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June 6, 2022

Abstract

Many decisions under risk involve alternatives with multiple and possibly non-financial

attributes. In this paper, we characterize risk apportionment preferences in a bivariate set-

ting. We distinguish between desirable and undesirable attributes and show how to adapt

the theory to obtain consistent results. We extend the definitions of correlation aversion,

cross-prudence and cross-temperance in terms of simple lotteries to the case of undesir-

able attributes, provide a general characterization based on signs of cross-derivatives of

the utility function, and discuss specific multivariate models for applications. Our results

show how to unlock the powerful machinery of risk apportionment in the many situations

in which decision-makers face undesirable attributes.
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The many faces of multivariate risk-taking

1 Introduction

Risk attitudes are without doubt a crucial determinant of economic and financial decision-

making. Many decisions under risk involve more than a single attribute (see Keeney et al.,

1993). Treatment decisions have financial consequences but also affect people’s health. After

filing one’s taxes, people may be uncertain about the size of the refund but also about how

long they will have to wait to obtain it. In times of a public health crisis, policymakers have to

weigh the economic costs of containment measures against the loss of life. These examples also

illustrate that some attributes are desirable like money, consumption or health, while other

attributes are undesirable like waiting time, costs or the number of fatalities. The distinction

between desirable and undesirable attributes plays a key role in our paper.

While many economists have traditionally been thinking of risk attitude as risk-averse or

risk-loving, so-called higher-order risk attitudes are receiving increased attention. In the early

models of precautionary saving by Leland (1968), Sandmo (1970) and Drèze and Modigliani

(1972), which were later revisited by Kimball (1990), a third-order attitude called prudence

guarantees that income risk leads to precautionary saving. A fourth-order attitude called

temperance ensures less risk-taking in the presence of greater background risk (Kimball, 1993).

Although first received with some skepticism, the notions of prudence and temperance have

now been widely accepted in the economic analysis of decision-making under risk.1

More generally, Ekern (1980) defines the notion of Kth-degree risk aversion as an aversion

to Kth-degree risk increases where K is an integer. While general, his integral conditions

lack intuition and it remains unclear how to test for higher-order risk attitudes in the data.

A breakthrough came with the impactful works of Eeckhoudt and Schlesinger (2006), Eeck-

houdt et al. (2007) and Eeckhoudt et al. (2009), who provide a simple and intuitive way of

understanding higher-order risk preferences via risk apportionment. Two basic types of ap-

portionment preferences arise from their analysis, “combining good with bad” and “combining

good with good and bad with bad” (Deck and Schlesinger, 2014).

In this paper, we provide new results on multivariate risk-taking. We use the powerful tools

of risk apportionment but explicitly distinguish between desirable and undesirable attributes

in our analysis. Our first contribution is to revisit the concepts of correlation aversion, cross-

prudence and cross-temperance (see Eeckhoudt et al., 2009). As Deck and Schlesinger (2014)

say, “restricting any analyses within economic applications to only the first four orders seems

a reasonable approximation.” We start with such an approximation and provide definitions of

correlation aversion, cross-prudence and cross-temperance in terms of simple lotteries. When

one or both attributes are undesirable, some of these definitions need to be adjusted, and

we explain how and why. In the expected utility model, these simple lottery preferences pin

1 Noussair et al. (2014) summarize the many ways in which prudence and temperance affect economic behavior.
Applications include auctions, bargaining, ecological discounting, precautionary saving, investment, rent-
seeking, and prevention.
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down the sign of specific cross-derivatives of the utility function. The approach with simple

lotteries has the advantage that it remains valid even when expected utility falls short from

a descriptive standpoint (see Starmer, 2000).2

Our second contribution is to provide a general characterization of risk apportionment

preferences in the bivariate setting under expected utility. We revisit the univariate case and

explain how to accommodate undesirable attributes. All we need to do is to adjust the “seed

lotteries,” and the rest of Eeckhoudt and Schlesinger’s (2006) risk apportionment theory stays

intact. For an undesirable attribute, decision-makers who prefer to combine good with bad

have all subsequent derivatives of the utility function negative. Decision-makers who prefer

to combine good with good and bad with bad have subsequent derivatives alternating in sign

but starting with a negative instead of a positive (Ebert, 2020). For a desirable attribute,

combining good with bad is characterized by alternating signs whereas combining good with

good and bad with bad is characterized by a consistent positive sign. A reversal occurs when

going from a desirable to an undesirable attribute.

Once we have the univariate apportionment lotteries in place, we characterize risk appor-

tionment preferences across attributes. We use Eeckhoudt et al.’s (2009) approach of appor-

tioning Ekern (1980) risk increases and determine the signs of successive cross-derivatives of

the utility function in three cases. We consider two desirable attributes, one desirable and

one undesirable attribute, and two undesirable attributes. The orders of the risk changes

play different roles in the three cases, and these roles are determined by the apportionment

preferences on the individual attributes. In the expected utility model, it is easy to show that

all three cases can be reconciled with each other. Hence, our results are fully consistent.

Our third contribution is to relate our findings to popular multivariate models. We discuss

multiplicatively separable utility and equivalent monetary utility. In the separable case, the

apportionment preference across attributes is very easy to characterize. If the component

utility functions have the same sign, the decision-maker prefers to combine good with good

and bad with bad. If they have opposite signs, she prefers to combine good with bad. This

insight allows us to construct any of the eight combinations of risk apportionment preferences

studied in this paper for applications.

We proceed as follows. Section 2 outlines the model, defines risk apportionment, and

revisits the single-attribute case. Section 3 defines correlation aversion, cross-prudence and

cross-temperance while distinguishing between desirable and undesirable attributes. Section 4

provides the general theory. Section 5 connects the apportionment preference across attributes

to signs of cross-derivatives of the utility function and reconciles all three cases. Section 6 re-

lates our analysis to Gollier’s (2021) generalized risk apportionment theory. Section 7 presents

specific multivariate models and shows how to implement different combinations of apportion-

ment preferences in applications. A final section concludes.

2 One such example is the recent work by Eeckhoudt et al. (2020) who characterize risk apportionment over
a single attribute in Yaari’s (1987) dual theory of choice under risk.
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2 The model

2.1 Preliminaries

We analyze bivariate preferences. Our analysis can be extended to higher dimensions by fixing

all but two of the attribute levels. Let (x, y) denote a nonnegative vector of attributes with

x ∈ [0, x] and y ∈ [0, y]. The domain of attribute bundles is then given by D = [0, x]× [0, y].3

Previous literature has mainly focused on the case that x and y both represent desirable

attributes, for example, if we interpret x as consumption or final wealth and y as health or

quality of life. We refer to this case as DD where D is shorthand for “desirable.” We revisit

this case as a benchmark and provide some extensions. The decision-maker (DM) is better

off when x increases, when y increases, or when both increase.

We can also consider situations in which x is desirable and y is undesirable. For example,

x can be a monetary payoff and y the time it takes to receive it (waiting time). DMs prefer

higher values of x but lower values of y. This setting is studied in Ebert (2020) under the

assumption that only y is uncertain and x is deterministic. Households face uncertainty

regarding the value of their investments, for which they prefer higher over lower outcomes,

and at the same time uncertainty over potential losses arising from auto and home ownership

or legal liability. For the second attribute, they clearly prefer lower over higher outcomes. We

label this case as DU where U abbreviates “undesirable.” The ordering assumption that the

first attribute is desirable and the second one undesirable is without loss.

Finally we consider the case that both x and y are undesirable and label it as UU. For the

sake of example, imagine a policymaker in times of a public health crisis who considers the

stringency of lockdown measures. These measures affect the economy, potentially resulting

in unemployment and loss of livelihood, but they curb the spread of infectious diseases, thus

mitigating the number of hospitalizations and fatalities. If x denotes unemployment and y

the number of fatalities, then both are undesirable because lower outcomes are preferred over

higher ones for each of the two attributes.

2.2 Risk apportionment

Eeckhoudt and Schlesinger (2006) develop the notion of risk apportionment and Eeckhoudt

et al. (2009) apply it to stochastic dominance. Consider a DM who faces two independent

stochastic changes that are unfavorable but unavoidable. If the DM would rather be exposed

to the two changes in separate states, she exhibits a preference for combining good with bad.

More formally, she prefers the 50-50 lottery that allocates one of the changes to one state and

the other change to the other state over the 50-50 lottery that allocates both changes to the

same state. The preferred lottery combines a relatively good outcome with a relatively bad

outcome in each state whereas the dispreferred lottery has both good outcomes in the same

3 A bounded domain avoids issues of sign permanence, see Scott and Horvath (1980) and Menegatti (2001).
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state and both bad outcomes in the other state. We refer to this preference as combining

good with bad or a preference for harms disaggregation, in short d for “disaggregate.”

Some DMs may have the reverse preference and rather face the two unfavorable changes

in the same state than in different states. They prefer the 50-50 lottery that allocates both

changes to the same state over the 50-50 lottery that allocates one of the changes to one state

and the other change to the other state. Consequently, these DMs prefer to combine the two

relatively good outcomes in one state and the two relatively bad outcomes in the other state

instead of combining relatively good with relatively bad outcomes in the same state. We refer

to this preference as combining good with good and bad with bad or a preference for harms

aggregation, and abbreviate it with a for “aggregate.”4

In the univariate context, DMs who always prefer to disaggregate harms are called mixed

risk-averse whereas DMs who always prefer to aggregate harms are called mixed risk-loving.

Mixed risk aversion was first introduced by Caballé and Pomansky (1996) and Brockett and

Golden (1987) whereas mixed risk lovers have not received much attention until recently, see

Crainich et al. (2013) and Ebert (2013). In a laboratory experiment, Deck and Schlesinger

(2014) provide evidence that the behavior of subjects classified as risk-averse is indeed con-

sistent with mixed risk aversion while the behavior of subjects classified as risk-loving is

consistent with mixed risk loving. Haering et al. (2020) confirm this dichotomy in different

countries and with high stakes, and show that it is strengthened when lotteries are displayed

in compound form instead of reduced form.5

In the bivariate context, DMs have an apportionment preference pertaining to each at-

tribute individually and also an apportionment preference across attributes. Imagine a DM

who always prefers to disaggregate harms. We label this preference as dd-d, where the first

letter refers to the preference on the first attribute, the second letter to the preference on

the second attribute, and the third letter to the preference across attributes. The example

of wealth and health illustrates that a focus on dd-d is too narrow. A common combination

of assumptions is risk aversion over wealth, risk aversion over health, and correlation loving

over wealth and health. In our notation, this corresponds to dd-a because a DM with such

a preference prefers to disaggregate harms pertaining to either wealth or either health but

combines good with good and bad with bad when it comes to a sure reduction in wealth and

a sure reduction in health. Following this reasoning, there is a total of eight possible combi-

nations, dd-d, dd-a, da-d, da-a, ad-d, ad-a, aa-d and aa-a. We take these combinations as the

primitive in our paper. We hope that our research will stimulate future empirical studies to

investigate the relative prevalence of these preferences in the data.

4 Of course, a DM’s preference may not follow either of the two patterns, or one of the patterns in some cases
and the other one in other cases. In this paper, we focus on preferences that are consistent.

5 Bleichrodt and van Bruggen (2021) find a reflection effect for higher-order risk preferences similar to the
reflection effect identified by Kahneman and Tversky (1979). Behavior in their experiment is, in general,
not consistent with a preference for combining good with bad or good with good and bad with bad.
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2.3 Relation to utility of univariate apportionment preferences

Before we consider multivariate risks, we recollect the relation to utility of attribute-specific

risk apportionment preferences. To interpret the signs of successive derivatives of the utility

function in terms of higher-order risk attitudes, we recall Ekern’s (1980) definition of risk

increases. Let K ∈ N be a whole number and let W1 and W2 be two random variables with

values in [0, w]. Denote by F
(1)
1 and F

(1)
2 their respective cumulative distribution functions.

For k ∈ N, define the functions F (k)
1 on [0, w] recursively by setting F

(k+1)
1 (w) =

∫ w
0 F

(k)
1 (t) dt

for w ∈ [0, w], and likewise for W2. We state the following definition.

Definition 1 (Ekern,1980). W2 has more Kth-degree risk than W1 if:

(i) F
(k)
1 (w) = F

(k)
2 (w) for all k = 1, . . . ,K,

(ii) F
(K)
1 (w) ≤ F

(K)
2 (w) for all w ∈ [0, w].

Condition (i) ensures thatW1 andW2 have the same first (K−1) moments. Condition (ii)

implies that theKth moment is larger forW2 than forW1 when sign adjusted by (−1)K . Well-

known special cases include first-order stochastic dominance for K = 1, a mean-preserving

increase in risk for K = 2 (see Rothschild and Stiglitz, 1970), a mean-variance-preserving

increase in downside risk for K = 3 (see Menezes et al., 1980), and a mean-variance-skewness-

preserving increase in outer risk for K = 4 (see Menezes and Wang, 2005).

Under expected utility a unambiguous preference overKth-degree risk increases pins down

the sign of the Kth derivative of the utility function. We formalize this in the next result.

Lemma 1. Let q : [0, w] → R be a real-valued function that is K times continuously differen-

tiable. The following two conditions are equivalent.

(i) For all pairs (W1,W2) such that W2 has more Kth-degree risk than W1, we have

Eq(W1) ≥ Eq(W2).

(ii) For all w ∈ [0, w], we have (−1)K+1q(K)(w) ≥ 0.

Ekern (1980) showed that (ii) implies (i). Following the argument in Denuit et al. (1999),

Jouini et al. (2013) also prove the reverse implication. Ekern (1980) calls DMs who dislike

any increase in Kth-degree risk Kth-degree risk-averse. Analogously, we call DMs who like

any increase in Kth-degree risk Kth-degree risk-loving. When preferences have an expected-

utility representation with a smooth utility function, we can connect the DM’s apportionment

preference on the individual attributes to the notion of Kth-degree risk attitudes.

Let u(x, y) represent the DM’s preferences and consider the DD case, u(1,0) ≥ 0 and

u(0,1) ≥ 0. As shown in Eeckhoudt and Schlesinger’s (2006) main theorem, if the DM prefers

to combine good with bad on x, then (−1)M+1u(M,0) ≥ 0 for all M ≥ 1. She is then Mth-

degree risk-averse on the first attribute at all orders M . This holds for dd-d, dd-a, da-d and

da-a DMs. If the DM prefers to combine good with good and bad with bad on x instead, then
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u(M,0) ≥ 0 for allM ≥ 1, see Deck and Schlesinger (2014). She is thenMth-degree risk-averse

on the first attribute for all M that are odd, and Mth-degree risk-loving on the first attribute

for all M that are even. This holds for ad-d, ad-a, aa-d and aa-a DMs. The same applies,

mutatis mutandis, to the DM’s apportionment preference over y.

