Estimating the impact of the COVID-19 pandemic on breast cancer: an application to life insurance

Dr. Ayşe Arık

Department of Actuarial Mathematics and Statistics, Heriot-Watt University, and the Maxwell Institute for Mathematical Sciences, UK

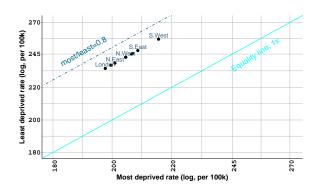
joint work with Andrew Cairns, Erengul Dodd, Angus S Macdonald, Adam Shao, and George Streftaris

Funding from:

Predictive Modelling for Medical Morbidity Risk Related to Insurance – SoA Estimating The Impact Of The COVID-19 Pandemic On Breast Cancer Deaths - An Application On Breast Cancer Life Insurance – SCOR Foundation for Science

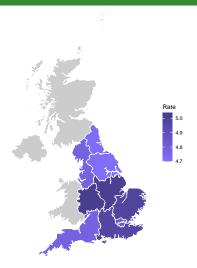
Outline

- Motivation
- Insights on breast cancer
- 3 Part 1: The impact of COVID-19 on breast cancer
 - (Semi-)Markov model for breast cancer
 - Numerical applications
 - Summary
- Part 2: An application to life insurance products
 - Multi-state model(s) for breast cancer
 - Numerical applications
 - Summary


Motivation: why breast cancer?

Breast cancer (BC) is

- the most common cancer diagnosed in women
- one of the leading causes of death for women
- one of the most common conditions amongst critical illness insurance (CII) claims, e.g. 44% of female CII claims in 2014 in the UK
- one of the cancer types where a national cancer screening programme is available


Most v. least deprived by region: BC incidence in England - 2017

- Not a life-style cancer
- Rates for least deprived higher (higher screening?)
- Less regional variation as compared to, e.g., lung cancer

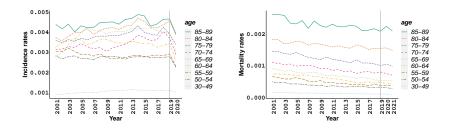
Regional variation: BC mortality in England - 2019

✓ Rate is per 10K✓ Deprivation is not significant

What insights we gain from BC data

- Socio-economic differences are less relevant as compared to, e.g., lung cancer incidence/mortality
- Not (easily) controllable or preventable risk factors
- Regional inequality exists but relatively low
 - High BC screening awareness
 - National BC screening programme for ages 47–73
- The availability of BC screening is crucial for early diagnosis, as BC can be curable

Part 1: The impact of COVID-19 on breast cancer

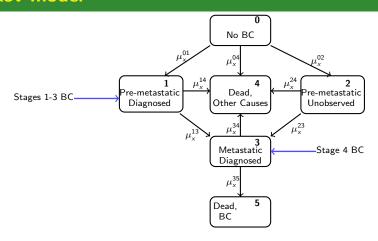

Investigate BC rates in the presence of:

major disruptions to health services,

particularly caused by a catastrophic event, e.g. the COVID-19,

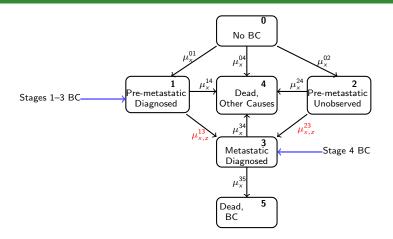
preventing or delaying the diagnosis of BC

BC incidence and mortality in England: COVID years


 A significant decline in BC incidence, as low as 25% at ages 60–64, in 2020 as compared to the same period in 2019

Incidence (left) v. Mortality (right)

• An increase in BC mortality from ages 65+, as high as 7%, in 2020 as compared to the same period in 2019


Multi-state model for BC transitions: Markov model

- 'Dead from BC' is only accessible from 'Metastatic Diagnosed'
- \bullet Onset of BC remains unchanged $\Rightarrow \mu_{\rm x}^{\rm 01} + \mu_{\rm x}^{\rm 02} = \mu_{\rm x}^*$
- Treatment is available in 'Pre-metastatic Diagnosed' NOT in 'Pre-metastatic Unobserved' $\Rightarrow \mu_{\rm x}^{13} < \mu_{\rm x}^{23}$

Multi-state model for BC transitions: semi-Markov model

- Duration dependence in 'Pre-metastatic Diagnosed' and 'Pre-metastatic Unobserved'
- No treatment in 'Pre-metastatic Unobserved' $\Rightarrow \mu_{x,z}^{13} < \mu_{x,z}^{23}$

