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Abstract

Extreme cold temperature events have long been associated with excess mortality
via many different causes of death. Climate change is expected to intensify the fre-
quency and severity of these extreme temperature events. To quantify and model cold-
related excess deaths and, in turn, to better understand the potential impact of climate
change on future mortality levels, we propose a new approach based on the state-of-
the-art stationary vine copulas. Our proposed model is referred to as a (stationary)
centrally connected C-vine (CCC-vine). Three types of dependence are captured by
the model, which are temporal dependence, contemporaneous cross-sectional depen-
dence, and non-contemporaneous cross-sectional dependence. We apply the proposed
CCC-vine models to the US regional cause-specific death data over the period 1999–
2018 and conclude that the model outperforms various benchmark models. Based on
the fitted models, we generate several temperature scenarios and assess cause-specific
excess deaths and overall excess deaths due to extreme cold temperatures. We also
analyze the geographical differences in cold-related excess deaths across six continental
US regions. The results from our study can help public health interventions during
extreme cold events to reduce temperature-driven excess deaths.

Keywords: Cause-of-death; Stationary vine; Extreme temperature; Vine copulas;
Dependence modeling.
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1 Introduction

A greater understanding of the link between climate change and mortality has a number of
profound implications including for public policy planning and life insurance pricing. While
there is no cause-of-death referred to as climate change, it is globally recognised that climate
change can pose a serious threat to human lives (McMichael, 2011; Forzieri et al., 2017). Ac-
cording to the World Health Organization (WHO), between 2030 and 2050, climate change
is expected to cause approximately 250,000 additional deaths per year due to intense short-
term temperature fluctuations and climate-sensitive diseases (WHO, 2014). A recent study
found that approximately 9 out of every 100 deaths in the world during 2000–2019 were due
to extreme cold temperatures (Zhao et al., 2021). Extreme temperature events, including
extreme cold weather, are likely to become more frequent and severe as a consequence of
climate change (Kim et al., 2017; Cohen et al., 2018).

Previous studies found that ambient cold can lead to substantial short-term increases in
mortality from multiple causes such as cardiovascular and respiratory diseases (Donaldson
and Keatinge, 2002; Dushoff et al., 2006; Arbuthnott et al., 2018). Moreover, these ex-
treme temperature events are likely to have a greater impact on vulnerable segments of the
population, particularly the “oldest old”1. Wan et al. (2022) examined the impact of low
and high temperatures on death count using a quasi-Poisson regression model, with daily
mean temperature as the predictor. They found that the elderly (ages 75+) in Scotland are
more sensitive to both extreme cold and heat. By modeling joint extremes in temperature
and mortality in the US, Li and Tang (2022) concluded that the extremes in cold temper-
atures and old-age (ages 85+) death counts exhibit the strongest level of dependence. On
the other hand, they found that the relationship between deaths and extreme heat is small
when compared to the relationship between deaths and extreme cold in the US.2 In line
with these findings we focus on the impact of extreme cold temperature on excess deaths.
We consider US monthly cause-specific death count for people aged 85+ during 1999–2018,
and a cold temperature index for the same period. Six continental regions are included in
the study, namely Central West Pacific (CWP), Southwest Pacific (SWP), Southern Plains
(SPL), Midwest (MID), Southeast Atlantic (SEA), and Central East Atlantic (CEA).

In this research, we jointly model time series data on cause-specific death counts and an
underlying temperature index. Our approach differs from existing studies as we model the
relationship between temperature and death count over their entire distributions, rather
than the extreme values only. Moreover, instead of focusing on one or two causes of death,
we look at the impact of cold weather on excess deaths due to several major causes includ-
ing Diabetes, External, Neoplasm, Respiratory, and Vascular, as well as on the aggregated
deaths. In this way, we take into account the dependence structure across different causes
of death. Finally, the proposed model enables us to quantify any lagged effects of extreme
temperature on death count, such as how cold temperatures in the previous period can affect
excess deaths in the current period.

1The American Geriatric Society and the World Health Organization define the oldest old as individuals
aged over 80 years; the British Geriatrics Society uses 85 years as a threshold.