Let us now move to the DU case, u(1,0) ≥ 0 and u(0,1) ≤ 0. The signs of the unidirectional

derivatives of u regarding the first attribute are unaffected when going from DD to DU.

For the second attribute, we follow in Eeckhoudt and Schlesinger’s (2006) and Deck and

Schlesinger’s (2014) footsteps. If the DM prefers to combine good with bad on y, we now find

u(0,N) ≤ 0 for all N ≥ 1. She is then Nth-degree risk-loving on the second attribute when

N is odd and Nth-degree risk-averse on the second attribute when N is even. This holds

for dd-d, dd-a, ad-d and ad-a DMs. If the DM prefers to combine good with good and bad

with bad on y instead, we have (−1)N+1u(0,N) ≤ 0 for all N ≥ 1. She is always Nth-degree

risk-loving on the second attribute. This holds for da-d, da-a, aa-d and aa-a DMs.

The signs of u(0,N) coincide with Ebert’s (2020) results who studied the first four orders in

the context of discounting. We show in Appendix A.1 how to obtain all signs via Eeckhoudt

et al.’s (2009) approach of apportioning risk increases. As in the DD case, DMs agree on odd-

order risk preferences but disagree on even-order risk preferences. However, odd-order risk

increases on y switch from being favorable to unfavorable and from unfavorable to favorable

when going from the DD case to the DU case. The reason is that lower values of y are pre-

ferred over higher ones when y is undesirable. When combined with the DM’s apportionment

preference, this affects her higher-order risk attitude at all odd orders.6

3 Lottery preference and relation to utility:

Correlation aversion, cross-prudence and cross-temperance

3.1 Two desirable attributes (case DD)

We begin with the DD case so that both x and y are desirable. For each attribute, an

unfavorable change is then a reduction or a sure loss. We have seen in Section 2.3 that a DM

is averse to mean-preserving spreads on a particular attribute if her apportionment preference

on that attribute is combining good with bad. If it is combining good with good and bad

with bad instead, the DM likes mean-preserving spreads on that attribute. Zero-mean risks

can thus be unfavorable or favorable changes compared to the status quo depending on the

DM’s apportionment preference.

We now characterize the DM’s apportionment preference across attributes with the help

of simple lotteries as in Eeckhoudt et al. (2007). For positive constants k > 0 and ℓ > 0,

6 Menegatti and Peter (2021) observe a similar reversal when comparing the comparative statics of a risky
benefit with that of a risky cost. Courbage and Rey (2016) notice a reversal as well when looking at the
effect of changes in risky health losses on decision thresholds for preventive treatment.
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a DM is called correlation averse if she prefers the lottery [(x − k, y); (x, y − ℓ)] over the

lottery [(x − k, y − ℓ); (x, y)] for all (x, y) ∈ D such that x − k ≥ 0 and y − ℓ ≥ 0, and

correlation loving if she always has the reverse preference. When both attributes are desirable,

correlation aversion is consistent with a preference to disaggregate harms across attributes

whereas correlation loving represents a desire to aggregate harms across attributes. In terms

of our risk apportionment taxonomy, dd-d, da-d, ad-d and aa-d DMs are correlation averters

whereas dd-a, da-a, ad-a and aa-a DMs are correlation lovers. The apportionment preference

on the individual attributes plays no role for this classification.

Let ε̃ be an arbitrary zero-mean risk on x. Eeckhoudt et al. (2007) call a DM cross-prudent

in y if she prefers the lottery [(x + ε̃, y); (x, y − ℓ)] over the lottery [(x + ε̃, y − ℓ); (x, y)] for

all (x, y) ∈ D such that Supp[x + ε̃] ⊆ [0, x] and y − ℓ ≥ 0, and cross-imprudent in y if she

always has the reverse lottery preference.7 There are now two ways to interpret this lottery

preference. If the DM prefers to disaggregate harms on x, then the zero-mean risk ε̃ is a harm

relative to zero and cross-prudence in y represents a preference to disaggregate harms across

attributes. This is Eeckhoudt et al.’s (2007) interpretation. If, however, the DM prefers to

aggregate harms on x, then ε̃ is preferred over zero and cross-prudence in y is a preference

to aggregate harms across attributes. So dd-d, da-d, ad-a and aa-a DMs are cross-prudent

in y whereas dd-a, da-a, ad-d and aa-d DMs are cross-imprudent in y. What matters is

whether the apportionment preference on x is aligned with the apportionment preference

across attributes or not. The apportionment preference on the second attribute y is irrelevant

because a sure loss of ℓ on the second attribute is always unfavorable in the DD case.

Now let δ̃ be an arbitrary zero-mean risk on y. Eeckhoudt et al. (2007) call a DM cross-

prudent in x if she prefers the lottery [(x, y+ δ̃); (x−k, y)] over the lottery [(x−k, y+ δ̃); (x, y)]
for all (x, y) ∈ D such that Supp[y + δ̃] ⊆ [0, y] and x − k ≥ 0, and cross-imprudent in x

if she always has the reverse lottery preference. There are again two ways to interpret this

lottery preference. The first one by Eeckhoudt et al. (2007) relies on the zero-mean risk δ̃

being a harm relative to zero. The second one is for the case that δ̃ is preferred over zero.

For cross-prudence in x, what matters is the apportionment preference on y relative to the

apportionment preference across attributes. If they are aligned, we obtain cross-prudence in x,

which is the case for dd-d, da-a, ad-d and aa-a DMs. If they are not aligned, we obtain cross-

imprudence in x, which is the case for dd-a, da-d, ad-a and aa-d DMs. For cross-prudence in

x, the apportionment preference on x does not play a role because a sure loss of k on the first

attribute is always bad in the DD case.

Let ε̃ be an arbitrary zero-mean risk on x, let δ̃ be an arbitrary zero-mean risk on y, and

let ε̃ and δ̃ be independent. Eeckhoudt et al. (2007) call a DM cross-temperate if she prefers

the lottery [(x+ ε̃, y); (x, y + δ̃)] over the lottery [(x+ ε̃, y + δ̃); (x, y)] for all (x, y) ∈ D such

7 We adopt Eeckhoudt et al.’s (2007) notation and let Supp[x + ε̃] denote the support of the probability
distribution function associated with the random variable x + ε̃. We assume that the realizations of ε̃ are
between −x and x− x almost surely to remain in the domain of the first attribute.
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that Supp[x + ε̃] ⊆ [0, x] and Supp[y + δ̃] ⊆ [0, y], and cross-intemperate if she always has

the reverse lottery preference. The interpretation of this lottery preference now depends on

all three apportionment preferences. If the DM prefers to disaggregate harms on x and y

individually, the lottery preference is consistent with a desire to disaggregate harms across

attributes. This is Eeckhoudt et al.’s (2007) interpretation. However, this lottery preference is

also consistent with disaggregating harms across attributes when the DM prefers to aggregate

harms on x and y individually. The difference is that the harm is now not to receive the

zero-mean risk. Let the individual apportionment preferences on x and y not be aligned,

and assume the DM prefers to disaggregate harms on x but prefers to aggregate harms on

y. Then, ε̃ is a harm relative to zero but δ̃ is preferred over zero. The lottery preference for

cross-temperance can now be understood as a preference to aggregate harms across attributes.

In summary, when the individual apportionment preferences are aligned, cross-temperance

represents a desire to disaggregate harms across attributes. When, however, the individual

apportionment preferences are not aligned, it represents a desire to aggregate harms across

attributes. So dd-d, da-a, ad-a and aa-d DMs are cross-temperate whereas dd-a, da-d, ad-d

and aa-a DMs are cross-intemperate.

When the DM’s preferences can be represented with a bivariate utility function u(x, y),

Eeckhoudt et al. (2007) show that correlation aversion, cross-prudence in x and y, and cross-

temperance can be characterized via the sign of specific cross-derivatives of the utility function.

We use u(M,N)(x, y) to denote ∂M+Nu(x, y)/∂Mx∂Ny forM ≥ 0 and N ≥ 0 withM +N ≥ 1.

In the DD case, we have u(1,0) ≥ 0 and u(0,1) ≥ 0 because both x and y are desirable.

Based on the above discussion and with Eeckhoudt et al.’s (2007) Proposition 1, we can then

sign specific cross-derivatives of the utility function for the various underlying apportionment

preferences. We summarize our findings in the following proposition.

Proposition 1. Consider the case of two desirable attributes (case DD).

(i) DMs with apportionment preferences dd-d, da-d, ad-d or aa-d have u(1,1) ≤ 0 (correlation

aversion), DMs with apportionment preferences dd-a, da-a, ad-a or aa-a have u(1,1) ≥ 0

(correlation loving).

(ii) DMs with apportionment preferences dd-d, da-d, ad-a or aa-a have u(2,1) ≥ 0 (cross-

prudence in y), DMs with apportionment preferences dd-a, da-a, ad-d or aa-d have

u(2,1) ≤ 0 (cross-imprudence in y).

(iii) DMs with apportionment preferences dd-d, da-a, ad-d or aa-a have u(1,2) ≥ 0 (cross-

prudence in x), DMs with apportionment preferences dd-a, da-d, ad-a or aa-d have

u(1,2) ≤ 0 (cross-imprudence in x).

(iv) DMs with apportionment preferences dd-d, da-a, ad-a or aa-d have u(2,2) ≤ 0 (cross-

temperance), DMs with apportionment preferences dd-a, da-d, ad-d or aa-a have u(2,2) ≥
0 (cross-intemperance).
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Table 1 in the appendix collects these signs and organizes them according to the DM’s

apportionment preference. Only DMs who prefer to disaggregate harms, on the individual

attributes as well as across attributes, are correlation averse, cross-prudent in x and y, and

cross-temperate. As soon as one of the apportionment preferences changes, at least some

of the signs flip. For example, we obtain correlation loving, cross-imprudence in x and y,

and cross-intemperance when the DM prefers to combine good with bad on the individual

attributes but prefers to aggregate harms across attributes.

3.2 One desirable and one undesirable attribute (case DU)

We now turn to the DU case so that x is desirable and y is undesirable. A sure reduction is

still an unfavorable change when applied to the first attribute but it is now a favorable change

when applied to the second attribute. In fact, a sure increase is now an unfavorable change of

the second attribute. As explained in Section 2.3, if the DM prefers to combine good with bad

on the second attribute, she is averse to mean-preserving spreads on the second attribute and

zero-mean risks are unfavorable compared to the status-quo. Conversely, if the DM prefers

to combine good with good and bad with bad on y, she likes mean-preserving spreads on y

and zero-mean risks are favorable changes relative to the satus-quo.

Taking into account that y is undesirable, we now define a DM to be correlation averse

if she prefers the lottery [(x − k, y); (x, y + ℓ)] over the lottery [(x − k, y + ℓ); (x, y)] for all

(x, y) ∈ D such that x−k ≥ 0 and y+ℓ ≤ y, and correlation loving if she always has the reverse

preference. As in the DD case, correlation aversion represents a preference to disaggregate

harms across attributes wheres correlation loving represents a desire to aggregate harms across

attributes. What has changed is the definition of a harm on the second attribute because y is

now undesirable. In terms of our classification dd-d, da-d, ad-d and aa-d DMs are correlation

averters whereas dd-a, da-a, ad-a and aa-a DMs are correlation lovers.

Let ε̃ be a zero-mean risk on the first attribute and let ℓ be a sure increase of the second

attribute. We now call a DM cross-prudent in y if she prefers the lottery [(x+ ε̃, y); (x, y+ ℓ)]

over the lottery [(x + ε̃, y + ℓ); (x, y)] for all (x, y) ∈ D such that Supp[x + ε̃] ⊆ [0, x] and

y + ℓ ≤ y, and cross-imprudent in y if she always has the reverse lottery preference. We can

interpret this lottery preference in two ways. If the DM prefers to disaggregate harms on x,

the zero-mean risk is bad relative to zero and cross-prudence in y represents a preference to

disaggregate harms across attributes. If the DM prefers to combine good with good and bad

with bad on x instead, the zero-mean risk is preferred over zero and cross-prudence in y is

consistent with a preference to aggregate harms across attributes. So dd-d, da-d, ad-a and

aa-a DMs are cross-prudent in y whereas dd-a, da-a, ad-d and aa-d DMs are cross-imprudent

in y. As in the DD case, the alignment between the apportionment preference on x and the

apportionment preference across attributes matters. The apportionment preference on y does

not matter for cross-prudence in y because a sure increase of ℓ is always unfavorable.
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Now let δ̃ be a zero-mean risk on y. We call a DM cross-prudent in x if she prefers the

lottery [(x− k, y); (x, y+ δ̃)] over the lottery [(x− k, y+ δ̃); (x, y)] for all (x, y) ∈ D such that

Supp[y+δ̃] ⊆ [0, y] and x−k ≥ 0, and cross-imprudent in x if she always has the reverse lottery

preference. It is now the apportionment preference on y and the apportionment preference

across attributes that matter. If they are aligned, we find cross-prudence in x, if they are

not, we obtain cross-imprudence in x. So dd-d, da-a, ad-d and aa-a DMs are cross-prudent

in x whereas dd-a, da-d, ad-a and aa-d DMs are cross-imprudent in x. The apportionment

preference on x does not play a role because a sure loss of k is always unfavorable.

Let ε̃ and δ̃ be two independent zero-mean risks on x and y. We call a DM cross-temperate

if she prefers the lottery [(x+ ε̃, y); (x, y+ δ̃)] over [(x+ ε̃, y+ δ̃); (x, y)] for all (x, y) ∈ D such

that Supp[x+ ε̃] ⊆ [0, x] and Supp[y+ δ̃] ⊆ [0, y], and cross-intemperate if she always has the

reverse lottery preference. If the DM prefers to combine good with bad on x and y individually,

this lottery preference is consistent with combining good with bad across attributes. The same

holds if the DM prefers to combine good with good and bad with bad on x and y individually.

The stated lottery preference is to rather face the undesirable changes in separate states (i.e.,

not getting the zero-mean risks) instead of taking the chance to face them together. Let the

apportionment preferences on x and y not be aligned, and say the DM prefers to disaggregate

harms on x but prefers to aggregate harms on y. In this case, ε̃ is a harm relative to zero but

δ̃ is preferred over zero. The lottery preference for cross-temperance can now be interpreted

as a preference to aggregate harms across attributes. In summary, dd-d, da-a, ad-a and aa-d

DMs are cross-temperate whereas dd-a, da-d, ad-d and aa-a DMs are cross-intemperate.

Our classification in the DU case is thus identical to the one in the DD case. We achieved

this by adjusting the defining lottery preferences. When we represent preferences with a

bivariate utility function, this affects some of the signs of the cross-derivatives as follows.

Proposition 2. Consider the case in which the first attribute is desirable and the second

attribute is undesirable (case DU).

