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The link between climate change and human mortality
Approximately 9 out of every 100 deaths in the world during 2000–2019 were due to extreme
cold temperatures. - A recent study

During 2000–2019 , the mortality burden attributable to extreme temperatures in Australia is
estimated to be 11.40% of the total deaths. - A recent study

Between 2030 and 2050, climate change is expected to cause approximately 250,000
additional deaths per year. - WHO
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What can insurance do in a changing climate?

Unanticipated adverse claim experience due to climate change can lead to insolvency of insurance
and reinsurance companies.
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How can climate change kill you?
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The key challenge

A key challenge in modeling extreme risks: scarcity of extreme events. Extreme value theory
(EVT) tackles this problem by providing results beyond observed values.

Block Maxima:
Distribution of the sample maximum

Peaks Over Threshold:
Distribution of values over a high threshold

A simplified example:

Univariate POT:
The temperature is > 43◦, how likely is it to be > 45◦?
Bivariate POT:
The temperature is > 43◦, how likely is it that > 20 people die?
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Data Description and Modeling

Source: Actuaries Climate Index Executive Summary (2018), Page 4, Figure 2
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Data Description and Modeling
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Data Description and Modeling
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Data Description and Modeling

10

20

30

1968 1978 1988 1998 2008 2018

F
re

q
u

e
n

c
y
 o

f 
te

m
p

e
ra

tu
re

s
 a

b
o
ve

 t
h

e
 9

0
th

 p
e

rc
e

n
ti
le

 (
%

)

SPL (a)

0

10

20

30

1968 1978 1988 1998 2008 2018

F
re

q
u

e
n

c
y
 o

f 
te

m
p

e
ra

tu
re

s
 b

e
lo

w
 t

h
e

 1
0

th
 p

e
rc

e
n

ti
le

 (
%

)

SPL (b)

10

20

30

1968 1978 1988 1998 2008 2018

F
re

q
u

e
n

c
y
 o

f 
te

m
p

e
ra

tu
re

s
 a

b
o
ve

 t
h

e
 9

0
th

 p
e

rc
e

n
ti
le

 (
%

)

SWP (a)

0

10

20

1968 1978 1988 1998 2008 2018

F
re

q
u

e
n

c
y
 o

f 
te

m
p

e
ra

tu
re

s
 b

e
lo

w
 t

h
e

 1
0

th
 p

e
rc

e
n

ti
le

 (
%

)

SWP (b)

Han Li Climate-driven Mortality Risk 11 July 2023 10 / 59



Data Description and Modeling

We adopt the seasonal ARIMA model which incorporates both non-seasonal and seasonal factors
in a multiplicative model, which can be expressed as

ARIMA(p,d,q)× (P,D,Q)S, (1)

where:

p, d, and q denote the order of the AR model, the order of differencing, and the order of the
MA model in the non-seasonal part, respectively,

P, D, and Q denote the order of the AR model, the order of differencing, and the order of the
MA model in the seasonal part, respectively, and

S is the time span of repeating the seasonal pattern. Since we are modeling monthly T90 and
T10 time series, S is set to be 12.
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Data Description and Modeling
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Data Description and Modeling
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Data Description and Modeling
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Data Description and Modeling
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Data Description and Modeling

Similar to T10 and T90, we want to obtain the “noise” in death counts via time series models.

We fit a seasonal ARIMA model first.

We include the GARCH component if the resulting residuals fail the Ljung-Box test at 5%
level of significance.

The optimal model is selected based on AIC.
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Multivariate Extreme Value Theory

Consider a random variable X with distribution F on R and denote by Mn the maximum of a
sample of size n from F. If there exist norming constants an > 0 and bn ∈ R such that

lim
n→∞

Pr
(

Mn −bn

an
≤ y
)
= G(y), y ∈ R, (2)

then we say that F belongs to the max-domain of attraction of G, and call G a generalized extreme
value (GEV) distribution. The GEV distribution function G must be of the same type as

G(y) = exp

{
−
(

1+ γ
y−µ

σ

)−1/γ

+

}
, (3)

where µ ∈ R, σ > 0, and γ ∈ R are the location, scale, and shape parameters, respectively, and
c+ = max(c,0).
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Multivariate Extreme Value Theory

Following the works of Balkema and de Haan (1974) and Pickands (1975), the conditional
distribution of the normalized exceedance over a high threshold converges to a generalized Pareto
distribution (GPD), that is,

lim
n→∞

Pr
(

X−bn

an
≤ y
∣∣∣∣ X > bn

)
= H(y), y > 0, (4)

where H is of the same type as

H(y) = 1−
(

1+ γ
y−µ

σ

)−1/γ

+

, (5)

with the location, scale, and shape parameters µ ∈ R, σ > 0, and γ ∈ R. The GPD H above is
supported on the region of y defined by y > 0 and 1+ γ

y−µ

σ
> 0.
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Multivariate Extreme Value Theory