2These results are consistent with the conclusions made by the Society of Actuaries, one of the largest
actuarial and insurance professional bodies in the world, in a recent industry report (Serre, 2022).
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Three types of dependence need to be considered between the underlying temperature index
and death count series, namely temporal dependence, contemporaneous cross-sectional de-
pendence, and non-contemporaneous cross-sectional dependence. First, serial correlations in
temperature and death count series over time need to be taken into account, for example, a
higher rate of influenza deaths in one period may lead to more influenza deaths in the follow-
ing period. Second, we consider cross-sectional dependence across multiple causes of death
and temperature in the same period, where the magnitude, direction, and tail behaviour of
the paired dependence are generally different. Third, there could be a lagged effect of cold
temperatures on increased mortality risk from different causes. In other words, we would like
to investigate if extreme cold weather in the previous period will have an impact on excess
deaths in the current period. Therefore, non-contemporaneous cross-sectional dependence is
another important component in our modeling framework.

To address these considerations, we propose a vine copula-based approach to model cause-
specific excess deaths associated with extreme cold temperatures. The key idea behind vine
copulas is to construct a flexible joint dependence structure using pair-copulas as bivariate
building blocks (Bedford and Cooke, 2001, 2002; Aas et al., 2009; Joe, 2014). Following
this idea, Nagler et al. (2022) introduced the class of stationary vine (S-vine) models that
guarantee stationarity under simple equality constraints on the pair-copulas, which is ideal
for simultaneously capturing cross-sectional dependence and temporal dependence. To aid
model comparison, as well as to borrow information across regions, we further propose a
unified S-vine structure across all regions, based on preliminary analyses of the data. This
new model is referred to as a (stationary) centrally connected C-vine (CCC-vine) model and
it is introduced in Section 3.4. For every region, the CCC-vine gives us single, generative
model for the joint evolution of multiple causes of deaths. This allows answering a myriad
of questions (with essentially arbitrary conditioning on past or current events) in a coherent
manner. Additionally, the model is able to reflect many non-linear distributional effects that
would be impossible to capture with conventional models (e.g., Analitis et al., 2008).

Based on the fitted CCC-vine models, conditional Monte-Carlo simulations are used to
generate several temperature scenarios, under which we assess the impact of extreme cold
temperature on excess death from different causes as well as on the aggregated excess deaths.
We also investigate the impact of extreme cold temperatures given that deaths from Respi-
ratory are already at a high level. The empirical results show that across six US continental
regions, Vascular and Respiratory are the two major causes of death (excluding all other
causes combined) acting as the key “hubs” in the dependence structure, having relatively
strong dependence with all other variables. On the other hand, Diabetes and Neoplasms have
the weakest level of cross-sectional dependence. We compare the performance of the stan-
dard S-vine model, the CCC-vine, and the vector autoregression (VAR) model and find that
CCC-vine models give the best overall performance while the VAR models give the worst
overall performance. Based on the fitted CCC-vine models, we analyze the distribution of
excess deaths under different climate scenarios. We find that two consecutive months of cold
temperatures lead to the highest number of excess deaths. We also find that the impact of
extreme cold temperatures on deaths due to Diabetes, External, Neoplasms is much smaller
and even negligible. Among the six regions, it is concluded that CEA, SEA, and SWP have
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the highest number of cold-related excess deaths, while CWP and SPL have the smallest
number of cold-related excess deaths. Across the six regions, MID seems to be least affected
by extreme cold temperatures in terms of excess deaths.

The proposed modeling approach contributes to the existing literature in three ways. First,
we are the first to utilize novel S-vine models in mortality modeling. The key strength of
this new model is that it allows to generate scenario-based simulations that realistically re-
flect many non-linear distributional effects, such as tail risks, competing-risk, and harvesting
effects3. Second, based on the S-vine models, we quantify the effect of extreme cold temper-
atures on excess deaths, both at the aggregate level and the cause-specific level, which makes
important contributions to mortality risk modeling and management. Third, we propose the
CCC-vine model which gives a unified structure across different data subgroups, focusing
on relative importance of variables. This new modeling approach shows superior overall
performance and enables straightforward comparison of the modeling results across different
subgroups (in our case, different geographical regions). It also shows that preliminary data
analysis and information pooling can enhance our understanding of the data, assist the vine
copula model selection process, and in turn, improve the performance of our model. This
innovation makes a valuable contribution to vine-based modeling that could be applied in
other empirical settings.