(i) DMs with apportionment preferences dd-d, da-d, ad-d or aa-d have u(1,1) ≥ 0 (correlation

aversion), DMs with apportionment preferences dd-a, da-a, ad-a or aa-a have u(1,1) ≤ 0

(correlation loving).

(ii) DMs with apportionment preferences dd-d, da-d, ad-a or aa-a have u(2,1) ≤ 0 (cross-

prudence in y), DMs with apportionment preferences dd-a, da-a, ad-d or aa-d have

u(2,1) ≥ 0 (cross-imprudence in y).

(iii) DMs with apportionment preferences dd-d, da-a, ad-d or aa-a have u(1,2) ≥ 0 (cross-

prudence in x), DMs with apportionment preferences dd-a, da-d, ad-a or aa-d have

u(1,2) ≤ 0 (cross-imprudence in x).

(iv) DMs with apportionment preferences dd-d, da-a, ad-a or aa-d have u(2,2) ≤ 0 (cross-

temperance), DMs with apportionment preferences dd-a, da-d, ad-d or aa-a have u(2,2) ≥
0 (cross-intemperance).
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Table 2 in the appendix organizes these signs by the DM’s apportionment preferences. In

Proposition 2(i), the signs for correlation aversion and correlation loving are flipped compared

to Proposition 1(i). A lottery preference of [(x − k, y); (x, y + ℓ)] over [(x − k, y + ℓ); (x, y)]

for all (x, y) ∈ D such that x − k ≥ 0 and y + ℓ ≤ y can be equivalently stated as a lottery

preference of [(x − k, y′ − ℓ); (x, y′)] over [(x − k, y′); (x, y′ − ℓ)] for all (x, y′) ∈ D such that

x − k ≥ 0 and y′ − ℓ ≥ 0. This is a simple change of variables by setting y′ = y + ℓ.

But then we know from Eeckhoudt et al. (2007) that this lottery preference is equivalent to

u(1,1) ≥ 0. Likewise, the signs for cross-prudence in y and cross-imprudence in y are flipped in

Proposition 2(ii) compared to Proposition 1(ii). The same change of variables shows that a

lottery preference of [(x+ ε̃, y); (x, y+ ℓ)] over [(x+ ε̃, y+ ℓ); (x, y)] for all (x, y) ∈ D such that

Supp[x+ ε̃] ⊆ [0, x] and y+ℓ ≤ y, is equivalent to a lottery preference of [(x+ ε̃, y′−ℓ); (x, y′)]
over [(x + ε̃, y′); (x, y′ − ℓ)] for all (x, y′) ∈ D such that Supp[x + ε̃] ⊆ [0, x] and y − ℓ ≥ 0.

Per Eeckhoudt et al. (2007), this is equivalent to u(2,1) ≤ 0. The signs for cross-prudence in

x and cross-temperance are the same in Proposition 2 as in Proposition 1.

Our discussion leading up to Proposition 2 shows that, conceptually, nothing has changed

when we adjust the characterizing lottery preferences accordingly. When we move to the

utility representation, the signs of some cross-derivatives are flipped whereas others remain

unchanged. Take correlation aversion as an example. In the DD case, both attributes are

desirable. It is “riskier” to face a situation in which either both attributes are high or both

are low at the same time instead of a situation in which low values of one attribute are

compensated by high values of the other one. Intuitively, correlation averters should avoid

positive correlation and seek negative correlation to hedge their bets. Now consider the DU

case with one attribute being desirable and the other one undesirable. It is now better to face

a situation in which either both attributes are high or both are low than a situation with one

low and the other one high. When both are high, high values of the undesirable attribute are

compensated by high values of the desirable attribute. When both are low, low values of the

desirable attribute are compensated by low values of the undesirable attribute. Correlation

averters now achieve hedging by avoiding negative correlation and seeking positive correlation.

3.3 Two undesirable attributes (case UU)

In a next step, we look at the UU case in which both x and y are undesirable. Then, a sure

reduction of either attribute is a favorable change for the DM whereas a sure increase in either

attribute is an unfavorable change. As shown in Section 2.3, a preference to combine good

with bad on x implies that the introduction of a zero-mean risk on x is an unfavorable change

compared to the status-quo while it is a favorable change if the DM prefers to combine good

with good and bad with bad on x. The same holds for attribute y.

When both attributes are undesirable, we define a DM to be correlation averse if she

prefers the lottery [(x+k, y); (x, y+ ℓ)] over the lottery [(x+k, y+ ℓ), (x, y)] for all (x, y) ∈ D
such that x + k ≤ x and y + ℓ ≤ y, and correlation loving if she always has the reverse
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preference. Yet again correlation aversion represents a preference to disaggregate harms across

attributes and correlation loving is consistent with aggregating harms across attributes. A

harm is now a sure increase for either attribute. Only the apportionment preference across

attributes matters so that dd-d, da-d, ad-d and aa-d DMs are correlation averters whereas

dd-a, da-a, ad-a and aa-a DMs are correlation lovers. The apportionment preference on the

individual attributes is irrelevant at this stage.

Let ε̃ be a zero-mean risk on the first attribute and let ℓ be a sure increase of the second

attribute. We call a DM cross-prudent in y if she prefers the lottery [(x + ε̃, y); (x, y + ℓ)]

over the lottery [(x + ε̃, y + ℓ); (x, y)] for all (x, y) ∈ D such that Supp[x + ε̃] ⊆ [0, x] and

y + ℓ ≤ y, and cross-imprudent in y if she always has the reverse lottery preference. This

lottery preference has two interpretations. If the DM prefers to disaggregate harms on x, the

zero-mean risk is a harm relative to zero and cross-prudence in y is consistent with harms

disaggregation across attributes. If the DM prefers to aggregate harms on x instead, the zero-

mean risk on x is preferred over zero and cross-prudence in y represents a desire to aggregate

harms across attributes. So dd-d, da-d, ad-a and aa-a DMs are cross-prudent in y whereas dd-

a, da-a, ad-d and aa-d DMs are cross-imprudent in y. As before, the alignment between the

apportionment preference on x and the apportionment preference across attributes matters

while the apportionment preference on y plays no role.

Let δ̃ be a zero-mean risk on the second attribute and k be a sure increase of the first

attribute. We call a DM cross-prudent in x if she prefers the lottery [(x+k, y); (x, y+ δ̃)] over

the lottery [(x+k, y+ δ̃); (x, y)] for all (x, y) ∈ D such that x+k ≤ x and Supp[y+ δ̃] ⊆ [0, y],

and cross-imprudent in x if she always has the reverse lottery preference. What matters is

the alignment between the apportionment preference on y and the apportionment preference

across attributes. We have cross-prudence in x when both are aligned and cross-imprudence

in x when they are not. As a result, dd-d, da-a, ad-d and aa-a DMs are cross-prudent in

x whereas dd-a, da-d, ad-a and aa-d DMs are cross-imprudent in x. The apportionment

preference on x does not matter.

Consider two independent zero-mean risks, ε̃ and δ̃, one on the first attribute x and

the other one on the second attribute y. We call a DM cross-temperate if she prefers the

lottery [(x+ ε̃, y); (x, y + δ̃)] over the lottery [(x+ ε̃, y + δ̃); (x, y)] for all (x, y) ∈ D such that

Supp[x + ε̃] ⊆ [0, x] and Supp[y + δ̃] ⊆ [0, y], and cross-intemperate if she always has the

reverse lottery preference. If the DM prefers to disaggregate harms on x and y individually,

or if she prefers to aggregate harms on x and y individually, the lottery preference represents

combining good with bad across attributes. If the DM’s apportionment preferences on the

individual attributes are not aligned, the lottery preference for cross-temperance is consistent

with combining good with good and bad with bad across attributes. So dd-d, da-a, ad-a and

aa-d DMs are cross-temperate whereas dd-a, da-d, ad-d and aa-a DMs are cross-intemperate.

The classification in the UU case is identical to the classification in the other two cases.

We achieve this by adjusting the defining lottery preferences, specifically in those cases where
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a harm is now a sure increase of the attribute, not a sure reduction. In terms of the utility

representation, the signs of some cross-derivatives are affected by these adjustments as follows.

Proposition 3. Consider the case of two undesirable attributes (case UU).

(i) DMs with apportionment preferences dd-d, da-d, ad-d or aa-d have u(1,1) ≤ 0 (correlation

aversion), DMs with apportionment preferences dd-a, da-a, ad-a or aa-a have u(1,1) ≥ 0

(correlation loving).

(ii) DMs with apportionment preferences dd-d, da-d, ad-a or aa-a have u(2,1) ≤ 0 (cross-

prudence in y), DMs with apportionment preferences dd-a, da-a, ad-d or aa-d have

u(2,1) ≥ 0 (cross-imprudence in y).

(iii) DMs with apportionment preferences dd-d, da-a, ad-d or aa-a have u(1,2) ≤ 0 (cross-

prudence in x), DMs with apportionment preferences dd-a, da-d, ad-a or aa-d have

u(1,2) ≥ 0 (cross-imprudence in x).

(iv) DMs with apportionment preferences dd-d, da-a, ad-a or aa-d have u(2,2) ≤ 0 (cross-

temperance), DMs with apportionment preferences dd-a, da-d, ad-d or aa-a have u(2,2) ≥
0 (cross-intemperance).

Table 3 in the appendix organizes these signs according to the DM’s apportionment prefer-

ence. In Proposition 3(i), the signs for correlation aversion and correlation loving are flipped

compared to Proposition 2(i) and are thus identical to Proposition 1(i). A preference of

[(x + k, y); (x, y + ℓ)] over [(x + k, y + ℓ), (x, y)] for all (x, y) ∈ D such that x + k ≤ x and

y + ℓ ≤ y is equivalent to a preference of [(x′, y′ − ℓ); (x′ − k, y′)] over [(x′, y′), (x′ − k, y′ − ℓ)]

for all (x′, y′) ∈ D such that x′−k ≥ 0 and y′− ℓ ≥ 0. Mathematically, this is a simple change

of variables by letting x′ = x + k and y′ = y + ℓ. It renders the exact same characterizing

lottery preference as in the DD case, which is why we find u(1,1) ≤ 0 for correlation aversion.

The lotteries for cross-prudence in y are identical in the DU and UU cases, the lotteries for

cross-prudence in x are different because the first attribute is desirable in the DU case but

undesirable in the UU case. The cross-temperance lotteries are identical in all three cases.

Conceptually, we obtain the same classification in terms of the DM’s underlying apportion-

ment preference but only because we adjusted some of the characterizing lotteries. Consider

correlation aversion again. In the DD and the UU case, correlation aversion obtains for

u(1,1) ≤ 0. The underlying economic intuition is different. In both cases correlation averters

hedge their bets by avoiding positive correlation and seeking negative correlation. In the DD

case, positive correlation is unappealing because low values of one attribute tend to occur with

low values of the other attribute. Negative correlation insulates the DM against this because

low values of one attribute tend to be compensated by high values of the other one. For UU,

positive correlation is unappealing because high values of one attribute tend to occur with

high values of the other attribute. Negative correlation now helps because high values of one

attribute tend to be compensated by low values of the other one. Even though a negative
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sign on u(1,1) characterizes correlation aversion in both cases, the roles of “high” and “’low”

for the attribute values are reversed due to their different effects on the DM’s welfare. While

this is obvious for correlation attitude, the extension to higher orders is not immediate. The

simple example of correlation attitude also shows that signing cross-derivatives and deriving

economic intuition are two separate steps.

4 The general theory

4.1 Univariate risk apportionment

Eeckhoudt and Schlesinger (2006) define risk apportionment of any order via a specific lottery

preference. Take the first attribute x and assume it is desirable. Let {ε̃i} be an indexed set of

zero-mean nondegenerate random variables, i = 1, 2, 3, . . . , that are all mutually independent,

and let k be a positive constant. Define A1 = [−k], A2 = [ε̃1], and B1 = B2 = [0]. Let Int(z)

denote the greatest-integer function. For M ≥ 3, define the univariate lotteries

AM = [BM−2 + 0; AM−2 + ε̃Int(M/2)],

BM = [AM−2 + 0; BM−2 + ε̃Int(M/2)].

A DM then prefers to combine good with bad on the first attribute if she prefers the lottery

[(x+BM , y)] over the lottery [(x+AM , y)] for all (x, y) ∈ D and such that Supp[x+AM ] ⊆ [0, x]

and Supp[x+BM ] ⊆ [0, x]. She prefers combining good with good and bad with bad on the first

attribute if she always has the reverse lottery preference. This is Eeckhoudt and Schlesinger’s

(2006) Definition 5 of risk apportionment of order M applied to the first attribute.8

Now assume that the first attribute is undesirable. When comparing A1 and B1, we now

see that A1 is preferred over B1 because the DM appreciates a sure reduction of an undesirable

attribute. To rectify this and maintain the iterative definition of higher-order risk preferences,

all we need to do is to replace A1 = [−k] with A1 = [+k]. For an undesirable attribute, a

sure increase is now a harm relative to B1 = [0].

We can then proceed in a similar way regarding the second attribute y. Assume first

that y is desirable. Let {δ̃j} be an indexed set of zero-mean nondegenerate random variables,

j = 1, 2, 3, . . . , that are all mutually independent and also mutually independent of the {ε̃i}.
Let ℓ be a positive constant. Define C1 = [−ℓ], C2 = [δ̃1], and D1 = D2 = [0]. For N ≥ 3,

define the univariate lotteries

CN = [DN−2 + 0; CN−2 + δ̃Int(N/2)],

DM = [CN−2 + 0; DN−2 + δ̃Int(N/2)].

8 For ease of exposition, we take some liberty with the notation. The distribution of the lottery [(x+BM , y)]
is the one that is induced by the distribution of the lottery BM . In other words, the lottery [(x + BM , y)]
has the outcome (x+ b, y) with probability P(BM = b) for all b ∈ Supp[BM ].
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A DM prefers to combine good with bad on the second attribute if she prefers the lottery

[(x, y+DN )] over the lottery [(x, y+CN )] for all (x, y) ∈ D such that Supp[y+CN ] ⊆ [0, y] and

Supp[y+DN ] ⊆ [0, y]. She prefers combining good with good and bad with bad on the second

attribute if she always has the reverse lottery preference. This is Eeckhoudt and Schlesinger’s

(2006) Definition 5 of risk apportionment of order N applied to the second attribute. If y

is undesirable instead, we need to replace C1 = [−ℓ] with C1 = [+ℓ] to keep the iterative

definition of higher-order risk preferences intact.

The main advantage of Eeckhoudt and Schlesinger’s (2006) risk apportionment approach

is its simplicity and elegance. Specifically, higher-order risk preferences can be defined purely

based on a simple lottery preference and no particular representation of preferences is used.

