Understanding and assessing climate-driven mortality risk

Dr Han Li^{1,2}

¹ Centre for Actuarial Studies, Department of Economics University of Melbourne

² Australian Research Council Centre of Excellence in Population Ageing Research (CEPAR)

11 July 2023

Outline of the presentation

D Background information

2 Joint extremes in temperature and mortality

3 Excess mortality under climate scenarios

Cold-related cause-of-death mortality

5 The ultimate research questions

Outline

Background information

2 Joint extremes in temperature and mortality

3 Excess mortality under climate scenarios

- 4 Cold-related cause-of-death mortality
- 5 The ultimate research questions

The link between climate change and human mortality

- Approximately 9 out of every 100 deaths in the world during 2000–2019 were due to extreme cold temperatures.
 A recent study
- During 2000–2019, the mortality burden attributable to extreme temperatures in Australia is estimated to be 11.40% of the total deaths. A recent study
- Between 2030 and 2050, climate change is expected to cause approximately 250,000 additional deaths per year. - WHO

What can insurance do in a changing climate?

Unanticipated adverse claim experience due to climate change can lead to insolvency of insurance and reinsurance companies.

How can climate change kill you?

According to the WHO:

Between 2030 and 2050, climate change is expected to cause approximately 250,000 additional deaths per year.

Weather-related catastrophes (etc. floods, bushfires and earthquakes)

Extreme temperatures (etc. heat waves and cold spells)

Climate-sensitive infectious diseases (etc. malaria disease and vector-borne diseases)

Outline

Background information

2 Joint extremes in temperature and mortality

3 Excess mortality under climate scenarios

- 4 Cold-related cause-of-death mortality
- 5 The ultimate research questions

The key challenge

A key challenge in modeling extreme risks: scarcity of extreme events. Extreme value theory (EVT) tackles this problem by providing results beyond observed values.

• Block Maxima:

Distribution of the sample maximum

• Peaks Over Threshold:

Distribution of values over a high threshold

A simplified example:

Univariate POT:

The temperature is $> 43^\circ$, how likely is it to be $> 45^\circ$?

Bivariate POT:

The temperature is $> 43^{\circ}$, how likely is it that > 20 people die?

Source: Actuaries Climate Index Executive Summary (2018), Page 4, Figure 2

Foundation for science

2018

2018

Foundation for science THE UNIVERSITY OF MELBOURNE

SCOR The Art & Science of Risk

SWP (a)

11 July 2023

We adopt the seasonal ARIMA model which incorporates both non-seasonal and seasonal factors in a multiplicative model, which can be expressed as

 $ARIMA(p,d,q) \times (P,D,Q)_S, \tag{1}$

where:

- *p*, *d*, and *q* denote the order of the AR model, the order of differencing, and the order of the MA model in the non-seasonal part, respectively,
- *P*, *D*, and *Q* denote the order of the AR model, the order of differencing, and the order of the MA model in the seasonal part, respectively, and
- S is the time span of repeating the seasonal pattern. Since we are modeling monthly T90 and T10 time series, S is set to be 12.

11 July 2023

THE UNIVERSITY OF

MELBOURNE

11 July 2023

THE UNIVERSITY OF

MELBOURNE

Foundation for science

11 July 2023

SCOR The Art & Science of Risk

SCOR The Art & Science of Risk

11 July 2023

THE UNIVERSITY OF

MELBOURNE

Similar to T10 and T90, we want to obtain the "noise" in death counts via time series models.

- We fit a seasonal ARIMA model first.
- We include the GARCH component if the resulting residuals fail the Ljung-Box test at 5% level of significance.
- The optimal model is selected based on AIC.