The remainder of the paper is organized as follows. In Section 2, we describe and visualize
the climate and cause-specific data for US from 1999–2018. Section 3 introduces S-vine
copula modeling framework to model the cross-sectional and temporal dependence across
temperature and causes of death. We propose novel Goodness-of-Fit tests and compare
model performance in Section 4. We then analyze and discuss results from the scenario-
based analysis in Section 5. Finally, Section 6 concludes.

2 Data

In this section, we describe and visualize the datasets used in our empirical studies. We
consider US monthly climate and mortality data over 20 years from 1999–2018.

2.1 Actuaries Climate Index

For measurement of extreme cold temperatures, we collect the monthly T10 index from the
Actuaries Climate Index (ACI). The ACI is developed and complied by several actuarial
professions in North America including the American Academy of Actuaries, the Casualty
Actuarial Society, the Canadian Institute of Actuaries, and the Society of Actuaries. It
measures the level of extreme climate and consists of six components: T10 (frequency of
temperatures below the 10th percentile), T90 (frequency of temperatures above the 90th
percentile), P (maximum rainfall per month in five consecutive days), D (annual maximum

3Harvesting effect is also referred to as “mortality displacement”, it describes the phenomenon where
a compensatory decrease in mortality rates was observed in the subsequent weeks after an extreme event,
suggesting that such events affect vulnerable individuals that they would have died in the short term anyway.
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consecutive dry days), and W (frequency of wind speed above the 90th percentile). In
particular, T10 is defined as

x10

x
× 100,

where x represents the number of days in a given month and x10 denotes the number of days
where the minimum temperature is below the 10th percentile of that particular month. To
calculate relevant percentiles, the probability density function of the minimum temperature
is estimated using a reference period from 1961 to 1990.

The ACI provides climate information on six continental US regions, which are illustrated in
Figure 1. For each continental region, details of the states included can be found in Appendix
3 of the summary report (Actuaries Climate Index Executive Summary, 2018).

Figure 1: Six Continental US Regions. Source: Actuaries Climate Index Executive Summary,
page 4 (Actuaries Climate Index Executive Summary, 2018).

Figure 2 plots the monthly T10 index for the six continental US regions over the period 2000–
2018.4 For each region, there is no apparent trend, seasonality, or heterogeneity observed in
the T10 index. We conduct the a KPSS test (Lee and Schmidt, 1996) for stationarity and
find that for all six regions, the T10 index passes the test at the 5% level of significance,
which is consistent with our visual examination of the data.

We also see from Figure 2 that there are some natural variations in the T10 index across the
six regions. Table 1 summarizes some key statistics of T10. Overall, MID tends to have the
largest mean T10 with the highest variance and 90th percentile, which is not surprising as
the Midwest has experienced quite frequent winter storms and cold waves in recent years.

4Since we remove the trend and seasonality in monthly death series via seasonal differencing, our sample
is reduced by 12 observations and thus the investigation period for the corresponding temperature index
becomes 2000–2018.
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On the other hand, SWP has relatively stable values in T10 and the index rarely exceeds 20
in value, which means that normally there are less than 20% of days in a month where the
minimum temperature is below the 10th percentile).

SPL SWP

MID SEA

CEA CWP

2000 2005 2010 2015 2000 2005 2010 2015

0

10

20

30

0

10

20

30

0

10

20

30

year

T
10

Figure 2: T10 index for six US regions over 2000–2018.

Table 1: Summary statistics of T10.

Region Mean Standard deviation 90th pctl

CEA 6.87 5.27 14.06
CWP 7.33 5.32 15.53
MID 8.24 6.51 16.64
SEA 7.53 5.16 13.97
SPL 8.31 5.17 15.10
SWP 6.89 3.99 11.68
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2.2 Cause-specific death data

From the US CDC, we collect monthly death counts from five major causes of death across
six continental regions to be consistent with the climate data. The five major causes include
Diabetes, External, Respiratory, Neoplasms, and Vascular, and they are classified based
on the International Classification of Diseases, Version 10 (ICD-10). We also include one
additional category for all remaining causes in ICD-10, which is denoted as Other. The
detailed codifications are provided in Table 2 below.

Table 2: Codification of five major causes of death.