This is what some refer to as “model-free” even though, of course, preferences themselves are

an economic model of choice under risk and reduction of compound lotteries is implicit in the

risk apportionment literature.

4.2 Risk apportionment across attributes

Building on these univariate risk apportionment lotteries, we can now define risk apportion-

ment across attributes. For M,N ≥ 1, we say that preferences satisfy risk apportionment of

order (M,N) if the DM prefers the lottery [(x + BM , y + CN ); (x + AM , y + DN )] over the

lottery [(x+BM , y+DN ); (x+AM , y+CN )] for all (x, y) ∈ D such that Supp[x+AM ] ⊆ [0, x],

Supp[x + BM ] ⊆ [0, x], Supp[y + CN ] ⊆ [0, y] and Supp[y +DN ] ⊆ [0, y]. If the DM always

has the reverse lottery preference, we say that preferences exhibit anti-risk apportionment

of order (M,N). Eeckhoudt and Schlesinger (2006) introduce a terminology for preferences

consistent with risk apportionment and Deck and Schlesinger (2014) use the qualifier “anti”

for the reverse preference.9

We can easily connect this to the analysis of correlation aversion, cross-prudence in x and

y, and cross-temperance in Section 2. Take M = N = 1 and consider A1, B1, C1 and D1. We

have B1 = [0] and D1 = [0]; furthermore, we have A1 = [−k] and C1 = [−ℓ] in the DD case,

A1 = [−k] and C1 = [+ℓ] in the DU case, and A1 = [+k] and C1 = [+ℓ] in the UU case.

Therefore, risk apportionment of order (1, 1) is characterized as follows:
[(x, y − ℓ); (x− k, y)] ≿ [(x, y); (x− k, y − ℓ)], in case of DD,

[(x, y + ℓ); (x− k, y)] ≿ [(x, y); (x− k, y + ℓ)], in case of DU,

[(x, y + ℓ); (x+ k, y)] ≿ [(x, y); (x+ k, y + ℓ)], in case of UU.

These are the lottery preferences we used in Section 2 to characterize correlation aversion in

each case, with the reverse preference characterizing correlation loving. Now take M = 2 and

9 The distribution of the lottery [(x + BM , y + CN )] is the one that is induced by the joint distribution of
(BM , CM ). Due to independence, the lottery has outcome (x+b, y+c) with probability P(BM = b)P(CN = c)
for all b ∈ Supp[BM ] and all c ∈ Supp[CN ].
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N = 1 and consider A2, B2, C1 and D1. We have A2 = [ε̃1], B2 = [0] and D1 = [0]; when y is

desirable, we have C1 = [−ℓ], when y is undesirable, we have C1 = [+ℓ]. Risk apportionment

of order (2, 1) is then characterized via the following lotteries:{
[(x, y − ℓ); (x+ ε̃1, y)] ≿ [(x, y); (x+ ε̃1, y − ℓ)], in case of DD,

[(x, y + ℓ); (x+ ε̃1, y)] ≿ [(x, y); (x+ ε̃1, y + ℓ)], in case of DU or UU.

These are the lottery preferences we used in Section 2 to characterize cross-prudence in y,

with the reverse preference characterizing cross-imprudence in y. For M = 1 and N = 2,

consider A1, B1, C2 and D2. We have B1 = [0], C2 = [δ̃1] and D2 = [0]; when x is desirable,

we have A1 = [−k], when x is undesirable, we have A1 = [+k]. Risk apportionment of order

(1, 2) is then characterized via the following lotteries:{
[(x, y + δ̃1); (x− k, y)] ≿ [(x, y); (x− k, y + δ̃1)], in case of DD or DU,

[(x, y + δ̃1); (x− k, y)] ≿ [(x, y); (x− k, y + δ̃1)], in case of DU.

These are the lottery preferences we used in Section 2 to characterize cross-prudence in x,

with the reverse preference characterizing cross-imprudence in x. Finally, for M = 2 and

N = 2, consider A2, B2, C2 and D2, that is, A2 = [ε̃1], B2 = [0], C2 = [δ̃1] and D2 = [0]. The

distinction between DD, DU and UU is now irrelevant. We can then always characterize

risk apportionment of order (2, 2) via the following lottery preference:{
[(x, y + δ̃1); (x+ ε̃1, y)] ≿ [(x, y); (x+ ε̃1, y + ε̃1)], in case of DD, DU or UU.

This is the lottery preference we used in Section 2 for cross-temperance, with the reverse

preference characterizing cross-intemperance.

Correlation aversion corresponds to risk apportionment of order (1, 1), correlation loving

to anti-risk apportionment of order (1, 1), cross-prudence in y to risk apportionment of order

(2, 1), cross-imprudence in y to anti-risk apportionment of order (2, 1), cross-prudence in x to

risk apportionment of order (1, 2), cross-imprudence in x to anti-risk apportionment of order

(1, 2), cross-temperance to risk apportionment of order (2, 2), and cross-intemperance to anti-

risk apportionment of order (2, 2). When an attribute flips from desirable to undesirable, all

we need to do is swap out the seed lottery and the iterative process and associated taxonomy

stays fully intact. Specifically, if attribute x is undesirable, we need to replace A1 = [−k] with
A1 = [+k]. If attribute y is undesirable, we need to replace C1 = [−ℓ] with C1 = [+ℓ].

The lottery preference of [(x+BM , y+CN ); (x+AM , y+DN )] over [(x+BM , y+DN ); (x+

AM , y+CN )] extends the notions of correlation aversion, cross-prudence in x and y, and cross-

temperance to higher orders. Eeckhoudt et al. (2007) mention in their Footnote 12 that such

an extension is possible but do not carry it out. What’s more, their analysis focuses exclusively

on the DD case. We show that, by defining the seed lotteries A1 and C1 accordingly, the

entire risk apportionment machinery can also be applied to the DU and the UU case. As
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in the univariate analysis, no particular representation of preferences is necessary to define

risk apportionment and anti-risk apportionment of order (M,N). Characterizations of these

lottery preferences can be explored outside the confines of the expected-utility model. If the

expected utility theorem holds, the stated lottery preference can be characterized by signing

the corresponding cross-derivative of the utility function. We will provide this characterization

in the next section based on risk apportionment via stochastic dominance.

5 Relation to utility - The general case

5.1 Two desirable attributes (case DD)

An alternative to the risk apportionment lotteries in Eeckhoudt and Schlesinger (2006) is the

apportionment of risks via stochastic dominance in Eeckhoudt et al. (2009). Consider the

four mutually independent random variables X1, X2, Y1 and Y2. Let X2 have more Mth-

degree risk than X1, and Y2 have more Nth-degree risk than Y1. In the spirit of Eeckhoudt

et al. (2009), we can then assess the DM’s preference over the lotteries [(X1, Y2); (X2, Y1)] and

[(X1, Y1); (X2, Y2)]. The first lottery combines lowMth-degree risk on x with high Nth-degree

risk on y, and high Mth-degree risk on x with low Nth-degree risk on y. The second lottery

combines low Mth-degree risk on x with low Nth-degree risk on y, and high Mth-degree risk

on x with high Nth-degree risk on y. When the DM always prefers the first lottery over the

second one, we obtain (−1)M+N+1u(M,N) ≥ 0 from Lemma 1. If she always has the reverse

lottery preference instead, we obtain (−1)M+N+1u(M,N) ≤ 0 from Lemma 1. We show this

formally in Appendix A.2.

While the lottery preference of [(X1, Y2); (X2, Y1)] over [(X1, Y1); (X2, Y2)] pins down the

sign of (−1)M+N+1u(M,N) unambiguously, the interpretation of this sign depends on the DM’s

apportionment preference on the individual attributes, her apportionment preference across

attributes, as well as on the parity of the orders (i.e., whether M and N are odd or even).

The following result organizes the signs by the DM’s risk apportionment preference.

Theorem 1 (Case DD). Consider the case of two desirable attributes and let M,N ≥ 1.

(i) DMs with apportionment preference dd-d have (−1)M+N+1u(M,N) ≥ 0, DMs with ap-

portionment preference dd-a have (−1)M+N+1u(M,N) ≤ 0.

(ii) DMs with apportionment preference da-d have (−1)Mu(M,N) ≥ 0, DMs with apportion-

ment preference da-a have (−1)Mu(M,N) ≤ 0.

(iii) DMs with apportionment preference ad-d have (−1)Nu(M,N) ≥ 0, DMs with apportion-

ment preference ad-a have (−1)Nu(M,N) ≤ 0.

(iv) DMs with apportionment preference aa-d have u(M,N) ≤ 0, DMs with apportionment

preference aa-a have u(M,N) ≥ 0.
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Appendix A.3 provides the proof. Proposition 1 is a special case of Theorem 1. When the

DM prefers to disaggregate harms on x and y (dd-a and dd-a), her apportionment preference

across attributes depends on whether the total order M +N is odd or even. For M +N odd,

a positive sign on u(M,N) indicates a preference to disaggregate harms across attributes and

a negative sign a preference to aggregate harms across attributes. When M +N is even, the

interpretation of the signs flips. The total order M +N is decisive because DMs who prefer

to combine good with bad on x and y individually will always view [(X1, Y2); (X2, Y1)] as the

lottery that combines good with bad across attributes and [(X1, Y2); (X2, Y1)] as the lottery

that combines good with good and bad with bad across attributes.

When the DM prefers to disaggregate harms on x but aggregate harms on y (da-d and

da-a), her apportionment preference across attributes depends on the parity of M , the order

of the risk change on the first attribute. Similarly, when she prefers to aggregate harms on

x but disaggregate harms on y (ad-d and ad-a), the parity of N is decisive, the order of the

risk change on the second attribute. For these DMs, lottery [(X1, Y2); (X2, Y1)] is not always

the one that combines good with bad across attributes relative to lottery [(X1, Y2); (X2, Y1)].

As we move up the orders, high Nth-degree risk on y is a good thing for da-d and da-a DMs

when N is even, and high Mth-degree risk on x is a good thing for ad-d and ad-a DMs when

M is even. This alternating pattern causes (−1)N+1 to cancel from the condition for da-d

and da-a DMs, and (−1)M+1 to cancel from the condition for ad-d and ad-a DMs.

Finally, when the DM prefers to aggregate harms on x and on y (aa-d and aa-a), the parity

of M , N and M + N are all irrelevant because a negative sign on u(M,N) always indicates

a preference to disaggregate harms across attributes and a positive sign on u(M,N) always

represents a preference to aggregate them. The alternating pattern for each attribute implies

that now both orders vanish and the sign of u(M,N) alone determines the DM’s apportionment

preference across attributes.

5.2 One desirable and one undesirable attribute (case DU)

In a next step, we provide the signs of the cross-derivatives of the utility function when one

attribute is desirable and the other one is undesirable. Section 2.3 provides the link between

risk apportionment preferences on individual attributes and the signs of the unidirectional

derivatives of the utility function. When looking at cross-derivatives, the DU case shows a

different pattern than the DD case. Here is our result.

Theorem 2 (Case DU). Consider the case in which the first attribute is desirable and the

second attribute is undesirable, and let M,N ≥ 1.

(i) DMs with apportionment preference dd-d have (−1)Mu(M,N) ≤ 0, DMs with apportion-

ment preference dd-a have (−1)Mu(M,N) ≥ 0.

(ii) DMs with apportionment preference da-d have (−1)M+N+1u(M,N) ≤ 0, DMs with ap-

portionment preference da-a have (−1)M+N+1u(M,N) ≥ 0.
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(iii) DMs with apportionment preference ad-d have u(M,N) ≥ 0, DMs with apportionment

preference ad-a have u(M,N) ≤ 0.

(iv) DMs with apportionment preference aa-d have (−1)Nu(M,N) ≤ 0, DMs with apportion-

ment preference aa-a have (−1)Nu(M,N) ≥ 0.

Appendix A.4 gives the proof. As in theDD case, we obtain different criteria on the utility

function depending on the DM’s apportionment preference on the individual attributes, her

apportionment preference across attributes, and the parity of the risk changes. How these

criteria are assigned to the DM’s apportionment preference has changed. When the DM prefers

to disaggregate harms on x and on y (dd-d and dd-a), her apportionment preference across

attributes now depends on the parity ofM and not the parity ofM+N as was the case under

DD. When M is odd, a positive sign on u(M,N) now indicates a preference to disaggregate

harms across attributes and a negative sign a preference to aggregate harms across attributes.

When M is even, the interpretation of the signs flips. Comparing Theorems 1(i) and 2(i),

the two criteria are different when N is odd and identical when N is even.

When the DM prefers to disaggregate harms on x and aggregate harms on y (da-d and

da-a), her apportionment preference across attributes depends on the parity of the total order

M +N in the DU case. For DD, the parity of M was decisive. Yet again, the two criteria

differ for N odd and coincide for N even. When the DM prefers to aggregate harms on x and

disaggregate harms on y (ad-d and ad-a), a positive sign on u(M,N) indicates a preference to

disaggregate harms across attributes in the DU case. For DD, the parity of N was critical.

The two criteria differ for N odd and coincide for N even. Finally, when the DM prefers

to aggregate harms on x and on y (aa-d and aa-a), her apportionment preference across

attributes depends on the parity of N in the DU case. For DD, a negative sign on u(M,N)

always indicated a preference to disaggregate harms across attributes. As before the two

criteria differ for N odd and coincide for N even.

This observation extends the comparison of Propositions 1 and 2. For correlation aversion

and cross-prudence in y, the signs flip when going from DD to DU because we have N = 1, an

odd number. For cross-prudence in x and cross-temperance, the signs stay the same because

we have N = 2, an even number. To understand why the parity of N determines whether the

sign on the cross-derivative needs to be flipped or not, we examine Nth-degree risk attitudes

in the DD and DU case. Consider DMs who prefer to disaggregate harms on y. For DD,

they are Nth-degree risk-averse for all N ≥ 1. For DU, they are Nth-degree risk-loving

for N odd and Nth-degree risk-averse for N even. They agree on the fact that even-order

risk increases on y are unfavorable but disagree on odd-order risk increases. DMs who prefer

to aggregate harms on y are Nth-degree risk-averse for N odd and Nth-degree risk-loving

for N even in the DD case. For DU, they are always Nth-degree risk-loving. Yet again,

they agree that even-order risk increases on y are favorable but disagree on odd-order risk

increases. Regardless of whether the apportionment preference on y is combining good with
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bad or combining good with good and bad with bad, the signs of the cross-derivative remain

unchanged when N is even but need to be flipped when N is odd.

5.3 Two undesirable attributes (case UU)

Finally, we consider the UU case with two undesirable attributes, u(1,0) ≤ 0 and u(0,1) ≤ 0.