Consider a d-dimensional random vector X with distribution F on Rd and denote by Mn the
component-wise maximum of a sample of size n from F. The limit distribution G, called a
multivariate GEV distribution, has marginal distributions Gi for 1 ≤ i ≤ d identical to

lim
n→∞

Pr

(
M(i)

n −b(i)n

a(i)n

≤ y

)
= Gi(y), (6)

which therefore is of the same type as Equation (5).
In practice, it is common to first transform the marginal distributions to a particular distribution
before fitting a multivariate GEV distribution. In this paper, we choose the unit Fréchet
transformation

z =− 1
logGi(y)

. (7)
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Multivariate Extreme Value Theory
According to Propositions 5.10 and 5.11 in Resnick (1987), the representation of a multivariate
GEV distribution with unit Fréchet margins can be written as

G(y) = exp{−V(z)} , (8)

where V(·), the exponent measure, has a functional representation

V(z) =
∫

Sd

max
1≤i≤d

(
qi

zi

)
dφ(q), (9)

with φ being a finite spectral measure on Sd = {q ∈ Rd : ∥q∥= 1}, and ∥·∥ representing an
arbitrary norm in Rd. We also impose a constraint such that, for 1 ≤ i ≤ d,∫

Sd

qidφ(qi) = 1, (10)

but beyond this the spectral measure φ is unknown.
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Multivariate Extreme Value Theory

As in this study we focus on assessing the upper tail dependence between temperature and
mortality, we adopt the symmetric logistic model for the function V , which is a natural candidate
and a commonly used dependence model in bivariate POT studies (see e.g. Tawn, 1990; Coles
et al., 1999; Rootzén and Tajvidi, 2006). Under the symmetric logistic model,

V(z1,z2) = (z−r
1 + z−r

2 )1/r, r ≥ 1, (11)

which can be retrieved from Equation (9) with a suitably chosen spectral measure φ on S2. The
exponent measure V(z1,z2) determines the strength of dependence between the two margins. In
particular, independence is obtained when r = 1, and perfect dependence is obtained as r → ∞.
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Multivariate Extreme Value Theory

The multivariate POT theorem then states that, for a random vector X distributed by F ∈ MDA(G),
assuming 0 < G(0)< 1 without loss of generality, the conditional distribution of a−1

n (X−bn)
given X ≰ bn converges to the multivariate GPD as

H(y) =
1

− logG(0)
log

G(y)
G(y∧0)

, (12)

which is defined for all y ∈ Rd such that G(y)> 0. In particular, H(y) = 0 for y < 0 and
H(y) = 1− logG(y)

logG(0) for y > 0 (Rootzén and Tajvidi, 2006; Rootzén et al., 2018a,b).
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Empirical Results

The Pickands dependence function A : [0,1]→ [0,1] is defined as

A(ω) =
∫

S2

max(ωq1,(1−ω)q2)dφ(q), 0 ≤ ω ≤ 1, (13)

which links the function V through the relation

A(ω) =
V(z1,z2)

z−1
1 + z−1

2

, (14)

with ω = z2
z1+z2

. By Equation (10), it is clear that A(0) = A(1) = 1. If two random variables with
unit Fréchet margins are independent, then A(ω) = 1 for all 0 ≤ ω ≤ 1, while if they are perfectly
dependent, then A(ω) = max(ω,1−ω) for all 0 ≤ ω ≤ 1.
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Empirical Results
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Empirical Results

Source: Actuaries Climate Index Executive Summary (2018), Page 4, Figure 2
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Empirical Results
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Conclusions
Li, H., Tang, Q., 2022. Joint extremes in temperature and mortality: A bivariate POT approach.
North American Actuarial Journal, 26(1), 43–63.
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Data Description and Modeling
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Figure 1: Weekly measures of extreme cold temperature
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Data Description and Modeling
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Figure 2: Weekly measures of extreme hot temperature
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Data Description and Modeling
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Figure 3: Weekly death counts for England & Wales: Males
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Data Description and Modeling
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Figure 4: Weekly death counts for England & Wales: Females
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Empirical Results

Coles et al. (1999) developed the index χ to measure extreme dependence for bivariate random
variables. Assuming that random variables Z1 and Z2 have the same marginal distribution F, the
index χ is defined as

χ = lim
u↑1

Pr(F(Z2)> u|F(Z1)> u) . (15)

Thus, χ denotes the probability of one variable reaching the extreme value given that the other
variable has already reached it. If χ = 0, the two variables are said to be asymptotically
independent. While for full tail dependence, we have χ = 1.
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Empirical Results

Table 1: Extreme dependence measure χ based on the bivariate POT analysis

Male

Lag 0 1 2 3

Age 60–69 70–79 80–89 60–69 70–79 80–89 60–69 70–79 80–89 60–69 70–79 80–89

Tmin 0.000 0.001 0.001 0.087 0.091 0.132 0.037 0.039 0.018 0.014 0.012 0.001
Tmax 0.059 0.076 0.148 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.001

Female

Lag 0 1 2 3

Age 60–69 70–79 80–89 60–69 70–79 80–89 60–69 70–79 80–89 60–69 70–79 80–89

Tmin 0.000 0.001 0.001 0.055 0.092 0.129 0.019 0.039 0.027 0.000 0.001 0.011
Tmax 0.072 0.080 0.130 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
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Empirical Results
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Figure 5: Density functions of excess deaths under different Tcold scenarios: Males, 80–89
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Empirical Results
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Figure 6: Density functions of excess deaths under different Tcold scenarios: Males, 60–69
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What did we find?