Cause of death ICD-10 code

Diabetes E10–E14
External V01–Y89
Respiratory J09–J98
Neoplasms C00–D48
Vascular I00–I78

It is widely acknowledged that elderly people are particularly vulnerable to the negative im-
pact of climate change on health. For the US population mortality, a previous study found
that cold temperatures and deaths at age 85+ exhibit the highest level of tail dependence
(Li and Tang, 2022). Our research also focuses on cold-related excess deaths for the popu-
lation aged 85+, or the “oldest-old”, and we further investigate the impact of extreme cold
temperatures on different causes of death.5

In Figure 3, we plot the monthly cause-specific death counts in the six US continental re-
gions for ages 85+. It can be seen that these death count series differ considerably in size
and seasonal patterns. Except for Vascular, all causes show an overall upward trend over
the investigation period.6 For Vascular, there is a slight downward trend in most regions.
Moreover, we observe strong seasonality in deaths due to vascular, respiratory, and other,
and moderate seasonality deaths due to external causes and diabetes, where peaks in death
counts usually happen in winter months (November, December, and January). On the other
hand, neoplasm deaths do not seem to show strong seasonal patterns compared to other
causes. Across the six regions, the top 3 causes of death are Vascular, Other, and Neoplasms.

The monthly death count series are not stationary. To remove the trend and seasonality in
the data, we perform seasonal differencing at a lag of 12. Upon visual examination, there is
no evidence of non-stationarity in the deseasonalized data as the mean and variance seem
to be constant over the investigation period. Similar to the T10 index, we conduct a KPSS
test at the 5% level of significance and find that all series pass the test. The deseasonalized
cause-specific series for CEA are plotted in Figure 4. We can see some co-movements in
these deseasonalized series, particularly for Other, Respiratory, and Vascular, indicating

5We have also conducted the proposed modeling based on ages 75–84, and find those results to be in line
with the results presented in Section 4. These additional results are available upon request.

6Since the number of deaths is determined by both mortality rate and population size, with decreasing
mortality rate but growing population size, death counts can be increasing over time. This is particularly
true for ages 85+ due to the rapidly aging population in the US
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some dependence across the series. Plots for the other five continental regions can be found
in the supplementary material. The deseasonalized monthly death data will be used to
produce results in Section 4.
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Figure 3: Monthly death counts for ages 85+ in six US regions.
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Figure 4: Deseasonalized cause-specific monthly death counts for ages 85+ in CEA.

3 Stationary vine copula models

3.1 Copulas and vines

The literature on copula-based modeling goes back to the late 1950s. Sklar (1959) proved that
any multivariate distributions can be broken down into univariate marginal distributions and
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a copula, which describes the dependence structure between these univariate distributions.
Mathematically, Sklar’s theorem can be described as follows.

Theorem 1 Let X = (X1, . . . , Xd) be an absolutely continuous random vector of dimension
d with joint distribution function F and marginal distribution functions Fi, for i = 1, . . . , d,
the joint distribution function can be expressed as

F (x1, . . . , xd) = C
(
F1(x1), . . . , Fd(xd)

)
, (1)

with associated density function

f(x1, . . . , xd) = c
(
F1(x1), . . . , Fd(xd)

) d∏
i=1

fi(xi), (2)

where C is a copula function with density c, and fi is the corresponding density for Fi. The
copula C is the joint distribution function of the random vector

U =
(
F1(X1), . . . , Fd(Xd)

)
.

Parametrized d-dimensional copula functions that are frequently considered include the
Gaussian copula, t copula, and Archimedean copulas (see more details in Czado, 2019).
However, for high dimensional problems, these copulas suffer from a lack of flexibility and
unrealistic symmetry constraints. In Figure 5, we illustrate the pairwise dependence struc-
ture of copula data based on temperature and death series in CEA. We can see that different
causes of death generally exhibit different dependence structures. Overall, Vascular has the
highest Kendall’s τ with other causes and the temperature index T10. On the other hand,
the dependence structure of T10 with certain causes such as Diabetes and External is rela-
tively weak. In the lower triangle, we plot the empirical pairwise contour plots of the copula
data transformed to standard normal margins (Czado, 2019, Section 3.8). Although some
of these contour plots are rather elliptical and, thus, compatible with the Gaussian copula,
other plots suggest tail asymmetry and stronger tail dependence than a Gaussian copula.