Section 2.3 provides the signs of the unidirectional derivatives of the utility function depending

on the DM’s risk apportionment preferences regarding the individual attributes x and y. We

will now look at the signs of the cross-derivative of the utility function. The next result

summarizes how the DM’s risk apportionment preference determines these signs.

Theorem 3 (Case UU). Consider the case of two undesirable attributes and let M,N ≥ 1.

(i) DMs with apportionment preference dd-d have u(M,N) ≤ 0, DMs with apportionment

preference dd-a have u(M,N) ≥ 0.

(ii) DMs with apportionment preference da-d have (−1)Nu(M,N) ≥ 0, DMs with apportion-

ment preference da-a have (−1)Nu(M,N) ≤ 0.

(iii) DMs with apportionment preference ad-d have (−1)Mu(M,N) ≥ 0, DMs with apportion-

ment preference ad-a have (−1)Mu(M,N) ≤ 0.

(iv) DMs with apportionment preference aa-d have (−1)M+N+1u(M,N) ≥ 0, DMs with ap-

portionment preference aa-a have (−1)M+N+1u(M,N) ≤ 0.

Appendix A.5 provides the proof. The comparison between Theorems 2 and 3 follows

along the same lines as the comparison between Theorems 1 and 2. When going from DU

to UU, the two criteria are different for M odd and identical for M even. The reason is that

DMs agree on whether an Mth-degree risk increase on x is favorable or unfavorable for M

even but disagree when M is odd.

To compare Theorems 1 and 3, we start with a DM who prefers to disaggregate harms on

x and y (dd-d and dd-a). For DD, her apportionment preference across attributes depends

on the parity of M + N while for UU, it is determined by the sign of u(M,N) directly and

the parity of neither M , N nor M + N matter. The two criteria differ for M + N odd and

coincide for M + N even. When the DM prefers to disaggregate harms on x and aggregate

harms on y (da-d and da-a), her apportionment preference across attributes depends on the

parity of N in the UU case and on the parity of M in the DD case. When the DM prefers

to aggregate harms on x and disaggregate harms on y (ad-d and ad-a), her apportionment

preference across attributes depends on the parity of M in the UU case and on the parity

of N in the DD case. In both cases the two criteria differ for M + N odd and coincide for

M +N even. Finally, when the DM prefers to aggregate harms on x and y (aa-d and aa-a),

her apportionment preference across attributes depends on the parity of M +N in the UU

case and is determined by the sign of u(M,N) in the DD case. Yet again, the two criteria differ

for M +N odd and coincide for M +N even.
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This observation extends the comparison of Propositions 1 and 3. For cross-prudence

in x and cross-prudence in y, the signs flip when going from DD to UU because we have

M +N = 1 + 2 = 2 + 1 = 3, an odd number. For correlation aversion and cross-temperance,

the signs stay the same because we haveM+N = 1+1 = 2 andM+N = 2+2 = 4, two even

numbers. To explain why it is now the parity of the total order that determines whether the

criterion needs to be adjusted, we examine the DM’s Mth- and Nth-degree risk attitudes in

the DD and UU cases. Consider a DM who prefer to disaggregate harms on x and y (dd-d

and dd-a). For DD, she is Mth-degree risk-averse for all M ≥ 1 and Nth-degree risk-averse

for all N ≥ 1. For UU, she is Mth-degree risk-loving for M odd, Mth-degree risk-averse for

M even, Nth-degree risk-loving for N odd, and Nth-degree risk-averse for N even. When

both M and N are even, the two DMs agree that an Mth-degree risk increase on x and an

Nth-degree risk increase on y are both unfavorable. When both M and N are odd, the two

risk increases are unfavorable in the DD case but favorable in the UU case. Given that two

reversals occur when going from DD to UU, they cancel each other out and no adjustment

to the sign of the cross-derivative is necessary.10 When M is even and N odd or when M

is odd and N even, only one of the risk increases becomes favorable when moving from DD

to UU, and the sign of the cross-derivative flips. The reasoning is analogous for the other

apportionment preferences on individual attributes.

5.4 A simple mathematical reconciliation

We will now show the consistency between the criteria stated in Theorems 1, 2 and 3 directly.

Take the case of DU and let preferences be represented by utility function u(x, y) for (x, y) ∈
D = [0, x]×[0, y]. We have u(1,0) ≥ 0 and u(0,1) ≤ 0. Define utility function v(x, y) = u(x, y−y)
for (x, y) ∈ D. Obviously, we have v(1,0) = u(1,0) ≥ 0 and v(0,1) = −u(0,1) ≥ 0 so that utility

function v represents the DD case. More generally, we find that v(M,N) = (−1)Nu(M,N).

As a consequence, when going from Theorem 1 to Theorem 2, we need to multiply each of

the criteria by (−1)N . For example, dd-d is characterized by (−1)M+N+1u(M,N) ≥ 0 in theDD

case. Multiplying by (−1)N yields (−1)M+1u(M,N) ≥ 0 or, equivalently, (−1)Mu(M,N) ≤ 0,

the criterion for dd-d in the DU case. Similarly, da-d is characterized by (−1)Mu(M,N) ≥
0 in the DD case. Multiplying by (−1)N yields (−1)M+Nu(M,N) ≥ 0 or, equivalently,

(−1)M+N+1u(M,N) ≤ 0, the criterion for da-d in the DU case.

We also show the consistency between Theorems 1 and 3. When utility function u rep-

resents preferences in case of UU, we define v(x, y) = u(x − x, y − y) and obtain a utility

function for the DD case. We have v(M,N) = (−1)M+Nu(M,N). Therefore, when going from

Theorem 1 to Theorem 3, each of the criteria needs to be multiplied by (−1)M+N . Finally, if

u represents preferences in case of UU, then v(x, y) = u(x− x, y) is a utility function for the

10 More specifically, a lottery that allocates the risk increases to different states combines good with bad for
either DM, the only difference being that the labels “good” and “bad” need to be switched for both risk
increases when going from DD to UU.
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DU case. We have v(M,N) = (−1)Mu(M,N) so that each of the criteria needs to be multiplied

by (−1)M when going from Theorem 2 to Theorem 3.

Mathematically, it is easy to see the equivalence between the criteria in Theorems 1 to

3 even though nothing is learned about the underlying economic intuition. Some problems

are more naturally formulated in terms of undesirable attributes, and our results show how

to make the entire arsenal of the risk apportionment literature available in those situations.

While the mathematical equivalence of Theorems 1 to 3 is easy to see if a utility represen-

tation exists, we emphasize that the concepts of correlation aversion, cross-prudence, cross-

temperance and their higher-order extensions can be defined with the help of simple lotteries,

and thus do not require the existence of a utility representation. As we showed in Section 4,

an appropriate adjustment to the seed lotteries ensures that the definitions stay intact when

going from the DD case to the DU and UU cases. The definition based on simple lotter-

ies allows researchers to utilize multivariate risk preferences outside the narrow confines of

the expected-utility model and regardless of whether desirable or undesirable attributes are

studied. This flexibility broadens the scope of our results significantly.

6 Gollier’s (2021) generalized risk apportionment theory

Recently, Gollier (2021) provides a generalization of Eeckhoudt et al.’s (2009) risk apportion-

ment approach. He assumes that the Mth-degree riskiness of X is uncertain and that the

Nth-degree riskiness of Y is uncertain. In his model, X is parameterized by random variable

Θ, and Y is parameterized by random variable Ψ. Then, for realizations θ2 > θ1 of Θ, X(θ2)

has more Mth-degree risk than X(θ1), and for realizations ψ2 > ψ1 of Ψ, Y (ψ2) has more

Nth-degree risk than Y (ψ1). The uncertainty over the riskiness of X and Y is represented by

a joint distribution function for (Θ,Ψ).

In the original approach by Eeckhoudt and Schlesinger (2006) and Eeckhoudt et al. (2009),

Θ and Ψ are both limited to a support of {1, 2} so that the level of riskiness can either

be low or high. Furthermore, state probabilities are equal because only 50-50 lotteries are

considered. Thirdly, only perfect negative or perfect positive correlation between Θ and Ψ are

considered. Gollier’s (2021) contribution is to show that all these appendages can be removed.

He accomplishes this by utilizing the following notion of dependence.

Definition 2 (Tchen et al.,1980; Epstein and Tanny,1980). For two pairs of random variables

(Θ1,Ψ1) and (Θ2,Ψ2) with joint cumulative distribution functions H1 and H2, we say that

(Θ2,Ψ2) is more concordant than (Θ1,Ψ1) if H1 and H2 have the same marginal distributions

and H2(θ, ψ) ≥ H1(θ, ψ) for all (θ, ψ) in the relevant domain.

Tchen et al. (1980) use the term concordance for this change in the joint distribution.

Epstein and Tanny (1980) show in their Theorem 1 that, for discrete random variables, an

increase in concordance is obtained as a sequence of correlation-increasing transformations.

An increase in concordance implies higher correlation, a higher Kendall’s τ , and a higher
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Spearman’s ρ, see Tchen et al. (1980). We use the notion of concordance and apply it to the

uncertainty over the riskiness of X and Y .

Definition 3 (Gollier,2021). Let Θ be an index of the Mth-degree riskiness of X and Ψ be

an index of the Nth-degree riskiness of Y . Then, (X(Θ2), Y (Ψ2)) is an (M,N)-degree risk

increase over (X(Θ1), Y (Ψ1)) if (Θ2,Ψ2) is more concordant than (Θ1,Ψ1).

Gollier (2021) goes on to show that a change in the joint distribution of (X,Y ) is an

(M,N)-degree risk increase if and only if it reduces the expectation of u(X,Y ) for any utility

function u whose (M,N) cross-derivative has the same sign as (−1)M+N+1.11 We can use this

result and our Theorems 1 to 3 to assess a DM’s attitude towards increases in (M,N)-degree

risk. We call a DM (M,N)-degree risk-averse if she dislikes any increase in (M,N)-degree

risk and (M,N)-degree risk-loving if she appreciates any increase in (M,N)-degree risk. We

formulate our results as corollaries and dissociate the three cases for readability.

Corollary 1 (Case DD). Consider the case of two desirable attributes and let M,N ≥ 1.

(i) DMs with dd-d (dd-a) are (M,N)-degree risk-averse (risk-loving).

(ii) DMs with da-d (da-a) are (M,N)-degree risk-averse (risk-loving) for N odd and (M,N)-

degree risk-loving (risk-averse) for N even.

(iii) DMs with ad-d (ad-a) are (M,N)-degree risk-averse (risk-loving) forM odd and (M,N)-

degree risk-loving (risk-averse) for M even.

(iv) DMs with aa-d (aa-a) are (M,N)-degree risk-loving (risk-averse) for M + N odd and

(M,N)-degree risk-averse (risk-loving) for M +N even.

The only risk apportionment preference that implies (M,N)-degree risk aversion through-

out is dd-d with dd-a yielding universal (M,N)-degree risk loving. In all other cases, the

DM’s (M,N)-degree risk attitude flips as we look at different orders, and either the parity of

N , M or M +N is decisive. Let us look at the DU case next.

Corollary 2 (Case DU). Consider the case in which the first attribute is desirable and the

second attribute is undesirable, and let M,N ≥ 1.

(i) DMs with dd-d (dd-a) are (M,N)-degree risk-loving (risk-averse) for N odd and (M,N)-

degree risk-averse (risk-loving) for N even.

(ii) DMs with da-d (da-a) are (M,N)-degree risk-loving (risk-averse).

11 In his Theorem 1, Gollier (2021) uses the sign criterion on the cross-derivative of the utility function to
define an (M,N)-degree risk increase and then shows the equivalence to an increase in the concordance
between the index of the Mth-degree riskiness of X and the index of the Nth-degree riskiness of Y . Given
the equivalence, we go the reverse route, which makes it easier to connect our results to his.
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(iii) DMs with ad-d (ad-a) are (M,N)-degree risk-averse (risk-loving) for M + N odd and

(M,N)-degree risk-loving (risk-averse) for M +N even.

(iv) DMs with aa-d (aa-a) are (M,N)-degree risk-loving (risk-averse) forM odd and (M,N)-

degree risk-averse (risk-loving) for M even.

Now the only risk apportionment preferences that implies (M,N)-degree risk aversion

throughout is da-a. When the DM prefers to combine good with good and bad with bad on

y, she is Nth-degree risk-loving on the second attribute for all N . If she prefers to aggregate

harms across attributes, higher concordance between the Mth-degree riskiness of x and the

Nth-degree riskiness of y makes her worse off. She would rather face low Mth-degree risk on

x together with high Nth-degree risk on y (two good things) or high Mth-degree risk on x

together with low Nth-degree risk on y (two bad things) instead of low Mth-degree risk on

x (a good thing) together with low Nth-degree risk on y (a bad thing) or high Mth-degree

risk on x (a bad thing) toghether with high Nth-degree risk on y (a good thing). While both

dd-d DMs in the DD case and da-a DMs in the DU case are consistently (M,N)-degree

risk-averse, the reasons for their preference are quite different.

Corollary 3 (Case UU). Consider the case of two undesirable attributes and let M,N ≥ 1.

(i) DMs with dd-d (dd-a) are (M,N)-degree risk-loving (risk-averse) for M + N odd and

(M,N)-degree risk-averse (risk-loving) for M +N even.

(ii) DMs with da-d (da-a) are (M,N)-degree risk-averse (risk-loving) forM odd and (M,N)-

degree risk-loving (risk-averse) for M even.

(iii) DMs with ad-d (ad-a) are (M,N)-degree risk-averse (risk-loving) for N odd and (M,N)-

degree risk-loving (risk-averse) for N even.

(iv) DMs with aa-d (aa-a) are (M,N)-degree risk-averse (risk-loving).