Consider a random variable *X* with distribution *F* on \mathbb{R} and denote by M_n the maximum of a sample of size *n* from *F*. If there exist norming constants $a_n > 0$ and $b_n \in \mathbb{R}$ such that

$$\lim_{n \to \infty} \Pr\left(\frac{M_n - b_n}{a_n} \le y\right) = G(y), \qquad y \in \mathbb{R},$$
(2)

then we say that F belongs to the max-domain of attraction of G, and call G a generalized extreme value (GEV) distribution. The GEV distribution function G must be of the same type as

$$G(y) = \exp\left\{-\left(1+\gamma \frac{y-\mu}{\sigma}\right)_{+}^{-1/\gamma}\right\},\tag{3}$$

where $\mu \in \mathbb{R}$, $\sigma > 0$, and $\gamma \in \mathbb{R}$ are the location, scale, and shape parameters, respectively, and $c_+ = \max(c, 0)$.

11 July 2023

Following the works of Balkema and de Haan (1974) and Pickands (1975), the conditional distribution of the normalized exceedance over a high threshold converges to a generalized Pareto distribution (GPD), that is,

$$\lim_{n \to \infty} \Pr\left(\left.\frac{X - b_n}{a_n} \le y \right| X > b_n\right) = H(y), \qquad y > 0, \tag{4}$$

where *H* is of the same type as

$$H(y) = 1 - \left(1 + \gamma \frac{y - \mu}{\sigma}\right)_{+}^{-1/\gamma},\tag{5}$$

with the location, scale, and shape parameters $\mu \in \mathbb{R}$, $\sigma > 0$, and $\gamma \in \mathbb{R}$. The GPD *H* above is supported on the region of *y* defined by y > 0 and $1 + \gamma \frac{y - \mu}{\sigma} > 0$.

Consider a *d*-dimensional random vector X with distribution F on \mathbb{R}^d and denote by M_n the component-wise maximum of a sample of size n from F. The limit distribution G, called a multivariate GEV distribution, has marginal distributions G_i for $1 \le i \le d$ identical to

$$\lim_{n \to \infty} \Pr\left(\frac{M_n^{(i)} - b_n^{(i)}}{a_n^{(i)}} \le y\right) = G_i(y),\tag{6}$$

which therefore is of the same type as Equation (5).

In practice, it is common to first transform the marginal distributions to a particular distribution before fitting a multivariate GEV distribution. In this paper, we choose the unit Fréchet transformation

$$z = -\frac{1}{\log G_i(y)}.$$
(7)

According to Propositions 5.10 and 5.11 in Resnick (1987), the representation of a multivariate GEV distribution with unit Fréchet margins can be written as

$$G(\mathbf{y}) = \exp\left\{-V(\mathbf{z})\right\},\tag{8}$$

where $V(\cdot)$, the exponent measure, has a functional representation

$$V(\mathbf{z}) = \int_{S_d} \max_{1 \le i \le d} \left(\frac{q_i}{z_i}\right) d\phi(\mathbf{q}), \tag{9}$$

with ϕ being a finite spectral measure on $S_d = \{ \boldsymbol{q} \in \mathbb{R}^d : \|\boldsymbol{q}\| = 1 \}$, and $\|\cdot\|$ representing an arbitrary norm in \mathbb{R}^d . We also impose a constraint such that, for $1 \le i \le d$,

$$\int_{S_d} q_i d\phi(q_i) = 1,$$

but beyond this the spectral measure ϕ is unknown.

he Art & Science of Risk | Foundation for science

Han Li

21/59

(10)

As in this study we focus on assessing the upper tail dependence between temperature and mortality, we adopt the symmetric logistic model for the function V, which is a natural candidate and a commonly used dependence model in bivariate POT studies (see *e.g.* Tawn, 1990; Coles *et al.*, 1999; Rootzén and Tajvidi, 2006). Under the symmetric logistic model,

$$V(z_1, z_2) = (z_1^{-r} + z_2^{-r})^{1/r}, \qquad r \ge 1,$$
(11)

which can be retrieved from Equation (9) with a suitably chosen spectral measure ϕ on S_2 . The exponent measure $V(z_1, z_2)$ determines the strength of dependence between the two margins. In particular, independence is obtained when r = 1, and perfect dependence is obtained as $r \to \infty$.