Dr. Ayşe Arık

Modified Kolmogorov equations: semi-Markov model

$$\begin{split} \frac{d}{dt} t \rho_x^{00} &= -_t \rho_x^{00} \left(\mu_{x+t}^{01} + \mu_{x+t}^{02} + \mu_{x+t}^{04} \right) \\ \frac{d}{dt} t \rho_x^{01} &= _t \rho_x^{00} \mu_{x+t}^{01} - _t \rho_x^{01} \mu_{x+t}^{14} - \int_{u=0}^t _u \rho_x^{00} \mu_{x+u}^{01} _{t-u} \rho_{[x+u]}^{11} \mu_{[x+u]+t-u}^{13} du \\ \frac{d}{dt} _t \rho_x^{02} &= _t \rho_x^{00} \mu_{x+t}^{02} - _t \rho_x^{02} \mu_{x+t}^{24} - \int_{u=0}^t _u \rho_x^{00} \mu_{x+u}^{02} _{t-u} \rho_{[x+u]}^{22} \mu_{[x+u]+t-u}^{23} du \\ \frac{d}{dt} _t \rho_x^{03} &= \int_{u=0}^t _u \rho_x^{00} \mu_{x+u}^{01} _{t-u} \rho_{[x+u]}^{11} \mu_{[x+u]+t-u}^{13} du + \\ \int_{u=0}^t _u \rho_x^{00} \mu_{x+u}^{02} _{t-u} \rho_{[x+u]}^{22} \mu_{[x+u]+t-u}^{23} du - _t \rho_x^{03} \left(\mu_{x+t}^{34} + \mu_{x+t}^{35} \right) \\ \frac{d}{dt} _t \rho_x^{04} &= _t \rho_x^{00} \mu_{x+t}^{04} + _t \rho_x^{01} \mu_{x+t}^{14} + _t \rho_x^{02} \mu_{x+t}^{24} + _t \rho_x^{03} \mu_{x+t}^{34} \\ \frac{d}{dt} _t \rho_x^{05} &= _t \rho_x^{03} \mu_{x+t}^{35} \end{split}$$

- $\mu^{13}_{{
 m x},u}=\mu^{13}_{[{
 m x}]+u}$ and $\mu^{23}_{{
 m x},u}=\mu^{23}_{[{
 m x}]+u}$ with select attained age $[{
 m x}]$ and duration u
- Differential equations involve integration over duration u

Dr. Ayşe Arık

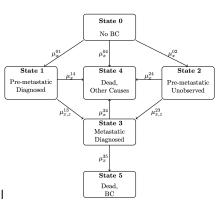
A convenient parametrisation of the model

From

$$\mu_{\rm x}^{\rm 01} + \mu_{\rm x}^{\rm 02} = \mu_{\rm x}^*$$

we can write

$$\mu_x^{01} = \alpha \, \mu_x^*$$
 $\mu_x^{02} = (1 - \alpha) \, \mu_x^*, \qquad 0 < \alpha < 1$

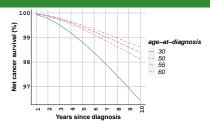

 α : level of BC diagnoses

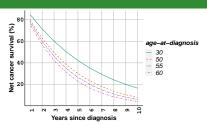
Also we assume

$$\mu_{x,z}^{13} = \beta \, \mu_{x,z}^{23}, \qquad \beta < 1$$

 β : availability of BC treatment Transitions to death due to other causes from all 'live' states are equal to $\mu_{\rm x}^{\rm 04}$

$$\mu_{\rm x}^{14} = \mu_{\rm x}^{24} = \mu_{\rm x}^{34} = \mu_{\rm x}^{04}$$


BC model: pre-Covid rates


Age	$\mu_{\scriptscriptstyle X}^{\scriptscriptstyle 01}$	$\mu_{\scriptscriptstyle X}^{04}$	μ_x^{35}
30–49	0.00086	0.00084	0.16739
50-54	0.00224	0.00228	0.24005
55-59	0.00233	0.00363	0.24005
60-64	0.00282	0.00588	0.28060
65-69	0.00318	0.00952	0.28060
70-74	0.00280	0.01643	0.36002
75-79	0.00311	0.02987	0.40000
80-84	0.00338	0.05496	0.49711
85–89	0.00362	0.10112	0.50000