It is now DMs with aa-d who are always (M,N)-degree risk-averse. Yet again the intuition

for this preference differs from the previous discussion. When the DM prefers to combine good

with good and bad wit bad on x and y individually, she is Mth-degree risk-loving on x and

Nth-degree risk-loving on y for all M and N . If she prefers to disaggregate harms across

attributes, higher concordance between the Mth-degree riskiness of x and the Nth-degree

riskiness of y makes her worse off. The DM would rather face high Mth-degree risk on x (a

good thing) together with low Nth-degree risk on y (a bad thing) or low Mth-degree risk

on x (a bad thing) together with high Nth-degree risk on y (a good thing) instead of high

Mth-degree risk on x and high Nth-degree risk on y (two good things) or low Mth-degree

risk on x and low Nth-degree risk on y (two bad things). At the surface, the resulting lottery

preference is the same as for dd-d DMs in the DD case and da-a DMs in the DU case. How

we obtain this lottery preference is entirely different.
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Table 4 in the appendix provides a compact overview of the (M,N)-degree risk attitudes

implied by different apportionment preferences in the three cases. We fully agree with Gollier’s

(2021) conclusion that a DM’s (M,N)-degree risk attitude can be characterized without

knowledge of any of her lower-degree risk attitudes by signing u(M,N). Our point here is

that, if one imposes a consistent apportionment preference on the individual attributes and

across attributes, this implies specific (M,N)-degree risk attitudes. Corollaries 1 to 3 detail

what these (M,N)-degree risk attitudes are. Our results also highlight that the underlying

reasons for a particular (M,N)-degree risk attitude can vary considerably within each case

and across cases. By making the apportionment preference explicit, we can uncover these

reasons and provide economic intuition.12

7 Some special multivariate models

7.1 Multiplicative separability

The utility function is multiplicatively separable if we can write it as u(x, y) = v(x)z(y) for

univariate utility functions v and z. Bleichrodt and Quiggin (1999) use this utility function

to assess the consistency of quality-adjusted life years with life-cycle preferences when both

consumption and health are arguments of the utility function. One might think that the

separability assumption is constraining and restricts the types of risk apportionment pref-

erences one can model. Our next result shows that this is not the case. To the contrary,

multiplicatively separable utility is quite flexible and can be used to model any of the eight

combinations of apportionment preferences discussed in this paper.

Proposition 4. Let the utility function be multiplicatively separable, u(x, y) = v(x)z(y), for

univariate utility functions v of the first attribute and z of the second attribute. In each of

the three cases, DD, DU or UU, we find the following:

� If sgn(v) = sgn(z), the utility function can accommodate dd-a, da-a, ad-a and aa-a. The

DM always prefers to aggregate harms across attributes.

� If sgn(v) ̸= sgn(z), the utility function can accommodate dd-d, da-d, ad-d and aa-d. The

DM always prefers to disaggregate harms across attributes.

Appendix A.6 provides the proof. For multiplicatively separable utility, the DM’s ap-

portionment preference across attributes is simply determined by the signs of the univariate

utility functions v and z. If the two signs are the same, either both positive or both negative,

the DM necessarily prefers to combine good with good and bad with bad across attributes. If

12 Of course, DMs with a given (M,N)-degree risk attitude may not belong to any of the eight groups of
apportionment preferences considered in this paper. In the univariate context, some prudent DMs are risk-
averse, some prudent DMs are risk-loving, and some prudent DMs may be neither risk-averse nor risk-loving.

26

Electronic copy available at: https://ssrn.com/abstract=4129251



The many faces of multivariate risk-taking

the two signs are different with one being positive and the other one negative, the DM prefers

to combine good with bad across attributes.

We can use Proposition 4 to construct any of the eight combinations of apportionment

preferences studied in this paper. Consider the univariate utility function v(x) for x ∈ [0, x].

If attribute x is desirable and the DM prefers to combine good with bad on x, then v is mixed

risk-averse, (−1)M+1v(M) ≥ 0 for all M ≥ 1. The class of utility functions with harmonic

absolute risk aversion (HARA) provides specific examples. Let

v(x) =

 ζ ·
(
η + x

γ

)1−γ
, for γ ̸= 1,

ζ · log(η + x), for γ = 1,

with η > 0, γ > 0, and ζ > 0 for γ ≤ 1 and ζ < 0 for γ > 1. Then, v is mixed risk-averse

and increases from v = v(0) to v = v(x). If v is negative, then v̂(x) = v(x) − v + 1 is mixed

risk-averse and positive. If v is positive, then v̂(x) = v(x) − v − 1 is mixed risk-averse and

negative. In general, a utility function displays mixed risk aversion if and only if it is the

mixture of negative exponential functions (see Caballé and Pomansky, 1996).

Let v(x) be a mixed risk-averse utility function for a desirable attribute x ∈ [0, x]. Then,

v̌(x) = −v(x− x) is a mixed risk-loving utility function for the desirable attribute x. Indeed,

v̌(M)(x) = (−1)M+1vM (x − x) ≥ 0 for all M ≥ 1. Similarly, define v̆(x) = v(x − x). This

utility function satisfies v̆(M)(x) = (−1)Mv(M)(x− x) ≤ 0 for all M ≥ 1, and thus represents

a preference for combining good with bad for an undesirable attribute x. Along the lines of

Ebert (2020), we label this as anti-mixed risk-loving. If we set v̇(x) = −v(x), utility function

v̇(x) satisfies (−1)M+1v̇(M)(x) = (−1)Mv(M)(x) ≤ 0 for all M ≥ 1, and thus represents a

preference for combining good with good and bad with bad for an undesirable attribute x.

Following Ebert (2020), we call this anti-mixed risk-averse.13

We can thus use the large class of mixed risk-averse utility functions to construct mixed

risk-loving, anti-mixed risk-averse, and anti-mixed risk-loving utility functions. Shifting a

utility function up or down ensures the desired sign. This puts us in a position to construct

any of the eight combinations of apportionment preferences with the help of Proposition 4.

To economize on space, we carry this out in Appendix B. Applied decision theorists can use

this as a toolbox to construct utility functions with desired properties.

7.2 Equivalent monetary utility

We only consider a simple case of equivalent monetary utility, which is u(x, y) = v(x + Ay)

for A ̸= 0. In this case, parameter A measures the marginal rate of substitution of attribute

13 For an undesirable attribute, combining good with bad is characterized by a consistent negative sign while
combining good with good and bad with bad is characterized by alternating signs, starting with a negative
one. The pattern is thus reversed compared to the case of a desirable attribute, for which good with bad
has the alternating sign pattern, and good with good and bad with bad a consistent positive sign.
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y for attribute x. We assume for simplicity that A is constant and does not depend on the

levels of x and y. Our next result shows that this restricts the DM’s apportionment preference

considerably.

Proposition 5. Consider an equivalent monetary utility function with a constant marginal

rate of substitution between attributes. In each of the three cases, DD, DU or UU, the utility

function can accommodate either dd-d or aa-a.

Appendix A.7 states the proof. In other words, equivalent monetary utility with a con-

stant marginal rate of substitution imposes a strong consistency assumption on the DM’s risk

apportionment preference. She either prefers to combine good with bad on the individual

attributes as well as across attributes, or she prefers to combine good with good and bad with

bad on the individual attributes as well as across attributes. The other six combinations of

apportionment preferences are excluded per assumption with this specification. This illus-

trates clearly that some simplifying assumptions that are sometimes made for convenience or

tractability, can have far-reaching economic implications.14

8 Conclusion

Risk apportionment has revolutionized our understanding of higher-order risk preferences and

accelerated their use in economics and finance. In this paper, we advanced the theory of risk

apportionment for multivariate risks along several dimensions. We defined the concepts of

correlation aversion, cross-prudence and cross-temperance in terms of simple lotteries when

one or both attributes are undesirable. We characterized risk apportionment preferences

across attributes by signing cross-derivatives of the utility function. We related our results to

popular multivariate models and explained how to construct any of the eight combinations

of apportionment preferences studied in this paper. It is our hope that these tools will help

improve our understanding of risk-taking behavior in the many situations in which people

face several attributes, some of which may be undesirable.

14 Equivalent monetary utility is more flexible if we allow the marginal rate of substitution to depend on the
levels of the attributes. We leave it for future research to determine how flexible this specification can be.
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Caballé, J. and Pomansky, A. (1996). Mixed risk aversion. Journal of Economic Theory,
71(2): 485–513.

Courbage, C. and Rey, B. (2016). Decision thresholds and changes in risk for preventive
treatment. Health Economics, 25(1): 111–124.

Crainich, D., Eeckhoudt, L., and Trannoy, A. (2013). Even (mixed) risk lovers are prudent.
American Economic Review, 103(4): 1529–35.

Deck, C. and Schlesinger, H. (2014). Consistency of higher order risk preferences. Economet-
rica, 82(5): 1913–1943.

Denuit, M., De Vylder, E., and Lefevre, C. (1999). Extremal generators and extremeal
distributions for the continuous s-convex stochastic ordering. Insurance: Mathematics and
Economics, 24(3): 201–217.
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A Proofs

A.1 Signs of u(0,N) for all N ≥ 1 in the DU case

Lemma 2. Consider the DU case so that attribute y is undesirable and let preferences be

represented by a smooth utility function u(x, y).

(i) If the DM prefers to combine good with bad on y, then u(0,N) ≤ 0 for all N ≥ 1.

(ii) If the DM prefers to combine good with good and bad with bad on y, then (−1)N+1u(0,N) ≤
0 for all N ≥ 1.

Proof. We show the two statements by mathematical induction. For N = 1, u(0,1) ≤ 0 holds

by assumption because y is undesirable.

Now assume the statements are true for a given N ≥ 1. Let Y1, Y2, Y
′
1 and Y ′

2 be four

mutually independent random variables with Y2 having more first-degree risk than Y1, and

Y ′
2 having more Nth-degree risk than Y ′

1 . The DM prefers Y2 over Y1 because of u(0,1) ≤ 0. If

N is odd and she prefers to combine good with bad, she is Nth-degree risk-loving and thus

prefers Y ′
2 over Y ′

1 . Combining good with bad implies that she also prefers the 50-50 lottery

[(x, Y2 + Y ′
1); (x, Y

′
2 + Y1)] over the 50-50 lottery [(x, Y2 + Y ′

2); (x, Y1 + Y ′
1)] because the first

lottery combines high first-degree risk (a good thing) with low Nth-degree risk (a bad thing)

and high Nth-degree risk (a good thing) with low first-degree risk (a bad thing) whereas the

second lottery combines high first-degree risk with high Nth-degree risk (two good things)

and low first-degree risk with low Nth-degree risk (two bad things). If the DM always has

said lottery preference, we know from Eeckhoudt et al. (2009) that (−1)N+2u(0,N+1) ≥ 0. For

N odd, this simplifies to u(0,N+1) ≤ 0 as claimed in statement (i).

If N is odd and the DM prefers to combine good with good and bad with bad, she is also

Nth-degree risk-loving but now prefers the 50-50 lottery [(x, Y2 + Y ′
2); (x, Y1 + Y ′

1)] over the

50-50 lottery [(x, Y2 + Y ′
1); (x, Y

′
2 + Y1)] because of combining good with good and bad with

bad. We know from Eeckhoudt et al. (2009) that this lottery preference is characterized by

(−1)N+2u(0,N+1) ≤ 0, as claimed in statement (ii).

If N is even and the DM prefers to combine good with bad, she is Nth-degree risk-averse

and thus prefers Y ′
1 over Y ′

2 . Combining good with bad now implies that she always prefers the

50-50 lottery [(x, Y2+Y
′
2); (x, Y1+Y

′
1)] over the 50-50 lottery [(x, Y2+Y

′
1); (x, Y

′
2+Y1)] because

the first lottery combines high first-degree risk (a good thing) with high Nth-degree risk (a

bad thing) and low first-degree risk (a bad thing) with low Nth-degree risk (a good thing)

whereas the second lottery combines high first-degree risk with low Nth-degree risk (two good

things) and high Nth-degree risk with low first-degree risk (two bad things). It follows from

Eeckhoudt et al. (2009) that (−1)N+2u(0,N+1) ≤ 0, which simplifies to u(0,N+1) ≤ 0 because

N is even. This verifies statement (i) .

If N is even and the DM prefers to combine good with good and bad with bad, she is Nth-

degree risk-loving and thus prefers Y ′
2 over Y ′

1 . Combining good with good and bad with bad
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leads to a lottery preference of [(x, Y2+Y
′
2); (x, Y1+Y

′
1)] over [(x, Y2+Y

′
1); (x, Y

′
2 +Y1)], which

is characterized by (−1)N+2u(0,N+1) ≤ 0, as claimed in statement (ii). So if statements (i)

and (ii) are true for a given N ≥ 1, they also hold for N + 1, which completes the proof.

A.2 Sign of u(M,N) based on Eeckhoudt et al.’s (2009) approach

Assume the DM prefers lottery [(X1, Y2); (X2, Y1)] over lottery [(X1, Y1); (X2, Y2)] for all sets

of four mutually independent random variables X1, X2, Y1 and Y2 such that X2 has more

Mth-degree risk than X1, and Y2 has more Nth-degree risk than Y1. In terms of expected

utility, the DM’s lottery preference reads

1
2Eu(X1, Y2) +

1
2Eu(X2, Y1) ≥ 1

2Eu(X1, Y1) +
1
2Eu(X2, Y2),

which is equivalent to

Eu(X2, Y1)− Eu(X2, Y2) ≥ Eu(X1, Y1)− Eu(X1, Y2).

Define auxiliary function v(x) = Eu(x, Y1) − Eu(x, Y2); the last inequality can then be

rewritten as Ev(X2) ≥ Ev(X1). If this inequality holds for every Mth-degree risk increase

from X1 to X2, it follows from Lemma 1 that −v must be Mth-degree risk-averse, that is,

(−1)Mv(M)(x) ≥ 0. Using the definition of v, this is equivalent to

(−1)MEu(M,0)(x, Y1) ≥ (−1)MEu(M,0)(x, Y2).

Per Lemma 1, this inequality holds for every Nth-degree risk increase from Y1 to Y2 if and

only if (−1)Mu(M,0) is Nth-degree risk-averse in y, that is, if and only if

(−1)M+N+1u(M,N) ≥ 0.

A.3 Proof of Theorem 1

Let L1 = [(X1, Y2); (X2, Y1)] be the lottery where the Mth-degree risk increase on x and the

Nth-degree risk increase on y occur in different states, and L2 = [(X1, Y1); (X2, Y2)] be the

lottery where they occur in the same state. For dd-d and dd-a DMs, both risk increases are

unfavorable changes so that lottery L1 represents combining good with bad across attributes

whereas lottery L2 represents combining good with good and bad with bad across attributes.

A universal preference of L1 ≿ L2 is equivalent to (−1)M+N+1u(M,N) ≥ 0 whereas a universal

preference of L2 ≿ L1 is equivalent to (−1)M+N+1u(M,N) ≤ 0. This shows (i).

For da-d and da-a DMs, the Mth-degree risk increase on x is always an unfavorable

change. However, the Nth-degree risk increase on y is an unfavorable change when N is odd

and a favorable change when N is even. The lottery L1 then represents combining good with

bad when N is odd. It represents combining good with good and bad with bad when N is
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even. So a preference to disaggregate harms across attributes leads to L1 ≿ L2 for N odd and

to L2 ≿ L1 for N even. In terms of the utility function, this means (−1)M+N+1u(M,N) ≥ 0

for N odd and (−1)M+N+1u(M,N) ≤ 0 for N even. When N is odd, (−1)M+N+1 = (−1)M ,

and when N is even, (−1)M+N+1 = (−1)M+1. So the criterion on the utility function can

be consolidated to (−1)Mu(M,N) ≥ 0 for da-d DMs, and to (−1)Mu(M,N) ≤ 0 for da-a DMs.

