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Definition
Set of axioms used to describe reality (at the microscopic scale)

Axioms

1 State of a system is a normalized vector in a complex Hilbert space u⃗ ∈ H

Information

2 Systems can be combined via tensor products u⃗, v⃗ → u⃗ ⊗ v⃗

Scaling

3 Closed system evolutions are unitaries u⃗ → Uu⃗, U ∈ U(H)

Processing

4 The probability of measuring v⃗ when starting u⃗ is |(v⃗ , u⃗)|2

Information retrieval

What is quantum mechanics?
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Consequences: so what?

• It works! (Lasers, computers, GPS, etc. . . )

• Quantum mechanics is linear
• Closed system quantum mechanics is reversible

Consequences: that’s weird!

• I have superpositions (if u⃗0 and u⃗1 are valid basis states, so is u⃗0+u⃗1√
2 or u⃗0−u⃗1√

2 )

• I cannot copy information ((αu⃗0 + βu⃗1)⊗ (αu⃗0 + βu⃗1) ̸= αu⃗0 ⊗ u⃗0 + βu⃗1 ⊗ u⃗1)
• I cannot erase information (No unitary U can map u⃗0 and u⃗1 to u⃗0)

But it is nonetheless possible to compute

• The classical NAND gate is universal (for
classical computations) but not reversible

• The Toffoli matches the NAND gate
computation but is reversible

Direct consequences from axioms
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The Hadamard gate

H =
1
√

2

(
1 1
1 −1

)

H maps basis vectors to equal weight superpositions

u⃗0 →
1
√

2
(u⃗0 + u⃗1) u⃗1 →

1
√

2
(u⃗0 − u⃗1)

One H gate behaves like a random number generator:

• Pr(u⃗0|Hu⃗0) =
1
2 = |(u⃗0|Hu⃗0)|2

• Pr(u⃗1|Hu⃗0) =
1
2 = |(u⃗1|Hu⃗0)|2.

• Pr(u⃗0|Hu⃗1) =
1
2 = |(u⃗0|Hu⃗1)|2

• Pr(u⃗1|Hu⃗1) =
1
2 = |(u⃗1|Hu⃗1)|2.

Two successive H gates behave like identity

u⃗0
H−→

1
√

2
(u⃗0 + u⃗1)

H−→
1
2
(u⃗0 + u⃗1 + u⃗0 − u⃗1) = u⃗0.

Is that it? Diving into superpositions
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A different view of the Hadamard gate

We can compactly represent the
computation of amplitudes

a = 0 a = 1
x = 0 1/

√
2 1/

√
2

x = 1 1/
√

2 −1/
√

2

which we can rewrite (−1)a.x/
√

2.

And its power

Because contributions (amplitudes) can
be negative,

• Some paths add-up (constructive
interference)

• Some paths cancel each other
(destructive interference)

Using superpositions
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Toffoli gate

The amplitudes can also be computed in
a very compact way:

δx1,a1 × δx2,a2 × δx3,a3⊕(a1.a2)

i.e. is 1 when the input-output relation is
satisfied, and 0 otherwise

Z gate

The amplitudes are written:

δx,a × (−1)a

Using superpositions
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CZ gate

For CZ the amplitude is
(−1)a1.a2δa1,x1δa2,x2

CCZ gate

For CCZ it is (−1)a1.a2.a3δa1,x1δa2,x2δa3,x3

Using superpositions
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Computing amplitudes for small circuits (recursively applying the formulas)

The transition amplitude from a = u⃗⊗n
0 to y = u⃗⊗n

0 corresponds to:

(u⃗⊗n
0 ,CP u⃗⊗n

0 ) =
1
2n

∑
x=(xi )i∈{0,1}n

(−1)P(x) =
1
2n (#{x : P(x) = 0} −#{x : P(x) = 1})

The power of superpositions
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Quantum computers "compute" transition amplitudes

(u⃗⊗n
0 ,CP u⃗⊗n

0 ) =
1
2n

∑
x=(xi )i∈{0,1}n

(−1)P(x) =
1
2n (#{x : P(x) = 0} −#{x : P(x) = 1})

Defining gap(P) for P degree-3 polynomial

gap(P) = #{x : P(x) = 0} −#{x : P(x) = 1}

where P =
∑

αi,j,kxi .xj .xk +
∑

βi,j xi .xj +
∑

γi xi , and αi,j,k , βi,j , γi ∈ {0, 1}.