A, Chaudhry., M, Leitschkis., Li, H., Tang, Q., 2023. An EVT Approach to Quantifying Mortality
Risk of Extreme Temperatures.
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Data Description and Modeling

Source: Actuaries Climate Index Executive Summary (2018), Page 4, Figure 2
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T10 index for extreme cold temperatures
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Figure 7: T10 index over 2000–2018.
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T10 index - Central East Atlantic (CEA)
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Cause-of-death definitions based on International Codification of Diseases

Table 2: Codification of five major causes of death

Cause of death ICD-10 code

Diabetes E10–E14
External V01–Y89
Respiratory J09–J98
Neoplasms C00–D48
Vascular I00–I78
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Cause of death data
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Figure 8: Monthly death counts for ages 85+.
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Cause of death data - Central East Atlantic (CEA)
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Pairwise dependence structure
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A quick introduction to Vine-copula modeling

Key idea: is to construct a flexible dependence structure across variables using pair-copulas as
bivariate building blocks Aas et al. (2009).

Consider a simplified case with three causes of death, namely A, B, and C. Under the vine copula
framework, the joint probability distribution fABC can be expressed as follows

fABC = CAC ×CBC ×CAB|C × fA × fB × fC, (16)

where C denotes bivariate pair-copulas and f denotes marginal distributions. As such, the joint
density of excess deaths is broken down into a product of bivariate copulas and marginal
densities.
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A quick introduction to vine copula modeling

AC could be assigned a copula with upper tail dependence (e.g. Gumbel), BC could be assigned a
copula with lower tail dependence (e.g. Clayton) and AB|C could be assigned a copula with no
tail dependence (e.g. Gaussian).

Figure 9: Example of an R-vine tree sequence
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Three different climate scenarios

In particular, we analyze the distribution of excess deaths at time t under three temperature
scenarios as follows

1 The T10 index at time t exceeds its 90th percentile.
2 The T10 index at time t−1 exceeds its 90th percentile.
3 The T10 index at both time t and t−1 exceeds its 90th percentile.
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Empirical results

Table 3: Excess deaths breakdown by causes: Scenario 1

Region Diabetes External Neoplasms Other Respiratory Vascular

CEA 1.3% 1.1% 3.9% 28.2% 25.3% 40.2%
CWP 1.3% 3.7% -1.3% 40.5% 30.2% 25.6%
MID 0.6% 0.9% -2.6% 14.8% 61.8% 24.4%
SEA 1.2% 2.8% 4.0% 40.1% 11.3% 40.7%
SPL 0.4% 5.7% 4.5% 38.0% 23.0% 28.3%

SWP 1.8% 1.0% 3.3% 44.4% 12.2% 37.3%
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Empirical results

Table 4: Excess deaths breakdown by causes: Scenario 2

Region Diabetes External Neoplasms Other Respiratory Vascular

CEA 8.0% -7.5% -6.6% 45.5% 47.3% 13.2%
CWP 3.2% 3.3% -1.0% 35.2% 39.2% 20.1%
MID -0.6% -0.3% -1.9% -4.2% 117.4% -10.5%
SEA 0.3% 0.5% -1.5% 37.4% 23.4% 39.9%
SPL 1.6% 2.7% -1.8% -30.9% 40.2% 88.2%

SWP 9.5% 0.4% -26.4% 102.0% 43.3% -28.8%
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Empirical results

Table 5: Excess deaths breakdown by causes: Scenario 3

Region Diabetes External Neoplasms Other Respiratory Vascular

CEA 2.1% -0.1% 2.0% 29.9% 32.0% 34.0%
CWP 1.9% 3.4% -0.9% 35.5% 36.2% 24.0%
MID 0.1% 0.4% -2.8% 8.3% 81.0% 12.9%
SEA 0.9% 1.9% 2.2% 37.7% 16.8% 40.5%
SPL 1.0% 4.5% 2.3% 15.7% 27.3% 49.1%

SWP 1.2% 0.2% 0.7% 65.5% 13.5% 19.0%
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Empirical results
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Figure 10: Prediction intervals of monthly total deaths at 10th, 50th, and 90th percentiles.
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Empirical results
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Empirical Results
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Empirical Results
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Figure 11: Prediction intervals of monthly cause-specific deaths at 10th, 50th, and 90th percentiles.
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Empirical results
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Figure 12: Prediction intervals of monthly total deaths at 10th, 50th, and 90th percentiles for CEA.
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The ultimate research questions

Our result is expected to provide insights into the following questions:
1 Who are the excess deaths? – Find the age groups that are particularly sensitive to climate

change.
2 When do excess deaths occur? – Determine if more excess deaths occur in winter or summer.
3 Where are the excess deaths? – Identify regions that are most vulnerable to climate change.
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Questions and discussions

Contact emails: han.li@unimelb.edu.au
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