This proves (ii). Result (iii) follows with the same argument replacing M by N .

For aa-d and aa-a DMs, the Mth-degree risk increase on x is an unfavorable change when

M is odd and a favorable change when M is even. Likewise, the Nth-degree risk increase on

y is an unfavorable change when N is odd and a favorable change when N is even. Lottery L1

thus represents combining good with bad when both M and N are odd or when both M and

N are even. WhenM is odd and N is even orM is even and N is odd, lottery L1 corresponds

to combining good with good and bad with bad. This implies (−1)M+N+1u(M,N) ≥ 0 when

both M and N are odd or both are even, which can be simplified to u(M,N) ≤ 0. For M

odd and N even or M even and N odd, we obtain (−1)M+N+1u(M,N) ≤ 0, which can also be

simplified to u(M,N) ≤ 0. So regardless of the parity of M and N , aa-d DMs have u(M,N) ≤ 0

whereas aa-a DMs have u(M,N) ≥ 0

A.4 Proof of Theorem 2

Let X1, X2, Y1 and Y2 be four mutually independent random variables with X2 having

more Mth-degree risk than X1 and Y2 having more Nth-degree risk than Y1. Let L1 =

[(X1, Y2); (X2, Y1)] be the lottery where the Mth-degree risk increase on x and the Nth-

degree risk increase on y occur in different states, and L2 = [(X1, Y1); (X2, Y2)] be the lottery

where they occur in the same state. For dd-d and dd-a DMs, the Mth-degree risk increase

on x is always an unfavorable change whereas the Nth-degree risk increase on y is a favorable

change when N is odd and an unfavorable change when N is even. So dd-d DMs prefer

L2 over L1 when N is odd, leading to (−1)M+N+1u(M,N) ≤ 0, while they prefer L1 over L2

when N is even, leading to (−1)M+N+1u(M,N) ≥ 0. Taking the parity of N into account, the

condition on the utility function can be condensed to (−1)Mu(M,N) ≤ 0 for dd-d DMs, and

to (−1)Mu(M,N) ≥ 0 for dd-a DMs.

For da-d and da-a DMs, theMth-degree risk increase on x is always an unfavorable change

and the Nth-degree risk increase on y is always a favorable change. Therefore, da-d DMs

have a preference of L2 over L1 because L2 combines lowMth-degree risk on x (a good thing)

with low Nth-degree risk on y (a bad thing) and high Mth-degree risk on x (a bad thing)

with high Nth-degree risk on y (a good thing) whereas L1 combines low Mth-degree risk on

x with high Nth-degree risk on y (two good things) and high Mth-degree risk on x with low

Nth-degree risk on y (two bad things). This leads to (−1)M+N+1u(M,N) ≤ 0 for da-d DMs

and to (−1)M+N+1u(M,N) ≥ 0 for da-a DMs.

For ad-d and ad-a DMs, the Mth-degree risk increase on x is an unfavorable change when

M is odd and a favorable change when M is even whereas the Nth-degree risk increase on
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y is a favorable change when N is odd and an unfavorable change when N is even. For M

odd, ad-d DMs then prefer L2 over L1 when N is odd, and L1 over L2 when N is even. This

leads to (−1)Mu(M,N) ≤ 0, which can be further simplified to u(M,N) ≥ 0 because M is odd.

When M is even instead, ad-d DMs prefers L1 over L2 when N is odd, and L2 over L1 when

N is even. This yields (−1)Mu(M,N) ≥ 0, which is also equivalent to u(M,N) ≥ 0 because M

is even. Therefore, ad-d DMs have u(M,N) ≥ 0 and ad-a DMs have u(M,N) ≤ 0.

For aa-d and aa-a DMs, the Mth-degree risk increase on x is an unfavorable change when

M is odd and a favorable change when M is even whereas the Nth-degree risk increase on

y is always a favorable change. So for M odd, aa-d DMs prefers L2 over L1, leading to

(−1)M+N+1u(M,N) ≤ 0. This can be simplified to (−1)Nu(M,N) ≤ 0. When M is even, aa-d

DMs prefer L1 over L2, leading to (−1)M+N+1u(M,N) ≥ 0. This can also be simplified to

(−1)Nu(M,N) ≤ 0. For aa-a DMs, matters are reversed so that (−1)Nu(M,N) ≥ 0.

A.5 Proof of Theorem 3

Let X1, X2, Y1 and Y2 be four mutually independent random variables with X2 having

more Mth-degree risk than X1 and Y2 having more Nth-degree risk than Y1. Let L1 =

[(X1, Y2); (X2, Y1)] be the lottery where the Mth-degree risk increase on x and the Nth-

degree risk increase on y occur in different states, and L2 = [(X1, Y1); (X2, Y2)] be the lottery

where they occur in the same state. For dd-d and dd-a DMs, the Mth-degree risk increase

on x is a favorable change when M is odd and an unfavorable change when M is even, and

the same is the case for the Nth-degree risk increase on y. In this case, a dd-d DM prefers

lottery L1 over lottery L2 when M and N are both odd or both even, and has the reverse

lottery preference otherwise. This implies (−1)M+N+1u(M,N) ≥ 0 when M and N are both

odd or both even, which simplifies the condition to u(M,N) ≤ 0, and (−1)M+N+1u(M,N) ≤ 0

when M is odd and N even or M is even and N odd, which again simplifies to u(M,N) ≤ 0.

The lottery preference is reversed for dd-a DMs, which leads to u(M,N) ≥ 0.

For da-d and da-a DMs, the Mth-degree risk increase on x is a favorable change when

M is odd and an unfavorable change when M is even but the Nth-degree risk increase on

y is always a favorable change. Consequently, da-d DMs prefer L1 over L2 when M is odd

and L2 over L1 when M is even. This leads to (−1)M+N+1u(M,N) ≥ 0 for M odd and to

(−1)M+N+1u(M,N) ≤ 0 for M even. The condition then simplifies to (−1)Nu(M,N) ≥ 0 for da-

d DMs. Reversing the lottery preferences shows (−1)Nu(M,N) ≤ 0 for da-a DMs. Result (iii)

follows with the same argument replacing M by N .

For aa-d and aa-a DMs, the Mth-degree risk increase on x and the Nth-degree risk

increase on y are both always favorable changes. Hence, a aa-d DM always prefers L1 over

L2, implying (−1)M+N+1u(M,N) ≥ 0, whereas a aa-a DM always prefers L2 over L1, implying

(−1)M+N+1u(M,N) ≤ 0
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A.6 Proof of Proposition 4

For multiplicatively separable utility, we have u(M,N) = v(M) · z(N) for M,N ≥ 1, and in

particular u(M,0) = v(M) · z and u(0,N) = v · z(N) for the unidirectional derivatives. Let us

start with the DD case and assume v(x) > 0 for x ∈ [0, x] and z(y) > 0 for y ∈ [0, y] so that

sgn(v) = sgn(z). Combining good with bad on x is equivalent to (−1)M+1u(M,0) ≥ 0 for all

M ≥ 1 or (−1)M+1v(M) ≥ 0 for all M ≥ 1. Combining good with good and bad with bad on

x is equivalent to u(M,0) ≥ 0 for all M ≥ 1 or v(M) ≥ 0 for all M ≥ 1. Combining good with

bad on y is equivalent to (−1)N+1u(0,N) ≥ 0 for all N ≥ 1 or (−1)N+1z(N) ≥ 0 for all N ≥ 1.

Combining good with good and bad with bad on y is equivalent to u(0,N) ≥ 0 for all N ≥ 1

or z(N) ≥ 0 for all N ≥ 1.

When the DM prefers to combine good with bad on both attributes individually, we obtain

(−1)M+N+1u(M,N) = (−1) · (−1)M+1v(M)︸ ︷︷ ︸
≥0

· (−1)N+1z(N)︸ ︷︷ ︸
≥0

≤ 0,

which characterizes dd-a according to Theorem 1(i). When she prefers to combine good with

bad on x but good with good and bad with bad on y, we obtain

(−1)Mu(M,N) = (−1) · (−1)M+1vM︸ ︷︷ ︸
≥0

· zN︸︷︷︸
≥0

≤ 0,

which characterizes da-a according to Theorem 1(ii). When she prefers to combine good with

good and bad with bad on x but good with bad on y, we obtain

(−1)Nu(M,N) = (−1) · v(M)︸︷︷︸
≥0

· (−1)N+1zN︸ ︷︷ ︸
≥0

≤ 0,

which characterize ad-a according to Theorem 1(iii). When she prefers to combine good with

good and bad with bad on both attributes individually, we obtain

u(M,N) = v(M)︸︷︷︸
≥0

· z(N)︸︷︷︸
≥0

≥ 0,

which characterize aa-a according to Theorem 1(iv). Regardless of her apportionment pref-

erence on the individual attributes, she always prefers to aggregate harms across attributes.

Consider now that v(x) > 0 for x ∈ [0, x] but z(y) < 0 for y ∈ [0, y] so that sgn(v) ̸= sgn(z).

Combining good with bad on x is now equivalent to (−1)M+1v(M) ≤ 0 for all M ≥ 1, and

combining good with good and bad with bad on x is now equivalent to v(M) ≤ 0 for all

M ≥ 1. The signs of higher-order derivatives of utility function z are as in the case of both

utility functions positive. As a result, all signs of the cross-derivatives flip and we now obtain

dd-d, da-d, ad-d and aa-d. The DM now prefers to disaggregate harms across attributes.

Similarly, if v(x) < 0 for x ∈ [0, x] and z(y) > 0 for y ∈ [0, y], combining good with bad on
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y is equivalent to (−1)N+1z(N) ≤ 0 for all N ≥ 1, and combining good with good and bad

with bad on y is equivalent to z(N) ≤ 0 for all N ≥ 1. The signs of higher-order derivatives

of utility function z are as in the case of both utility functions positive. Yet again, all signs

of the cross-derivatives flip compared to the case with sgn(v) = sgn(z), and we thus obtain

dd-d, da-d, ad-d and aa-d. If both v(x) < 0 for x ∈ [0, x] and z(y) < 0 for y ∈ [0, y], the signs

of higher-order derivatives of both utility functions flip and we obtain the same signs as in

the case with sgn(v) = sgn(z). In other words, we find dd-a, da-a, ad-a and aa-a.

The DU and UU cases follow a similar logic. We briefly look at the DU case. When

v(x) > 0 for x ∈ [0, x] and z(y) > 0 for y ∈ [0, y], combining good with bad on x is equivalent

to (−1)M+1v(M) ≥ 0 for all M ≥ 1, and combining good with good and bad with bad on

x is equivalent to v(M) ≥ 0 for all M ≥ 1. Combining good with bad on y is equivalent to

u(0,N) ≤ 0 for all N ≥ 1 or z(N) ≤ 0 for all N ≥ 1. Combining good with good and bad with

bad on y is equivalent to (−1)N+1u(0,N) ≤ 0 for all N ≥ 1 or (−1)N+1z(N) ≤ 0 for all N ≥ 1.

Using Theorem 2, we find

(−1)Mu(M,N) = (−1) · (−1)M+1v(M)︸ ︷︷ ︸
≥0

· z(N)︸︷︷︸
≤0

≥ 0

for dd-a,

(−1)M+N+1u(M,N) = (−1) · (−1)M+1v(M)︸ ︷︷ ︸
≥0

· (−1)N+1z(N)︸ ︷︷ ︸
≤0

≥ 0

for da-a,

u(M,N) = v(M)︸︷︷︸
≥0

· z(N)︸︷︷︸
≤0

≤ 0

for ad-a, and

(−1)Nu(M,N) = (−1) · v(M)︸︷︷︸
≥0

· (−1)N+1z(N)︸ ︷︷ ︸
≤0

≥ 0

for aa-a. The DM always prefers to aggregate harms across attributes regardless of her

apportionment preference on the individual attributes. When the sign of v switches from

positive to negative, all signs of the higher-order derivatives of z flip and so do the signs of

the cross-derivatives. If instead the sign of z switches from positive to negative and the sign

of v is positive, all signs of the higher-order derivatives of v flip and so do the signs of the

cross-derivatives. Regardless, as soon as sgn(v) ̸= sgn(z), we have dd-d, da-d, ad-d or aa-d,

and the DM prefers to disaggregate harms across attributes. When both v and z are negative,

the two sign reversals cancel each other out and we are back to dd-a, da-a, ad-a or aa-a, as

in the case of both v and z positive.

A.7 Proof of Proposition 5

Let u(x, y) = v(x + Ay) and consider the DD case first. The first attribute is desirable so

that v′ ≥ 0. For the second attribute to be desirable, we then have A ≥ 0 (except in the
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uninteresting case of v′ = 0). If the DM prefers to combine good with bad on x, we obtain

(−1)M+1v(M) ≥ 0 for all M ≥ 1. This implies (−1)N+1u(0,N) = (−1)N+1ANv(N) ≥ 0 for all

N ≥ 1 so that she prefers to combine good with bad on y. Furthermore, (−1)M+N+1u(M,N) =

(−1)M+N+1ANv(M+N) ≥ 0 for all M,N ≥ 1 so that she prefers to combine good with bad

across attributes according to Theorem 1(i). The DM’s preference is thus dd-d. If she prefers

to combine good with good and bad with bad on x instead, we obtain v(M) ≥ 0 for allM ≥ 1,

which implies u(0,N) = ANv(N) ≥ 0 for all N ≥ 1, and u(M,N) = ANvM+N ≥ 0 for all

M,N ≥ 1. From Theorem 1(iv), her preference is then aa-a.

In the DU case, we have v′ ≥ 0 and A ≤ 0. If the DM prefers to combine good with

bad on x, we obtain (−1)M+1v(M) ≥ 0 for all M ≥ 1. This implies u(0,N) = ANv(N) =

(−1)(−A)N (−1)N+1v(N) ≥ 0 for all N ≥ 1 so that she prefers to combine good with bad on y.

In addition we find (−1)Mu(M,N) = (−1)MANv(M+N) = (−1)(−A)N (−1)M+N+1v(M+N) ≤ 0

so that she prefers to combine good with bad across attributes according to Theorem 2(i).

The DM’s preference is dd-d. If she prefers to combine good with good and bad with bad on x

instead, we have v(M) ≥ 0 for all M ≥ 1, which implies (−1)N+1u(0,N) = (−1)(−A)Nv(N) ≤ 0

for all N ≥ 1, and (−1)Nu(M,N) = (−A)Nv(M+N) ≥ 0 for allM,N ≥ 1. Using Theorem 2(iv),

her preference is then aa-a.