- $\mu_{\rm x}^{01}$: ONS/NHS Digital data, 81% of new BC registrations, England, 2001–2019
- \bullet μ_{x}^{04} : ONS data, deaths from other causes, England, 2001–2019
- $\mu_{\rm x}^{1,3}$: Average metastasis rates per 1000 person-years; $\mu_{\rm x}^{13}=0.01954$ in the Markov model (Colzani et al., 2014)
- μ_x^{35} : BC deaths by age within 12 months after Stage 4 BC diagnosis (Zhao et al., 2020)

BC net survival, semi-Markov model: pre-Covid rates

Pre-metastatic BC (left) v. Metastatic BC (right)

- Baseline scenarios are carried out for women when $\alpha = 0.6$ and $\beta = \frac{1}{7}$
- Net Survival: ONLY consider 'Dead, BC' as cause of death AFTER BC diagnosis
- An unusual age pattern in pre-metastatic BC net survival
- Lower metastatic BC net survival at older ages

For a woman aged x, diagnosed with pre-metastatic BC, BC survival in t years:

$$\frac{1 - {}_t \rho_{\scriptscriptstyle X}^{14} - {}_t \rho_{\scriptscriptstyle X}^{15}}{1 - {}_t \rho_{\scriptscriptstyle x}^{14}}$$

BC model - COVID scenario

In order to quantify the impact of COVID-19 on BC mortality at older ages, we have

- Excess deaths from other causes, i.e. increase in $\mu_{\rm x}^{04}$
- Decline in BC diagnosis, i.e. slowdown in $\mu_{\rm x}^{01}$ and increase in $\mu_{\rm x}^{02}$

Pandemic period	$\mu_{_{X}}^{01}/\mu_{_{X}}^{02}$	$\mu_{\scriptscriptstyle X}^{04}$		
	α	65–84	85–89	
April-Nov. 2020	0.8	1.13	1.12	
Dec. 2020-Nov. 2021	1	1.13	1.12	
Dec. 2021-Dec. 2022	1	1.10	1.09	
JanDec. 2023	1	1.07	1.06	
JanDec. 2024	1	1.04	1.03	

Short-term implications up to 5 years

Occupancy Probabilities (%)										
	From State 0									
Age	$_{5}p_{_{\times}}^{00}$	5/	v_{x}^{01}	$_{5}p_{_{\times}}^{02}$		₅ p _x ⁰³		$_{5}p_{_{X}}^{04}$	5/	o_x^{05}
	М	M	S-M	М	S-M	М	S-M	М	М	S-M
	Pre-pandemic calibration									
65-69	93.09	1.50	1.47	0.76	0.68	0.24	0.31	4.29	0.13	0.16
70-74	90.49	1.25	1.22	0.63	0.57	0.18	0.23	7.32	0.13	0.16
75-79	85.07	1.33	1.31	0.67	0.61	0.18	0.24	12.59	0.15	0.19
80-84	75.07	1.29	1.26	0.65	0.59	0.15	0.20	22.66	0.17	0.21
85-89	59.71	1.09	1.07	0.55	0.50	0.13	0.17	38.36	0.16	0.19
	Pandemic scenario									
65-69	92.73	1.45	1.42	0.78	0.70	0.24	0.32	4.66	0.14	0.17
70-74	89.90	1.20	1.18	0.65	0.58	0.18	0.24	7.93	0.14	0.17
75-79	84.09	1.28	1.25	0.69	0.62	0.18	0.24	13.60	0.16	0.20
80-84	73.42	1.22	1.20	0.66	0.59	0.16	0.21	24.36	0.18	0.22
85–89	57.53	1.02	1.00	0.55	0.49	0.13	0.17	40.61	0.16	0.20

- Semi-Markov (S-M) Model v. Markov (M) Model
- 3–6% decline in age-specific, ${}_5p_{\scriptscriptstyle X}^{01}$, 'Pre-metastatic Diagnosed'
- 3–5% increase in, $_5p_x^{03}$, 'Metastatic Diagnosed' (Vulnerability? Higher deaths from BC and other causes?)