Hardness

• Classically computing gap(P) is hard (in PP ⊃ NP)
• Computing ngap(P) = gap(P)/2n is also hard
• Quantum computers seem to do it with few gates: ngap(P) = (u⃗⊗n

0 ,CP u⃗⊗n
0 )

The power of superpositions
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Exact computation of ngap(P) is hard

But
Quantum computers do not give access to these values with perfect accuracy, but only to
samples and, additionnally, they can be noisy

• It is still hard to obtain a multiplicative approximation of ngap(f ) in the worst case
• It is thought to be hard on average
• It can become easy for additive approximation for classes of functions that remain hard

multiplicatively
• It can be easy when there is noise

The power of quantum computers is fragile
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1 QC do computations that correspond to exponentially many parallel computations

2 But retrieving the information out of this exponentially many superposed states is tricky
3 QC will not help in all situations
4 Useful QC algorithms need to be designed (or checked) on a case-by-case basis: no easy

black-box approach
5 Keep in mind that we assumed perfect machines (without noise)

Take home messages
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Current Impacts
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Examples of algorithms using coherent QC (large machines, error free)

• Discrete log (exponential)
• Linear algebra with quantum encoded data (possibly exponential, mostly polynomial)
• Search (quadratic)

Examples of algorithms using noisy QC (not quite useful with current machines, but getting
closer)

• Variational Quantum Eigensolver (VQE): optimization problems recast as minimization
of energy / QML

• Quantum Alternating Operator Ansatz (QAOA): combinatorial optimization
• Analog QC: physics simulations, optimization

Quantum cryptography (QKD)

• Protecting information with statistical security (ie. without hardness asumptions)

Some quantum algorithms and more. . .
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On cryptography

• 2016 NIST has started the process of changing the way public key crypto is done to
become post-quantum (ie. quantum resistant)

• Calls issued, some protocols are being standardized
• Major impact on all industries (with increased operational risks)

On computing

• A lot of work is being done to pinpoint possible use-cases
• Assessment of the current power of quantum machines

> Well chosen problem (hard for classical / easy for quantum): supremacy experiment
> Useful problem (but brute force classical simulation): latest IBM Nature paper
> Small scale proof of concept: hard to apprehend the scaling

• Trying to develop a GPU-like approach with HPC coupling

Impacts
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Looking into the future
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Impact your client’s businesses

• Need to account for crypto uncertainty
> People store have long-term valuable documents
> Need to properly upgrade security of systems before it’s too late

• Ensuring that some computations are correct / trusting computations

Impact on your own business

• Dependent on applications
• Algebra + optim: Quite general

Expected imapcts
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Current HW status

• In the hundred’s of qubits non error corrected
• In a zone where there is some battle with classical computing (for well chosen problems)
• Many different architectures where some could potentially arrive faster than expected

Bottlenecks

• Assessment of usefulness of QC requires reanalysing the full computational software
stack

• Takes time and knowledge to know what you are trying to improve
• Improving over state of the art means you know what it is for your problem

When?
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You can (should?) take actions now

• Get an idea with small scale hackathons (to get a first feeling)

• Build small teams that try to take one problem and improve it
• Look where quantum can help
• Work with private companies (when getting inspiration from others / adapting

something described elsewhere)
• Work with academic labs when you want to tackle something that (really) nobody has

looked at before

What?
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Thank you! (time for questions)
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