Understanding the effect of COVID-19 health disruptions on breast cancer risk

Dr. Ayşe Arık

Department of Actuarial Mathematics and Statistics, Heriot-Watt University, and the Maxwell Institute for Mathematical Sciences, UK

joint work with Andrew Cairns, Erengul Dodd, Angus S Macdonald, Adam Shao, and George Streftaris

Funding from: Predictive Modelling for Medical Morbidity Risk Related to Insurance – SoA Estimating The Impact Of The COVID-19 Pandemic On Breast Cancer Deaths - An Application On Breast Cancer Life Insurance – SCOR Foundation for Science

(B) (B)

Cancer is

• a complex and heterogeneous pathology

A considerable progress in understanding this disease due to

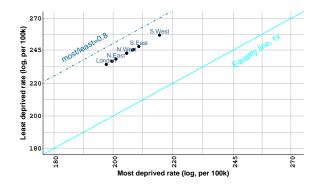
• medical research and data analysis

Better **options available** for people previously considered high-risk, e.g. women with breast cancer history

Particular focus on:

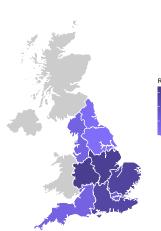
Breast cancer (BC) as it is

- the most common cancer diagnosed in women
- one of the leading causes of death for women
- one of the most **common** conditions amongst critical illness insurance (CII) claims, e.g. 44% of female CII claims in 2014 in the UK


Investigating BC rates in the presence of:

• major disruptions to health services, particularly caused by a catastrophic event, e.g. the COVID-19, preventing or delaying the diagnosis of BC

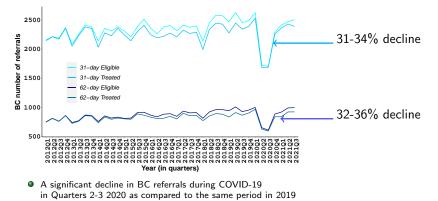
Examining the related insurance products:


actuarial fair premiums

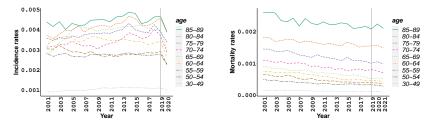
Most v. least deprived by region: BC incidence in England - 2017

- Not a life-style cancer
- Rates for least deprived higher (higher screening?)
- Less regional variation as compared to, e.g., lung cancer

Regional variation: BC mortality in England - 2019

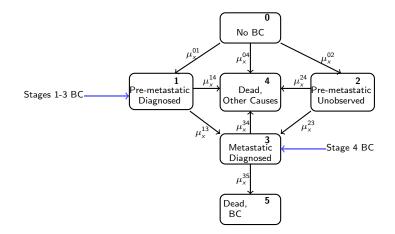

 ✓ Rate is per 10K
 ✓ Deprivation is not significant

What insights we gain from BC data


- **Socio-economic differences** are less relevant as compared to, e.g., lung cancer incidence/mortality
- Not (easily) controllable or preventable risk factors
- Regional inequality exists but relatively low
 - High BC screening awareness
 - National BC screening programme for ages 47-73
- The availability of BC screening is crucial for early diagnosis, as BC can be curable

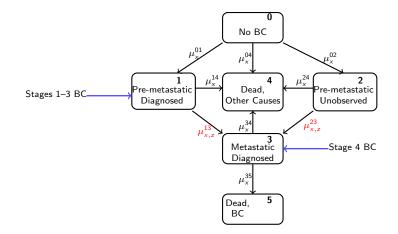
Changes in BC during COVID: referrals in Scotland

- A significant fall, 76%, in 2-week BC referrals in England in April 2020 (NHS, 2023)
- A significant fall, **19%**, in BC registrations between April December 2020 (PHS, 2021)


BC incidence and mortality in England: COVID years

Incidence (left) v. Mortality (right)

- A significant decline in BC incidence, as low as 25% at ages 60–64, in 2020 as compared to the same period in 2019
- An increase in BC mortality from ages 65+, as high as 7%, in 2020 as compared to the same period in 2019


Multi-state model for BC transitions: Markov model

 Treatment is available in 'Pre-metastatic Diagnosed' NOT in 'Pre-metastatic Unobserved'

(3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3)

Multi-state model for BC transitions: semi-Markov model

• Duration dependence in 'Pre-metastatic Diagnosed' and 'Pre-metastatic Unobserved'

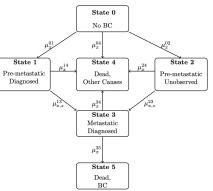
(3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3)

A convenient parametrisation of the model

The onset of BC is

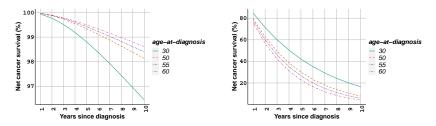
$$\mu_x^{01} + \mu_x^{02} = \mu_x^*$$

where we can write


$$egin{aligned} &\mu_x^{01} &= lpha \, \mu_x^* \ &\mu_x^{02} &= (1-lpha) \, \mu_x^*, \qquad 0 < lpha < 1 \end{aligned}$$

 α : % of diagnosed BC cases

Assume


$$\mu_{x,z}^{13} = \beta \, \mu_{x,z}^{23}, \qquad \beta < 1$$

 β : developing metastatic BC in the absence of treatment

(3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3)

BC net survival, semi-Markov model: pre-Covid rates

Pre-metastatic BC (left) v. Metastatic BC (right)