Changes in BC pre- v. post-pandemic

	Excess deaths					YLL		
Age	Dead (Other)		Dead (BC)		Dead (Other)		Dead (BC)	
	State 4		State 5		State 4		State 5	
	М	S-M	М	S-M	М	S-M	М	S-M
65–69	363	363	8	10	7000	7010	152	193
70-74	607	607	7	9	9298	9293	113	138
75-79	1011	1012	8	10	11762	11770	92	116
80-84	1699	1699	7	9	14342	14340	63	76
85-89	2253	2253	5	6	13158	13158	29	35

- 100,000 women in each age group, in 'No BC' at time zero, taken as January 1, 2020
- 3-6% increase in 'Dead from BC' in the semi-Markov (S-M) model;
 5-8% increase in the Markov (M) model;
 5-8% increase in 'Dead from Other Causes' for women, with 'No BC' at time zero, across different ages over 5 years

Years of life expectancy lost (YLL) from a given cause is:

$$\mathsf{YLL}^{\mathsf{cause}}_{x,t} = D^{\mathsf{cause}}_{x,t} e_x$$

where $D_{x,t}^{\text{cause}}$ is age- and type-specific additional deaths; and

 e_x is defined using standard life tables

Summary (1)

- More equality in BC as compared to life-style cancers
- A valuable model relating to delays in the provision of BC diagnostic and treatment services
 - also relevant to meet the needs of women with medical history of BC
- As compared to the pre-pandemic scenario
 - $\bullet~$ 3–6% increase in deaths from BC and 5–8% from other causes between ages 65–89
 - Less than a 1% change in the probability of death for women with pre-metastatic BC (sp_x^{15})
 - A relatively significant change in the probability of death for women with metastatic BC $(5p_x^{35})$ as compared to women with pre-metastatic BC
- Measuring parameter and model uncertainty?

Part 2: An application to life insurance products

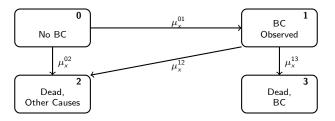
A considerable progress in understanding BC due to

medical research and data analysis

Better **options available** for people previously considered high-risk, e.g. women with breast cancer history

Examine existing models to see if they could lead to

fairly priced, more inclusive coverage options

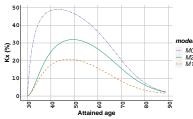

Critical illness and life insurance products

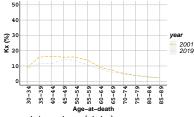
We consider

- single benefit in an insurance contract:
 - a specialised CII
 - OR
 - a specialised life insurance (LI)
- benefit to be payable at the time of
 - BC diagnosis or death from other causes in the CII contract
 - @ death from any causes in the LI contract; and
- the LI contract can be purchased
 - with pre-metastatic BC

An industry-based Markov model

- A more compact version of the semi-Markov model
- Applied to CII by the insurance industry (Reynolds and Faye, 2016; Baione and Levantesi, 2018)
- ONLY account for observed BC cases
- Do not differentiate between different stages of BC


All models: calibration


			00	-12
Age	μ_{\star}^{01} in M0	μ_{\star}^{01} in M1&M2	μ_x^{02} in M0	μ_{x}^{13} in M0
6-	<i>p</i> -x	γ·χ	$\mu_{\scriptscriptstyle X}^{04}$ in M1&M2	μ_{x}^{35} in M1&M2
30–49	0.00106	0.00086	0.00084	0.16739
50-54	0.00277	0.00224	0.00228	0.24005
55-59	0.00287	0.00233	0.00363	0.24005
60-64	0.00349	0.00282	0.00588	0.28060
65-69	0.00393	0.00318	0.00952	0.28060
70-74	0.00345	0.00280	0.01643	0.36002
75-79	0.00384	0.00311	0.02987	0.40000
80-84	0.00417	0.00338	0.05496	0.49711
85–89	0.00447	0.00362	0.10112	0.50000

- Industry-based (M0) Model v. Semi-Markov (M1) Model v. Markov (M2) Model
- $m{\Phi}$ μ_{χ}^{01} : ONS/NHS Digital data, 81% of new BC registrations in M1&M2, England, 2001–2019
- $\bullet \ \ \mu_{\rm x}^{02}$ or $\mu_{\rm x}^{04}$: ONS data, deaths from other causes, England, 2001–2019
- $\mu_{\rm x}^{13}$ or $\mu_{\rm x}^{35}$: BC deaths by age within 12 months after Stage 4 BC diagnosis (Zhao et al., 2020)

An industry-based approach: k_x method

Implied k_x values (left) v. Observed k_x values (right)

- Industry-based (M0) Model v. Semi-Markov (M1) Model v. Markov (M2) Model
- Difficulty in calibrating models, in the absence of good quality cause of deaths data, especially relevant in CII context
- k_x method is to indirectly define deaths from other causes, accepting the proportion of CI causes to be k_x% of all deaths
- \bullet Significantly higher estimates under M0 (choice of $\mu_{\rm x}^{13}$?)