3.2 Vine copulas

To alleviate the issues of asymmetrical tail dependence and a lack of flexibility in high-
dimensional copulas, Joe (1996) proposed a flexible construction of a multivariate copula
using bivariate building blocks. Following this idea, Bedford and Cooke (2001, 2002) showed
how a multivariate distribution can be decomposed into bivariate copulas (some correspond-
ing to conditional dependence) and marginal densities. For organising all possible decompo-
sitions, they also developed a graphical model called vine. Unlike multivariate Archimedean
copulas, vine copulas allow for a different direction and magnitude of dependence for each
pair of variables. Unlike d-dimensional Gaussian and t copulas, vine copulas can assign
a different type of dependence in each pair of causes. Vine copulas also allow for asym-
metric tail dependence between variables. Vine copula-based modeling has been used in a
wide range of areas such as finance (Aas, 2016), engineering (Schepsmeier and Czado, 2016;
Coblenz et al., 2020), and environmental sciences (Vernieuwe et al., 2015; Kreuzer et al.,
2022). Given the empirical pairwise dependence structure illustrated in Figure 5, a vine
copula-based approach is particularly suitable for our modeling purpose.
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Figure 5: Pairwise copula data for CEA. Upper triangle: scatter plots of copula data with
estimated Kendall’s τ ; Diagonal: marginal histograms of copula data; Lower triangle: em-
pirical contour plots of marginally normalized copula data.

Definition 3.1 A regular vine (R-vine) is a sequence of trees (Tk)
d−1
k=1 with the following

properties:

(i) T1 is a tree with vertices V1 = {1, 2, . . . , d} and edges E1,

(ii) for k = 2, . . . , d− 1, Tk is a tree with vertices Vk = Ek−1,

(iii) (proximity condition) for k = 2, . . . , d− 1: if vertices a, b ∈ Vk in Tree k are connected
by an edge e ∈ Ek, then the corresponding edges in Tree k − 1, a = {a1, a2}, b =
{b1, b2} ∈ Ek−1, must share a common vertex: |a ∩ b| = 1.

Each edge e ∈ Ek in the graph is given a unique label (ae, be|De), where ae, be ∈ {1, . . . , d}
and De ⊂ {1, . . . , d}\{ae, be} with |De| = k − 1. A vine copula model assigns a bivariate
copula to each edge of this graph and constructs the copula density as

c(u) =
d−1∏
k=1

∏
e∈Ek

cae,be;De

(
uae|De , ube|De | uDe

)
,

where uae|De := Cae|De(uae | uDe), uDe := (ul)l∈De is a subvector of u = (u1, . . . , ud) ∈
[0, 1]d and, Cae|De is the conditional distribution of Uae given UDe. In this model, each pair-
copula cae,be;De captures the dependence between variables Xae and Xbe, conditional on the set
{Xk, k ∈ De}, more precisely cae,be;De is the copula associated with the bivariate conditional
distribution (Xae , Xbe)|De.
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Figure 6 shows an example of an R-vine tree sequence on three variables. The nodes in the
first tree represent the three variables A, B, and C. The edges are identified with bivariate
pair-copulas, which describe the dependence between each pair of variables. In the second
tree, the nodes are the edges of the first tree. The edges describe the dependence between
node AB and BC conditional on C. The flexibility of vine copulas allows for a different
direction and magnitude of dependence in each pair of variables. For example, AB could
be assigned a copula with upper tail dependence (e.g., Gumbel), BC could be assigned a
copula with lower tail dependence (e.g., Clayton) and AC|B could be assigned a copula with
no tail dependence (e.g., Gaussian).

Figure 6: Example of a 3-dimensional R-vine tree sequence.

There are two important subclasses of vine copula models, namely D-vine and C-vine models.
In a D-vine copula, all trees in the vine are paths. This is appropriate when the variables
have a natural ordering. In a C-vine copula, all trees are stars, which is most natural when
a certain variable drives the dependence among others. The sequence of root nodes of each
tree level is called order of the C-vine. General R-vines allow for much more flexibility,
however. For d = 3, any R-vine is both a D- and C-vine; differences only appear in higher
dimension. Inference and simulation algorithms for such models were developed by Aas et al.
(2009) and Dissmann et al. (2013).