- Baseline scenarios: 60% of all BC cases diagnosed AND the rate of developing metastatic BC 7 times higher in the absence of treatment
- Net Survival: **ONLY** consider 'Dead, BC' as cause of death **AFTER** BC diagnosis
- An unusual age pattern in pre-metastatic BC net survival
- Lower metastatic BC net survival at older ages

BC model - COVID scenario

In order to quantify the impact of COVID-19 on BC mortality at older ages, we have

• Excess deaths from other causes,

i.e. increase in μ_x^{04}

• Decline in BC diagnosis,

i.e. slowdown in μ_x^{01} and increase in μ_x^{02}

Pandemic period	μ_x^{01}/μ_x^{02}	μ_x^{04}	
		65–84	85–89
April–Nov. 2020	20% decline in α	1.13	1.12
Dec. 2020-Nov. 2021	1	1.13	1.12
Dec. 2021–Dec. 2022	1	1.10	1.09
Jan.–Dec. 2023	1	1.07	1.06
Jan.–Dec. 2024	1	1.04	1.03

Short-term implications up to 5 years

Semi-Markov (S-M) Model v. Markov (M) Model

- 1-3% increase in, 5ρ_x⁰², in 'Pre-metastatic Unobserved', under M pre- ν. post-pandemic calibrations
 AND
 less than 2% under S-M
- 3-6% decline in age-specific, ${}_{5}p_{x}^{01}$, 'Pre-metastatic Diagnosed'
- 3–5% increase in, ${}_5\rho_x^{03}$, 'Metastatic Diagnosed', under M AND

less than 4% increase under S-M

(Vulnerability? Higher deaths from BC and other causes?)

Changes in BC pre- v. post-pandemic

	Excess deaths, per 100K				Years of Life Expectancy Loss			
Age	Dead (Other)	Dead (BC)		Dead (Other)		Dead (BC)	
	State 4		State 5		State 4		State 5	
	М	S-M	М	S-M	M	S-M	М	S-M
65–69	363	363	8	10	7000	7010	152	193
70–74	607	607	7	9	9298	9293	113	138
75–79	1011	1012	8	10	11762	11770	92	116
80–84	1699	1699	7	9	14342	14340	63	76
85–89	2253	2253	5	6	13158	13158	29	35

- 100,000 women in each age group, in 'No BC' at time zero, taken as January 1, 2020
- 3–6% increase in 'Dead from BC' in the semi-Markov (S-M) model; 5–8% increase in the Markov (M) model;

5-8% increase in 'Dead from Other Causes' for women, with 'No BC' at time zero, across different ages over 5 years

Sensitivity analysis

- Change in % of diagnosed BC cases (α) under the semi-Markov model pre- and post-pandemic calibrations
 - $40\% \Rightarrow 3\%$ increase in BC deaths
 - $\,80\% \Rightarrow 9\text{--}12\%$ increase in BC deaths
- Change in the rate of developing metastatic BC in the absence of treatment (β)
 - 5 times higher \Rightarrow 2–5% increase in BC deaths
 - 10 times higher \Rightarrow 3–6% increase in BC deaths
- Change in the level of BC mortality after metastatic BC diagnosis (μ_x^{35})
 - 20% lower OR

20% higher than the pre-pandemic calibration (baseline scenarios)

- 3–6% increase in BC deaths

- More equality in BC as compared to life-style cancers
- A valuable model relating to delays in the provision of BC diagnostic and treatment services
 - Health service provision in different countries in non-pandemic times
 - Impact of a pandemic in different health services
- As compared to the pre-pandemic scenario
 - 3–6% increase in deaths from BC and 5–8% from other causes between ages $65{-}89$
 - Less than a 1% change in the probability of death for women with pre-metastatic BC $(_5\rho_{\rm x}^{15})$
 - A relatively significant change in the probability of death for women with metastatic BC $({}_5p_x^{35})$ as compared to women with pre-metastatic BC
- Duration dependence matters in actuarial applications
- Measuring parameter and model uncertainty?

(B) (B)

Implications of this study

- This study can inform policy makers
 - Implementing evidence-based health interventions
- New medical technologies and early cancer diagnoses improve cancer survival
- Individual level cancer models are relevant to inclusivity and fairness in insurance pricing
- A more detailed modelling framework as compared to one industry-based model (Reynolds and Faye, 2016)
 - Better insights in relation to insurance cash flows: long-term pricing and reserving
- Upcoming pandemics?

- Arık, A., Cairns, A., Dodd, E., Macdonald, A.S., Shao, A., Streftaris, G. Insurance pricing for breast cancer under different multiple state models, under review.
- Arık, A., Cairns, A., Dodd, E., Macdonald, A.S., Streftaris, G. The effect of the COVID-19 health disruptions on breast cancer mortality for older women: A semi-Markov modelling approach, https://arxiv.org/abs/2303.16573.
- Arık, A., Cairns, A., Dodd, E., Macdonald, A.S., Streftaris, G. Estimating the impact of the COVID-19 pandemic on breast cancer deaths among older women, Living to 100 Research Symposium, 16 February 2023, conference monograph.
- Arık, A., Dodd, E., Cairns, A., Streftaris, G. Socioeconomic disparities in cancer incidence and mortality in England and the impact of age-at-diagnosis on cancer mortality, PLOS ONE, 2021.
- Arık, A., Dodd, E., Streftaris, G. Cancer morbidity trends and regional differences in England - a Bayesian Analysis, PLOS ONE, 2020.

< 3 × < 3 ×

Thank You!

Questions?

- E: A.ARIK@hw.ac.uk
- W: https://researchportal.hw.ac.uk/en/persons/ayse-arik