The proportion of BC deaths, k_x at attained age x, for instance, implied by M1 and M2

$$\hat{k}_{x} = \frac{x \rho_{0}^{00} \mu_{x}^{94}}{x \rho_{0}^{00} \mu_{x}^{94} + x \rho_{0}^{01} \mu_{x}^{14} + x \rho_{0}^{02} \mu_{x}^{24} + x \rho_{0}^{03} \mu_{x}^{34} + x \rho_{0}^{03} \mu_{x}^{35}}$$

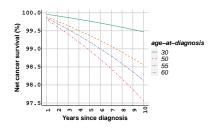
Dr. Ayse Ank 23 / 30

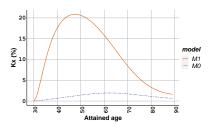
Net single premiums: whole life insurance

Whole life insurance contracts for i = 4%

- Industry-based (M0) Model v. Semi-Markov (M1) Model v. Markov (M2) Model
- ullet Premiums, no BC, CII (lowest under M0) > Premiums, no BC, LI
- Premiums, diagnosed with pre-metastatic BC at the time of purchase, LI > Premiums, no BC, LI
- Premiums, diagnosed with pre-metastatic BC at the time of purchase, LI >
 Premiums, diagnosed with pre-metastatic BC 5 years before purchase, LI
 (Impact of duration or time spent with pre-metastatic BC? Vulnerability?)

What insights we gain from different models


- Lower CII premiums under the industry-based model, M0, due to
 - number of departures from 'No BC'
 - ullet definition of rates of transition μ_x^{01}
 - absence of unobserved BC cases
- Duration dependence in the semi-Markov model, M1, enables
 - a more flexible and inclusive pricing methodology
 - results aligned with medical literature
- The risk of death from BC under M0 is considered to be high, linked to the risk of dying from metastatic BC
 - leading to very high LI prices for a woman with BC
 - suggesting sensitivity to this assumption



Sensitivity analysis

- Sensitivity analysis is carried out, all else equal, with
 - $\alpha =$ 0.4 and $\alpha =$ 0.8 (lower v. higher BC diagnoses)
 - $\beta = \frac{1}{5}$ and $\beta = \frac{1}{10}$ (worse v. better BC treatment)
 - μ_x^{35} is 20% lower and higher than the pre-pandemic level (lower v. higher BC deaths)
 - i = 1-4% (lower v. higher interest rates)
- Consistent results in relation to relative changes in net single premiums under different parametrisation

Impact of definition of BC deaths: M0

BC survival under M0 (left) v. Implied k_x values (right)

- Industry-based (M0) Model v. Semi-Markov (M1) Model
- ullet Baseline scenarios are carried out for women under M1 when lpha= 0.6 and $eta=rac{1}{7}$
- The risk of death from BC under M0 is assumed to be similar to a woman with Stage 1 BC at the time of diagnosis
 - as opposed to be choosing this to be linked to Stage 4 BC
 - pointing sensitivity of M0
- The model is NOT capturing the age pattern in BC net survival as expected
- Very sensitive implied k_x values under M0

Summary (2)

- New medical technologies improve cancer survival
- Flexible models are relevant to medical underwriting of related insurance contracts
- Less than 1% change in net single premiums when key transition rates are defined including COVID years
- Duration dependence matters in actuarial applications
- Smaller differences across premiums under different models with an increasing age and a longer time to maturity
- Accounting for time trend in cancer incidence, type-specific mortality, and the risk of developing metastatic BC?

More details in:

- Arık, A., Cairns, A., Dodd, E., Macdonald, A.S., Shao, A., Streftaris, G. Insurance pricing for breast cancer under different multiple state models, working paper.
- Arık, A., Cairns, A., Dodd, E., Macdonald, A.S., Streftaris, G. The effect of the COVID-19 health disruptions on breast cancer mortality for older women: A semi-Markov modelling approach, https://arxiv.org/abs/2303.16573.
- Arık, A., Cairns, A., Dodd, E., Macdonald, A.S., Streftaris, G. Estimating the impact of the COVID-19 pandemic on breast cancer deaths among older women, Living to 100 Research Symposium, 16 February 2023, conference monograph.
- Arık, A., Dodd, E., Cairns, A., Streftaris, G. Socioeconomic disparities in cancer incidence and mortality in England and the impact of age-at-diagnosis on cancer mortality, PLOS ONE, 2021.
- Arık, A., Dodd, E., Streftaris, G. Cancer morbidity trends and regional differences in England - a Bayesian Analysis, PLOS ONE, 2020.

Thank You!

Questions?

E: A.ARIK@hw.ac.uk

W: https://researchportal.hw.ac.uk/en/persons/ayse-arik

