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Quantification of devastating climate events under climate 
change through novel multivariate bias correction methods
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Compound events

A combination of multiple drivers and/or hazards that contributes
to societal or environmental risk (Zscheischler et al., 2020)

Driver 1 Hazard Impact

Precipitation Saturated soil

Heavy rainfall

Flooding Flood damage

Driver 2

Precondition
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Modelling the dependence

Figure from B. François and M. Vrac, Time of emergence of compound events: contribution of 
univariate and dependence properties

• With climate change, or in the 
simulations, the marginals and the 
dependence structure can change.

• Multivariate bias correction is 
probably necessary to affect both 
the marginals and the dependence.
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• 𝑋𝑁 and 𝑌𝑁 are two samples with bivariate cumulative distribution 
function F, supposedly in the domain of attraction of a bivariate 
extreme value cumulative  distribution function G.

• Sklar’s theorem (1959) : Any multivariate cumulative distribution 
function F can be expressed in terms of its margins 𝐹𝑖 and a copula C : 
𝑭 𝑥1, … , 𝑥𝑑 = 𝑪(𝐹1 𝑥1 , … , 𝐹𝑑 𝑥𝑑 ) with C : [0,1] 𝑑→ [0,1]

• Therefore, we get weak convergence of the marginal distribution 
functions and the copula function

Multivariate extreme value theory
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• This allows us to propose the following approach :

1. Propose a univariate extreme model for the marginals

2. Reduce to uniform margins

3. Determine the copula

• 𝑋𝑁 and 𝑌𝑁 must be i.i.d. and extreme, and (𝑋𝑁, 𝑌𝑁) must be extreme 
in some sense

Copulas and uniform margins
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• July 2021 Belgian/German flooding

(Preconditioned event)

• May/June 2016 French flooding

(Spatially compound event)

• Convective cells

(Multivariate compound event)

Three potential events
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• Data from ERA5 reanalyzes

• Total Precipitation (TP) : daily 
precipitation (mm/day)

• Antecedent Precipitation Index 

(API) : 𝐴𝑃𝐼𝑗 = σ𝑖=1
𝑖=𝑁 𝑘𝑖−1 ∗ 𝑇𝑃𝑗−𝑖  

with k=0.9 and N=30

14th July 2021 flooding

Mm/day
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Data selection for 1D

• For TP : select points above the 
95th quantile, separated by at 
least 2 days

• For API : select points above the 
95th quantile, separated by at 
least D days, with : 

𝜌 𝐴𝑃𝐼𝑗 , 𝐴𝑃𝐼𝑗+𝐷 < 0,1    (D = 20)

Data Selection

Data selection for 2D

• Select (𝑇𝑃𝑖 , 𝐴𝑃𝐼𝑗) with 𝑇𝑃𝑖 > 

𝑄95𝑇𝑃, 𝐴𝑃𝐼𝑗 > 𝑄95𝐴𝑃𝐼 and   

𝑖 − 5 ≤ 𝑗 ≤ 𝑖

• Then select couples separated by 
at least D days, according to the 
highest TP value

Data must be i.i.d. and extreme
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Data selection
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Generalized Pareto Distribution model

With the univariate data selection, 
we can use a Generalized Pareto 
Distribution (GPD) model :

𝐹 𝑥 = 1 − 1 + 𝜉𝑥
−1
𝜉

 with x ≥ 0 and ξ ≠ 0

Parameters are estimated through 
maximum likelihood method
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Quantile plots of GPD adjustment

12መ𝜉 = 0,016 (0,060) መ𝜉 = −0,063 (0,130)



Copula model estimation
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Use maximum likelihood to 
estimate the parameters of all the 
copulas from the selection : 
Gaussian, student, Archimedean

Then select the best copula 
according to the Akaike 
Information Criteria (AIC)

Uniformized API
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Coefficients of extremal dependence

For (U, V) uniform r.v., we define 𝜒 :    𝜒 = lim
𝑢→1

𝑃(𝑉 > 𝑢|𝑈 > 𝑢)

and 𝑃 𝑉 > 𝑢 𝑈 > 𝑢 ≈ 2 −
log 𝐶(𝑢,𝑢)

log 𝑢

Similarly, we can define ҧ𝜒 :   ҧ𝜒 = lim
𝑢→1

2log(1−𝑢)

log ҧ𝐶(𝑢,𝑢)
− 1 

With ҧ𝐶 𝑢, 𝑣 = 1 − 𝑢 − 𝑣 + 𝐶(𝑢, 𝑣)

Here, we have : (𝜒, ҧ𝜒 ) = (0, -0.019) ---> asymptotic independence, close 
to total independence 14



• Univariate return period = inverse of the probability to exceed a 
determined threshold :

𝑇 𝑥14.07 =
1/𝑛

1 − 𝑃(𝑋 ≤ 𝑥14.07)

• When describing a bivariate event by a joint exceedance (AND), the 
return period is defined by :

𝑇𝐵 𝑇𝑃14.07, 𝐴𝑃𝐼14.07  =
1/𝑛

1 − 𝑈𝑇𝑃  −  𝑈𝐴𝑃𝐼  + 𝐶(𝑈𝑇𝑃, 𝑈𝐴𝑃𝐼)

 with 𝑈𝑋 = 𝐹(𝑥14.07) and C the copula

Return periods

15



• We apply the same statistical treatment to CMIP-6 
Historic data (1950-2021) and CMIP-6 Projection 
data (2022-2100)

• For the moment, we have considered only the 
IPSL model, low resolution (ssp585)

𝐹𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑥 = 𝐹𝐸𝑅𝐴(𝐹−1
𝐶𝑀𝐼𝑃𝐻𝑖𝑠𝑡 𝐹𝐶𝑀𝐼𝑃𝑃𝑟𝑜𝑗 𝑥 )

• We get the corrected CDF, and then we perform a 
quantile-quantile correction between the 
corrected CDF and the projection data

CDF-t correction

CDF-t Historic Projection

Model 
(CMIP-6)

𝐹𝐶𝑀𝐼𝑃𝐻𝑖𝑠𝑡 𝐹𝐶𝑀𝐼𝑃𝑃𝑟𝑜𝑗

Reference 
(ERA5)

𝐹𝐸𝑅𝐴 𝐹𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

T T
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Return periods results
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Return periods results
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• Spatial daily precipitation means 
over the Seine and the Loire 
watersheds

• API : 𝐴𝑃𝐼𝑗 = σ𝑖=1
𝑖=𝑁 𝑘𝑖−1 ∗ 𝑇𝑃𝑗−𝑖 

with k=0.9 and N=20

• Same methodology (Data 
selection, GPD model, copula …)

May/June French flooding
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Data selection
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Quantile plots of GPD adjustment

22መ𝜉 = −0,164 (0,116) መ𝜉 = −0,252 (0,109)



Copula model
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Data sets Copula 𝛘 ഥ𝝌

ERA
Survival 
Clayton

0,43 1

Historic
Survival 
Clayton

0,295 1

Projection Joe 0,425 1

Projection 
corrected

Student 0,441 1



Return periods results
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Return periods results
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Next months :

• Multivariate bias correction

• Scale up framework to include more CMIP-6 simulations

• Paper

Next years :

• Apply treatment to convective cells

Next steps
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