The multivariate POT theorem then states that, for a random vector **X** distributed by $F \in MDA(G)$, assuming 0 < G(0) < 1 without loss of generality, the conditional distribution of $a_n^{-1}(X - b_n)$ given $X \not\leq b_n$ converges to the multivariate GPD as

$$H(\mathbf{y}) = \frac{1}{-\log G(0)} \log \frac{G(\mathbf{y})}{G(\mathbf{y} \wedge \mathbf{0})},\tag{12}$$

which is defined for all $y \in \mathbb{R}^d$ such that G(y) > 0. In particular, H(y) = 0 for y < 0 and $H(y) = 1 - \frac{\log G(y)}{\log G(0)}$ for y > 0 (Rootzén and Tajvidi, 2006; Rootzén *et al.*, 2018a,b).

The Pickands dependence function $A: [0,1] \rightarrow [0,1]$ is defined as

$$A(\boldsymbol{\omega}) = \int_{S_2} \max\left(\omega q_1, (1-\boldsymbol{\omega})q_2\right) d\boldsymbol{\phi}(\boldsymbol{q}), \qquad 0 \le \boldsymbol{\omega} \le 1, \tag{13}$$

which links the function V through the relation

$$A(\boldsymbol{\omega}) = \frac{V(z_1, z_2)}{z_1^{-1} + z_2^{-1}},\tag{14}$$

with $\omega = \frac{z_2}{z_1+z_2}$. By Equation (10), it is clear that A(0) = A(1) = 1. If two random variables with unit Fréchet margins are independent, then $A(\omega) = 1$ for all $0 \le \omega \le 1$, while if they are perfectly dependent, then $A(\omega) = \max(\omega, 1-\omega)$ for all $0 \le \omega \le 1$.

1.0

Source: Actuaries Climate Index Executive Summary (2018), Page 4, Figure 2

Conclusions

Li, H., Tang, Q., 2022. Joint extremes in temperature and mortality: A bivariate POT approach. North American Actuarial Journal, 26(1), 43–63.

Frequency of extreme hot temperatures → weak impact on death counts

Heatwaves?? A heatwave is generally defined in terms of a consecutive period of excessively hot weather (4 days)

"Harvesting effect" or "Mortality displacement"

A simple measure of monthly hot temperature frequency may not be adequate Frequency of extreme cold weather → stronger impact on older people aged 55–84 and 85+

Cold weather can cause substantial short-term increase in mortality

Epidemics of influenza are likely to be associated with extreme cold weather

The increase in mortality following extreme cold is long lasting

The elderly are more fragile to extreme temperatures

Outline

Background information

2 Joint extremes in temperature and mortality

3 Excess mortality under climate scenarios

4 Cold-related cause-of-death mortality

5) The ultimate research questions

Weekly measure of cold temperature

Figure 1: Weekly measures of extreme cold temperature

11 July 2023

Weekly measure of hot temperature

Figure 2: Weekly measures of extreme hot temperature

2500 -Age group No of deaths 60-69 70-79 80-89 800 -1980 1990 2000 2020 2010 Year

Weekly death counts for males

Figure 3: Weekly death counts for England & Wales: Males

11 July 2023

Weekly death counts for females

Figure 4: Weekly death counts for England & Wales: Females

Coles *et al.* (1999) developed the index χ to measure extreme dependence for bivariate random variables. Assuming that random variables Z_1 and Z_2 have the same marginal distribution F, the index χ is defined as

$$\chi = \lim_{u \uparrow 1} \Pr(F(Z_2) > u | F(Z_1) > u).$$
(15)

Thus, χ denotes the probability of one variable reaching the extreme value given that the other variable has already reached it. If $\chi = 0$, the two variables are said to be asymptotically independent. While for full tail dependence, we have $\chi = 1$.