3.3 Stationary vine copula models

Brechmann and Czado (2015), Smith (2015), and Beare and Seo (2015) pioneered the use
of vine copula models for multivariate time series. A multivariate time series is a sequence
of random vectors X1, . . . ,XT ∈ Rd that may exhibit both cross-sectional (within Xt) and
serial (across Xt and Xs) dependence. A vine copula model for this series consists of a
large vine graph that treats each Xt,j as a variable and assigns a bivariate copula to each
edge. As is common in time series modeling, the working assumption is that the data are
stationary, i.e., the marginal and joint distributions do not change over the observation pe-
riod. As a consequence, many of the pair-copulas in the model must be the same, which
greatly reduces model complexity. A second simplification arises from the assumption that
the series is Markovian of order p: the behavior of Xt only depends on the last p realiza-
tions Xt−1, . . . ,Xt−p. In a corresponding vine copula model, this assumption induces many
independence copulas, reducing complexity even further.
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Following these ideas, Nagler et al. (2022) proposed the class of stationary vine (S-vine) mod-
els that guarantee stationary under simple equality constraints on the pair-copulas, which is
ideal for capturing both cross-sectional dependence and time dependence. S-vines are con-
structed from a d-dimensional R-vine (called cross-sectional structure), connecting variables
Xt,1, . . . , Xt,d within a fixed time point. This structure is replicated at all time points and
connected serially in a way that the overall graph remains a vine. Nagler et al. (2022) showed
that this amounts to specifying an order in which individual margins are serially connected.
The models of Smith (2015), and Beare and Seo (2015) correspond to special S-vines, where
the cross-sectional structure is a D-vine. For more mathematical details and related theo-
retical results, we refer to Nagler et al. (2022).

Definition 3.2 An S-vine copula model consists of the following components:

• Models for the stationary marginal distributions Fj(x) = P (Xt,j ≤ x), j = 1, . . . , d.

• The S-vine graph, characterized by a cross-sectional vine structure (T1, . . . , Td−1) and
an order for constructing serial connections.

• Bivariate pair-copulas assigned to the edges of the graph.

Figure 7 provides an example of a 4-dimensional S-vine for three time points. Models for
the marginal distributions and pair-copulas can be fitted using maximum-likelihood methods
and selected using standard model selection criteria, see Nagler et al. (2022).

S-vine copula models are particularly suited to model cause-of-death data. Extreme death
counts are expected to exhibit strong and non-linear dependencies, which S-vines models
are designed to capture. We are also interested in their implications in various scenarios of
extreme climate conditions. Such effects are easy to analyze via conditional Monte-Carlo
simulation from S-vine models, see Nagler et al. (2022, Section S.3).

3.4 Stationary centrally connected C-vine models

A key ingredient to any vine copula model is the choice of the graph structure. Because of
the huge number of options, an exhaustive search is computationally infeasible (see, Czado
and Nagler, 2022, Section 4). Nagler et al. (2022) proposed a heuristic adapted from the
cross-sectional vine model selection of Dissmann et al. (2013) that aims at maximizing de-
pendence strength at low tree levels. In our empirical analysis, we can fit several vine copulas
– one for each geographic region. The heuristic approach would then deliver models that
differ in structure. This makes cross-regional comparison difficult and forgoes any potential
to borrow strength across regions.

To tackle this issue, we therefore propose a unified vine structure for all regions, based on
domain knowledge and a preliminary analysis of the data. The proposed model is an S-vine
model with centrally connected C-vines as cross-sectional structures, and thus is referred
to as a (stationary) centrally connected C-vine (CCC-vine) model. Key features of the
CCC-vine model are described in the following.

Definition 3.3 An CCC-vine copula model consists of the following components:
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Figure 7: First three trees level of a four-dimensional S-vine on three time points. The first
entry of (t, j) is the time index, while the second entry corresponds to the jth variable.

• The contemporaneous cross-sectional dependence structure is a C-vine.

• The C-vine is centrally connected, i.e. the central node of the C-vine is connected with
its value of the previous time period.

• The order of the root nodes of the tree levels is selected based on the importance of
variables.

For illustration purposes, in Figure 8, we plot the first three trees of a four-dimensional
CCC-vine on two successive time points.