In the UU case, we have v′ ≤ 0 and A ≥ 0. If the DM prefers to combine good with bad on

x, we have v(M) ≤ 0 for allM ≥ 1. This implies u(0,N) = ANv(N) ≤ 0 for all N ≥ 1 so that she

prefers to combine good with bad on y. We obtain u(M,N) = ANv(M+N) ≤ 0 for all M,N ≥ 1

so that she prefers to combine good with bad across attributes, see Theorem 3(i). Her

preference is dd-d. If she prefers to combine good with good and bad with bad on x instead, we

have (−1)M+1v(M) ≤ 0 for all M ≥ 1. This implies (−1)N+1u(0,N) = AN (−1)N+1v(N) ≤ 0 for

all N ≥ 1 and (−1)M+N+1u(M,N) = AN (−1)M+N+1v(M+N) ≤ 0. According to Theorem 3(iv),

the DM’s preference is then aa-a.

In either one of the three cases, we either find dd-d or aa-a for monetary equivalent utility

u(x, y) = v(x+Ay) with a constant marginal rate of substitution between attributes.
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order dd-d and dd-a dd-d dd-a

M +N = 2 u(2,0) ≤ 0, u(0,2) ≤ 0 u(1,1) ≤ 0 u(1,1) ≥ 0

M +N = 3 u(3,0) ≥ 0, u(0,3) ≥ 0 u(2,1) ≥ 0, u(1,2) ≥ 0 u(2,1) ≤ 0, u(1,2) ≤ 0

M +N = 4 u(4,0) ≤ 0, u(0,4) ≤ 0 u(3,1) ≤ 0, u(2,2) ≤ 0, u(1,3) ≤ 0 u(3,1) ≥ 0, u(2,2) ≥ 0, u(1,3) ≥ 0

order da-d and da-a da-d da-a

M +N = 2 u(2,0) ≤ 0, u(0,2) ≥ 0 u(1,1) ≤ 0 u(1,1) ≥ 0

M +N = 3 u(3,0) ≥ 0, u(0,3) ≥ 0 u(2,1) ≥ 0, u(1,2) ≤ 0 u(2,1) ≤ 0, u(1,2) ≥ 0

M +N = 4 u(4,0) ≤ 0, u(0,4) ≥ 0 u(3,1) ≤ 0, u(2,2) ≥ 0, u(1,3) ≤ 0 u(3,1) ≥ 0, u(2,2) ≤ 0, u(1,3) ≥ 0

order ad-d and ad-a ad-d ad-a

M +N = 2 u(2,0) ≥ 0, u(0,2) ≤ 0 u(1,1) ≤ 0 u(1,1) ≥ 0

M +N = 3 u(3,0) ≥ 0, u(0,3) ≥ 0 u(2,1) ≤ 0, u(1,2) ≥ 0 u(2,1) ≥ 0, u(1,2) ≤ 0

M +N = 4 u(4,0) ≥ 0, u(0,4) ≤ 0 u(3,1) ≤ 0, u(2,2) ≥ 0, u(1,3) ≤ 0 u(3,1) ≥ 0, u(2,2) ≤ 0, u(1,3) ≥ 0

order aa-d and aa-a aa-d aa-a

M +N = 2 u(2,0) ≥ 0, u(0,2) ≥ 0 u(1,1) ≤ 0 u(1,1) ≥ 0

M +N = 3 u(3,0) ≥ 0, u(0,3) ≥ 0 u(2,1) ≤ 0, u(1,2) ≤ 0 u(2,1) ≥ 0, u(1,2) ≥ 0

M +N = 4 u(4,0) ≥ 0, u(0,4) ≥ 0 u(3,1) ≤ 0, u(2,2) ≤ 0, u(1,3) ≤ 0 u(3,1) ≥ 0, u(2,2) ≥ 0, u(1,3) ≥ 0

Table 1: All signs up to order 4 for the DD case with two desirable attributes x and y, u(1,0) ≥ 0 and u(0,1) ≥ 0. Our classification
distinguishes whether the DM prefers to disaggregate (in short: d) or aggregate (in short: a) harms on the first attribute (first letter),
on the second attribute (second letter), and across attributes (third letter). Correlation aversion, cross-prudence in x and y, and cross-
temperance are highlighted in blue, correlation loving, cross-imprudence in x and y, and cross-intemperance are highlighted in green. The
signs are collected in Proposition 1.
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order dd-d and dd-a dd-d dd-a

M +N = 2 u(2,0) ≤ 0, u(0,2) ≤ 0 u(1,1) ≥ 0 u(1,1) ≤ 0

M +N = 3 u(3,0) ≥ 0, u(0,3) ≤ 0 u(2,1) ≤ 0, u(1,2) ≥ 0 u(2,1) ≥ 0, u(1,2) ≤ 0

M +N = 4 u(4,0) ≤ 0, u(0,4) ≤ 0 u(3,1) ≥ 0, u(2,2) ≤ 0, u(1,3) ≥ 0 u(3,1) ≤ 0, u(2,2) ≥ 0, u(1,3) ≤ 0

order da-d and da-a da-d da-a

M +N = 2 u(2,0) ≤ 0, u(0,2) ≥ 0 u(1,1) ≥ 0 u(1,1) ≤ 0

M +N = 3 u(3,0) ≥ 0, u(0,3) ≤ 0 u(2,1) ≤ 0, u(1,2) ≤ 0 u(2,1) ≥ 0, u(1,2) ≥ 0

M +N = 4 u(4,0) ≤ 0, u(0,4) ≥ 0 u(3,1) ≥ 0, u(2,2) ≥ 0, u(1,3) ≥ 0 u(3,1) ≤ 0, u(2,2) ≤ 0, u(1,3) ≤ 0

order ad-d and ad-a ad-d ad-a

M +N = 2 u(2,0) ≥ 0, u(0,2) ≤ 0 u(1,1) ≥ 0 u(1,1) ≤ 0

M +N = 3 u(3,0) ≥ 0, u(0,3) ≤ 0 u(2,1) ≥ 0, u(1,2) ≥ 0 u(2,1) ≤ 0, u(1,2) ≤ 0

M +N = 4 u(4,0) ≥ 0, u(0,4) ≤ 0 u(3,1) ≥ 0, u(2,2) ≥ 0, u(1,3) ≥ 0 u(3,1) ≤ 0, u(2,2) ≤ 0, u(1,3) ≤ 0

order aa-d and aa-a aa-d aa-a

M +N = 2 u(2,0) ≥ 0, u(0,2) ≥ 0 u(1,1) ≥ 0 u(1,1) ≤ 0

M +N = 3 u(3,0) ≥ 0, u(0,3) ≤ 0 u(2,1) ≥ 0, u(1,2) ≤ 0 u(2,1) ≤ 0, u(1,2) ≥ 0

M +N = 4 u(4,0) ≥ 0, u(0,4) ≥ 0 u(3,1) ≥ 0, u(2,2) ≤ 0, u(1,3) ≥ 0 u(3,1) ≤ 0, u(2,2) ≥ 0, u(1,3) ≤ 0

Table 2: All signs up to order 4 for DU with a desirable attribute x, u(1,0) ≥ 0, and an undesirable attribute y, u(0,1) ≤ 0. Our
classification distinguishes whether the DM prefers to disaggregate (in short: d) or aggregate (in short: a) harms on the first attribute
(first letter), on the second attribute (second letter), and across attributes (third letter). Correlation aversion, cross-prudence in x and y,
and cross-temperance are highlighted in blue, correlation loving, cross-imprudence in x and y, and cross-intemperance are highlighted in
green. The signs are collected in Proposition 2.
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order dd-d and dd-a dd-d dd-a

M +N = 2 u(2,0) ≤ 0, u(0,2) ≤ 0 u(1,1) ≤ 0 u(1,1) ≥ 0

M +N = 3 u(3,0) ≤ 0, u(0,3) ≤ 0 u(2,1) ≤ 0, u(1,2) ≤ 0 u(2,1) ≥ 0, u(1,2) ≥ 0

M +N = 4 u(4,0) ≤ 0, u(0,4) ≤ 0 u(3,1) ≤ 0, u(2,2) ≤ 0, u(1,3) ≤ 0 u(3,1) ≥ 0, u(2,2) ≥ 0, u(1,3) ≥ 0

order da-d and da-a da-d da-a

M +N = 2 u(2,0) ≤ 0, u(0,2) ≥ 0 u(1,1) ≤ 0 u(1,1) ≥ 0

M +N = 3 u(3,0) ≤ 0, u(0,3) ≤ 0 u(2,1) ≤ 0, u(1,2) ≥ 0 u(2,1) ≥ 0, u(1,2) ≤ 0

M +N = 4 u(4,0) ≤ 0, u(0,4) ≥ 0 u(3,1) ≤ 0, u(2,2) ≥ 0, u(1,3) ≤ 0 u(3,1) ≥ 0, u(2,2) ≤ 0, u(1,3) ≥ 0

order ad-d and ad-a ad-d ad-a

M +N = 2 u(2,0) ≥ 0, u(0,2) ≤ 0 u(1,1) ≤ 0 u(1,1) ≥ 0

M +N = 3 u(3,0) ≤ 0, u(0,3) ≤ 0 u(2,1) ≥ 0, u(1,2) ≤ 0 u(2,1) ≤ 0, u(1,2) ≥ 0

M +N = 4 u(4,0) ≥ 0, u(0,4) ≤ 0 u(3,1) ≤ 0, u(2,2) ≥ 0, u(1,3) ≤ 0 u(3,1) ≥ 0, u(2,2) ≤ 0, u(1,3) ≥ 0

order aa-d and aa-a aa-d aa-a

M +N = 2 u(2,0) ≥ 0, u(0,2) ≥ 0 u(1,1) ≤ 0 u(1,1) ≥ 0

M +N = 3 u(3,0) ≤ 0, u(0,3) ≤ 0 u(2,1) ≥ 0, u(1,2) ≥ 0 u(2,1) ≤ 0, u(1,2) ≤ 0

M +N = 4 u(4,0) ≥ 0, u(0,4) ≥ 0 u(3,1) ≤ 0, u(2,2) ≤ 0, u(1,3) ≤ 0 u(3,1) ≥ 0, u(2,2) ≥ 0, u(1,3) ≥ 0

Table 3: All signs up to order 4 for UU with two undesirable attributes x and y, u(1,0) ≥ 0 and u(0,1) ≥ 0. Our classification distinguishes
whether the DM prefers to disaggregate (in short: d) or aggregate (in short: a) harms on the first attribute (first letter), on the second
attribute (second letter), and across attributes (third letter). Correlation aversion, cross-prudence in x and y, and cross-temperance
are highlighted in blue, correlation loving, cross-imprudence in x and y, and cross-intemperance are highlighted in green. The signs are
collected in Proposition 3.
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Case
app. (M,N)-deg. app. (M,N)-deg.

condition
pref. risk att. pref. risk att.

DD

dd-d averse dd-a loving

da-d
averse

da-a
loving if N odd

loving averse if N even

ad-d
averse

ad-a
loving if M odd

loving averse if M even

aa-d
loving

aa-a
averse if M +N odd

averse loving if M +N even

DU

dd-d
loving

dd-a
averse if N odd

averse loving if N even

da-d loving da-a averse

ad-d
averse

ad-a
loving if M +N odd

loving averse if M +N even

aa-d
loving

aa-a
averse if M odd

averse loving if M even

UU

dd-d
loving

dd-a
averse if M +N odd

averse loving if M +N even

da-d
averse

da-a
loving if M odd

loving averse if M even

ad-d
averse

ad-a
loving if N odd

loving averse if N even

aa-d averse aa-a loving

Table 4: Attitudes towards an increase in the (M,N)-degree riskiness of (X,Y ) organized
by the DM’s apportionment preference. The table distinguishs the different combinations of
apportionment preferences, states the implied (M,N)-degree risk attitude, and provides a
condition if required. The first, second and third panel summarizes the results of Corollary 1,
2 and 3 for the case DD, DU and UU, respectively.
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B Construction of multiplicatively separable utility functions

with desired risk apportionment preferences

Table 5 shows how to construct any of the eight combinations of apportionment preferences

(rows) in any of the three cases (columns) when the utility function is multiplicatively sepa-

rable, u(x, y) = v(x)z(y). The acronym “mra” stands for mixed risk-averse, “mrl” for mixed

risk-loving, “amra” for anti-mixed risk-averse, and “amrl” for an anti-mixed risk-loving. Each

cell contains two possibilities depending on the signs of the factor utility functions v and z.

DD DU UU

dd-d
v > 0 amra & z < 0 mra v > 0 amra & z < 0 amrl v > 0 mrl & z < 0 amrl
v < 0 mra & z > 0 amra v < 0 mra & z > 0 mrl v < 0 amrl & z > 0 mrl

dd-a
v > 0 mra & z > 0 mra v > 0 mra & z > 0 amrl v > 0 amrl & z > 0 amrl
v < 0 amra & z < 0 amra v < 0 amra & z < 0 mrl v < 0 mrl & z < 0 mrl

da-d
v > 0 amra & z < 0 mrl v > 0 amra & z < 0 amra v > 0 mrl & z < 0 amra
v < 0 mra & z > 0 amrl v < 0 mra & z > 0 mra v < 0 amrl & z > 0 mra

da-a
v > 0 mra & z > 0 mrl v > 0 mra & z > 0 amra v > 0 amrl & z > 0 amra
v < 0 amra & z < 0 amrl v < 0 amra & z < 0 mra v < 0 mrl & z < 0 mra

ad-d
v > 0 amrl & z < 0 mra v > 0 amrl & z < 0 amrl v > 0 mra & z < 0 amrl
v < 0 mrl & z > 0 amra v < 0 mrl & z > 0 mrl v < 0 amra & z > 0 mrl

ad-a
v > 0 mrl & z > 0 mra v > 0 mrl & z > 0 amrl v > 0 amra & z > 0 amrl
v < 0 amrl & z < 0 amra v < 0 amrl & z < 0 mrl v < 0 mra & z < 0 mrl

aa-d
v > 0 amrl & z < 0 mrl v > 0 amrl & z < 0 amra v > 0 mra & z < 0 amra
v < 0 mrl & z > 0 amrl v < 0 mrl & z > 0 mra v < 0 amra & z > 0 mra

aa-a
v > 0 mrl & z > 0 mrl v > 0 mrl & z > 0 amra v > 0 amra & z > 0 amra
v < 0 amrl & z < 0 amrl v < 0 amrl & z < 0 mra v < 0 mra & z < 0 mra

Table 5: Construction of multiplicatively separable utility functions with desired apportion-
ment preferences in the three cases. The acronyms “mra”, “mrl”, “amra” and “amrl” abbre-
viate mixed risk-averse, mixed risk-loving, anti-mixed risk-averse and anti-mixed risk-loving
utility functions, respectively. Together with the sign of v and z, this establishes the univariate
apportionment preferences, see Section 2.3. The apportionment preference across attributes
follows from the alignment or misalignment of the signs of v and z, see Proposition 5.
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