						Male						
Lag	0		1		2		3					
Age	60–69	70–79	80-89	60–69	70–79	80–89	60–69	70–79	80-89	60–69	70–79	80-89
Tmin	0.000	0.001	0.001	0.087	0.091	0.132	0.037	0.039	0.018	0.014	0.012	0.001
Tmax	0.059	0.076	0.148	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.000	0.001
Female												
Lag		0			1			2			3	
Age	60–69	70–79	80–89	60–69	70–79	80–89	60–69	70–79	80–89	60–69	70–79	80–89
Tmin	0.000	0.001	0.001	0.055	0.092	0.129	0.019	0.039	0.027	0.000	0.001	0.011
Tmax	0.072	0.080	0.130	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001

Table 1: Extreme dependence measure χ based on the bivariate POT analysis

Figure 5: Density functions of excess deaths under different T_{cold} scenarios: Males, 80–89 $\sum_{\text{Mark Source Text}} | \text{Foundation} | \text$

Figure 6: Density functions of excess deaths under different *T_{cold}* scenarios: Males, 60–69

What did we find?

A, Chaudhry., M, Leitschkis., Li, H., Tang, Q., 2023. An EVT Approach to Quantifying Mortality Risk of Extreme Temperatures.

Frequency of extreme hot temperatures \rightarrow impact on older people

Short-term increase in mortality happens immediately after extreme hot temperature events.

Consistent with the impact of heatwaves.

Frequency of extreme cold weather → impact on older people

The increase in mortality following extreme cold is longer lasting

Short-term increase in mortality happens one week after extreme cold temperature events.

The "oldest old" are more fragile to extreme temperatures

Outline

Background information

2 Joint extremes in temperature and mortality

B) Excess mortality under climate scenarios

- 4 Cold-related cause-of-death mortality
- 5) The ultimate research questions

Source: Actuaries Climate Index Executive Summary (2018), Page 4, Figure 2

T10 index for extreme cold temperatures

Climate-driven Mortality Ris

11 July 2023

40/59

T10 index - Central East Atlantic (CEA)

11 July 2023

Cause-of-death definitions based on International Codification of Diseases

Table 2: Codification of five major causes of death

Cause of death	ICD-10 code
Diabetes	E10-E14
External	V01-Y89
Respiratory	J09–J98
Neoplasms	C00–D48
Vascular	I00–I78

Cause of death data

Figure 8: Monthly death counts for ages 85+.

11 July 2023

Foundation

SCOR The Art & Science of Risk THE UNIVERSITY OF

MELBOURNE

Cause of death data - Central East Atlantic (CEA)

11 July 2023

Pairwise dependence structure

A quick introduction to Vine-copula modeling

Key idea: is to construct a flexible dependence structure across variables using pair-copulas as **bivariate building blocks** Aas *et al.* (2009).

Consider a simplified case with three causes of death, namely A, B, and C. Under the vine copula framework, the joint probability distribution f_{ABC} can be expressed as follows

$$f_{ABC} = C_{AC} \times C_{BC} \times C_{AB|C} \times f_A \times f_B \times f_C, \tag{16}$$

where C denotes bivariate pair-copulas and f denotes marginal distributions. As such, the joint density of excess deaths is broken down into a product of **bivariate copulas** and **marginal densities**.

11 July 2023

46/59

A quick introduction to vine copula modeling

AC could be assigned a copula with **upper tail dependence** (*e.g.* Gumbel), *BC* could be assigned a copula with **lower tail dependence** (*e.g.* Clayton) and AB|C could be assigned a copula with **no tail dependence** (*e.g.* Gaussian).

Figure 9: Example of an R-vine tree sequence

In particular, we analyze the distribution of excess deaths at time \mathbf{t} under three temperature scenarios as follows

- The T10 index at time t exceeds its 90th percentile.
- **②** The T10 index at time t 1 exceeds its 90th percentile.
- The *T*10 index at both time *t* and t 1 exceeds its 90th percentile.