The CCC-vine is a special case of an S-vine model, so it inherits all of its benefits: the
ability to capture complex non-linear dependencies as well as the ability to easily gener-
ate scenario-based simulations. Its distinguishing feature compared with other S-vines is
its focus on relative importance of variables. In the first trees of the model, dependencies
involving ‘important’ variables are prioritized . In the exemplary CCC-vine in Figure 8,
the most important variable would be Xt,1. The first tree contains copulas for all pair-wise
dependencies between Xt,1 and Xt,j, j = 2, . . . , 4, as well as the temporal auto-correlation
between Xt,1 and Xt+1,1. Importantly, no conditioning is involved, making the interpreta-
tion of pair-wise dependencies easy. With each further tree level, we must add one level of
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conditioning, so pair-copulas get increasingly difficult to interpret. This prioritization has
a related secondary effect on the quality of model fit and inferences. Because pair-copulas
are estimated sequentially tree-by-tree, dependencies involving the most important variables
suffer less from error propagation.

(1, 1)

(1, 2)

(1, 3) (1, 4)

(2, 1)

(2, 2)

(2, 3) (2, 4)

(1, 1), (1, 2)

(1, 1), (1, 3) (1, 1), (1, 4)

(1, 1), (2, 1) (2, 1), (2, 2)

(2, 1), (2, 3) (2, 1), (2, 4)

(1, 3), (1, 4) | (1, 1), (1, 2)

(1, 3), (2, 1) | (1, 1), (1, 2)

(1, 2), (2, 2) | (1, 1), (2, 1)

(1, 1), (2, 3) | (2, 1), (2, 2)

(2, 3), (2, 4) | (2, 1), (2, 2)

Figure 8: First three trees level of a four-dimensional S-vine on two time points with a cross-
section C-vine. The first entry of (t, j) is the time index, while the second entry corresponds
to the jth variable.

In our empirical studies, the cross-sectional C-vine structure is specified to reflect the im-
portance (or “connectedness”) of different causes and the temperature index. To determine
the ordering, in Table 3 we present the variable rankings according to aggregated strength of
dependence (measured by the summation of pair-wise Kendall’s τ across six causes of death
and T10 ) for each region. We then compute the overall rankings of each variable across
the six regions. Therefore, the C-vine cross-sectional order is defined as {Vascular, Other,
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Respiratory, External, Diabetes, Neoplasms, T10}. Since this ordering reflects importance,
it is then natural to also assign serial connections in the same order. It should be noted
that the order of causes of death is also roughly in line with their relative frequency. The
CCC-vine structure therefore prioritizes the most common causes, making the model more
reliable when looking at aggregate death counts. Before fitting the S-vine copula, we se-
lect appropriate parametric models for marginal distributions based on AIC. The marginal
models for each cause and region are provided in Table A.1.

Table 3: Variable rankings according to aggregated Kendall’s τ .

Region T10 Diabetes External Neoplasms Other Respiratory Vascular

CEA 7 4 6 5 2 3 1
CWP 6 5 4 7 2 1 3
MID 7 4 5 6 1 3 2
SEA 7 6 4 5 2 3 1
SPL 7 6 5 4 2 1 3
SWP 7 4 5 6 2 3 1

Total score
41(7) 29(5) 29(4) 33(6) 11(2) 14(3) 11(1)

(overall rankings)

4 Goodness-of-Fit tests

There are various ways to extend standard Goodness-of-Fit tests for copula models from
the iid to a time series setting. Some methods have already appeared in the literature,
but either do not match well with our model setup (Rémillard, 2017; Berghaus and Bücher,
2017). Instead we employ a strategy that exploits the Rosenblatt transform (Genest et al.,
2009, Section 4) and Markovian model structure of our models. The procedure is explained
in more detail in the following.

Suppose X1,X2, · · · ∈ Rd is a stationary time series with Markov order 1 and suppose we
have a model Fθ for the conditional distribution ofXt givenXt−1. Define the pseudo-residual
Ut = (Ut,1, . . . , Ut,d) ∈ Rd, t = 2, . . . , n, via the conditional Rosenblatt transformation

Ut,1 = Fθ(Xt,1 | Xt−1),

Ut,j = Fθ(Xt,j | Xt−1, Xt,1, . . . , Xt,j−1), j = 2, . . . , d.

Note that the Rosenblatt transform is easily computed for S-vine models, see Nagler et al.
(2022, Section S3.2). For the VAR model, it corresponds to the marginal probability integral
transform of decorrelated residuals.

