
p > 0. From the proof of assertion (ii) we know that z∗i satisfies

p
µ2

ŷ
+ h1(ψ(z∗i ))h

′
2(k(z∗i )) > −ph′2(ψ(z∗i ))h1(ψ(z∗i ))− p

µ2

ŷ
.

Then, a direct computation shows that −ph′2(ψ(z∗i ))h1(ψ(z∗i )) − pµ
2

ŷ
> 0 if and only if

ψ(z∗i ) > 0 which is true since we consider z∗i > 0. As a final remark, an easy computation
based on (71) and (119) yields that k′1(z) 6= k′2(z) so that k∗ is not differentiable at z∗i . The
proof of assertion (iii) is complete. 2

The next Lemma completes the proof of Proposition 8.15.

Lemma 8.17 The following holds

k∗
′
(z)

ψ′(z + b̃(z))
− 1 > 0 for any z > z∗i .

Proof of Lemma 8.17. From Proposition 8.11 and Proposition 8.14, we deduce that k∗

satisfies (119). Therefore, to prove Lemma 8.17, we show that

ψ′(z)

ψ′(z + x)

h′2(ψ(z + x))h′1(ψ(z))− h′1(ψ(z + x))h′2(ψ(z))

h
′′
1(ψ(z + x))h2(ψ(z))− h′′2(ψ(z + x))h1(ψ(z))

− 1 < 0.

Computations yield that the latter inequality is equivalent to

h1(ψ(z + x))h2(ψ(z))

(
ψ′(z)(−µ

2

ŷ
− ψ(x+ z))(

µ2

ŷ
− ψ(z))− 2r

h1(ψ(x+ z))h2(ψ(x+ z))

)
+

h2(ψ(z + x))h1(ψ(z))

(
ψ′(z)(−µ

2

ŷ
+ ψ(x+ z))(−µ

2

ŷ
− ψ(z)) +

2r

h1(ψ(x+ z))h2(ψ(x+ z))

)
> 0.

(129)

We remark that

ψ′(z)(−µ
2

ŷ
+ ψ(x+ z))(−µ

2

ŷ
− ψ(z)) +

2r

h1(ψ(x+ z))h2(ψ(x+ z))
> 0, (130)

and

h2(ψ(z + x))h1(ψ(z)) > h1(ψ(z + x))h2(ψ(z)). (131)

A computation shows that the sign of

ψ′(z)(−µ
2

ŷ
+ ψ(x+ z))(−µ

2

ŷ
− ψ(z)) +

2r

h1(ψ(x+ z))h2(ψ(x+ z))

+ψ′(z)(−µ
2

ŷ
− ψ(x+ z))(

µ2

ŷ
− ψ(z))− 2r

h1(ψ(x+ z))h2(ψ(x+ z))

is the same as the sign of −ψ(z) + ψ(x + z) which is positive. It then follows from (129),
(130) and (131) that the mapping y −→ b∗(y) is decreasing over [yi∗, µ).
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