Region	Diabetes	External	Neoplasms	Other	Respiratory	Vascular
CEA	1.3%	1.1%	3.9%	28.2%	25.3%	40.2%
CWP	1.3%	3.7%	-1.3%	40.5%	30.2%	25.6%
MID	0.6%	0.9%	-2.6%	14.8%	61.8%	24.4%
SEA	1.2%	2.8%	4.0%	40.1%	11.3%	40.7%
SPL	0.4%	5.7%	4.5%	38.0%	23.0%	28.3%
SWP	1.8%	1.0%	3.3%	44.4%	12.2%	37.3%

Table 3: Excess deaths breakdown by causes: Scenario 1

Region	Diabetes	External	Neoplasms	Other	Respiratory	Vascular
CEA	8.0%	-7.5%	-6.6%	45.5%	47.3%	13.2%
CWP	3.2%	3.3%	-1.0%	35.2%	39.2%	20.1%
MID	-0.6%	-0.3%	-1.9%	-4.2%	117.4%	-10.5%
SEA	0.3%	0.5%	-1.5%	37.4%	23.4%	39.9%
SPL	1.6%	2.7%	-1.8%	-30.9%	40.2%	88.2%
SWP	9.5%	0.4%	-26.4%	102.0%	43.3%	-28.8%

Table 4: Excess deaths breakdown by causes: Scenario 2

Region	Diabetes	External	Neoplasms	Other	Respiratory	Vascular
CEA	2.1%	-0.1%	2.0%	29.9%	32.0%	34.0%
CWP	1.9%	3.4%	-0.9%	35.5%	36.2%	24.0%
MID	0.1%	0.4%	-2.8%	8.3%	81.0%	12.9%
SEA	0.9%	1.9%	2.2%	37.7%	16.8%	40.5%
SPL	1.0%	4.5%	2.3%	15.7%	27.3%	49.1%
SWP	1.2%	0.2%	0.7%	65.5%	13.5%	19.0%

Table 5: Excess deaths breakdown by causes: Scenario 3

Figure 10: Prediction intervals of monthly total deaths at 10th, 50th, and 90th percentiles.

Figure 11: Prediction intervals of monthly cause-specific deaths at 10th, 50th, and 90th percentiles.

11 July 2023

Foundation

SCOR The Art & Science of Risk THE UNIVERSITY OF

MELBOURNE

Figure 12: Prediction intervals of monthly total deaths at 10th, 50th, and 90th percentiles for CEA.

Outline

Background information

2 Joint extremes in temperature and mortality

3 Excess mortality under climate scenarios

4 Cold-related cause-of-death mortality

5 The ultimate research questions

The ultimate research questions

Our result is expected to provide insights into the following questions:

- Who are the excess deaths? Find the age groups that are particularly sensitive to climate change.
- **②** When do excess deaths occur? Determine if more excess deaths occur in winter or summer.
- Where are the excess deaths? Identify regions that are most vulnerable to climate change.

Questions and discussions

Contact emails: han.li@unimelb.edu.au

References

- Aas, K., Czado, C., Frigessi, A., and Bakken, H. (2009). Pair-copula constructions of multiple dependence. *Insurance: Mathematics and Economics*, 44(2), 182–198.
- Balkema, A. A. and de Haan, L. (1974). Residual life time at great age. The Annals of Probability, 2(5), 792-804.
- Coles, S., Heffernan, J., and Tawn, J. (1999). Dependence measures for extreme value analyses. Extremes, 2(4), 339-365.
- Pickands, J. (1975). Statistical inference using extreme order statistics. The Annals of Statistics, 3(1), 119-131.
- Resnick, S. I. (1987). Extreme values, regular variation and point processes. Springer.
- Rootzén, H. and Tajvidi, N. (2006). Multivariate generalized pareto distributions. Bernoulli, 12(5), 917–930.
- Rootzén, H., Segers, J., and Wadsworth, J. L. (2018a). Multivariate generalized pareto distributions: Parametrizations, representations, and properties. *Journal of Multivariate Analysis*, 165, 117–131.
- Rootzén, H., Segers, J., and Wadsworth, J. L. (2018b). Multivariate peaks over thresholds models. *Extremes*, 21(1), 115–145.
- Tawn, J. A. (1990). Modelling multivariate extreme value distributions. *Biometrika*, 77(2), 245–253.