Let F be the true distribution of the data. Under the null-hypothesis, F = Fθ, each vector
Vt = (Ut,Ut+1) follows a uniform distribution on [0, 1]2d. Testing for this is essentially
equivalent to testing independence in a 2d-dimensional random vector. A slight complication
is that the sequence (Vt)

n−1
t=1 is not independent because Ut is contained in both Vt−1 and

Vt. This issue will disappear after a data splitting step discussed later, so let us assume
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that (Vt)
n
t=1 is independent under the null for the moment. We use the test of Genest et al.

(2007) based on the Möbius transform of the empirical copula process. More specifically, for
any A ⊂ {1, . . . , 2d}, define

GA,n(v) =
1√
n

n∑
t=1

d∏
j∈A

[
1{Vt,j ≤ vj} − vj

]
.

Under the null hypothesis of independence, the collection of GA,n, A ⊂ {1, . . . , 2d}, converges
jointly to a certain Gaussian process. Each GA,n can therefore be used to test independence
in the components of (Vt,j)j∈A. Moreover, GA,n and GA′,n are asymptotically independent
whenever A ̸= A′, so it’s easy to aggregate p-values of the tests using Fisher’s method (Littell
and Folks, 1971). Since in our case, 2d = 14 is relatively large, a full test for multivariate
independence over all subsets would lack power (Genest et al., 2007, Section 5). We therefore
construct the statistic from all subsets of cardinality four or smaller.

Finally, we have to account for the fact that the parameter θ has been estimated from the
same data that is used for testing. We employ the generic method of Braun (1980): first
split the data into m subsets, then perform a test on each subset, and finally compute the
aggregate p-value p = 1 − (1 − min(p1, . . . , pm))

m. More precisely, we assign the vector Vt

to the kth subset whenever 1 + t (mod m) = k, which ensures that no Ut is contained in
more than one Vt in each subset. The vectors in each subset are then indeed iid standard
uniform under the null. The reported p-values all usem = 5, but our results were found to be
relatively insensitive to this choice. The same adjustment is used for the Cramér-von-Mises
tests for the marginal models in Table A.1.

Using the proposed Goodness-of-Fit tests, we compare the model performance of the CCC-
vine, a standard S-vine model with heuristic structure selection, as well as the VAR model7,
all with Markov order equal to 1.8 Table 4 shows p-values of goodness-of-fit tests for the
three models. The values for the CCC-vine and S-vine models are generally quite high and
would not lead to rejections at the 5% level in any region. The VAR model would be rejected
in all six regions.

Table 4: Goodness-of-fit p-values.

CEA CWP MID SEA SPL SWP

CCC-vine 0.90 0.07 0.91 0.88 0.99 0.26
S-vine 0.89 0.49 0.60 0.91 0.90 0.62
VAR 0.03 0.00 0.04 0.00 0.01 0.00

The superior performance of the CCC-vine is further confirmed in Table 5. The smallest
AIC and BIC values are highlighted in bold for each region. It can be seen that, in 4 out
of 6 cases, the CCC-vine models outperform the other two methods in both AIC and BIC.

7For the VAR model, we use a probit transformation for T10 to deal with its bounded domain.
8The choice of Markov order 1 is motivated by the analysis in the following section. There, we always

focus on two subsequent months. Because of the nested structure of stationary vines, including more than
one lag in the overall model would not effect any results.
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Overall, the standard S-vine models only provide slightly worse results compared to the
CCC-vine models, and the VAR models perform the worst. This is not surprising as the
VAR model does not account for heteroscedasticity and tail behaviour of the data.

Table 5: AIC and BIC comparison across different models.

Region Criterion CCC-vine Standard S-vine VAR

CEA
AIC 17023 17039 17181
BIC 17236 17245 17373

CWP
AIC 14165 14146 14221
BIC 14353 14335 14412

MID
AIC 17180 17215 17285
BIC 17406 17427 17477

SEA
AIC 16997 17007 17140
BIC 17234 17240 17332

SPL
AIC 15770 15770 15870
BIC 15973 15959 16061

SWP
AIC 16098 16124 16206
BIC 16328 16357 16398

To better understand and visualize the dependence structure across multiple causes and
extreme temperature index, we plot the first two trees of the CCC-vine models in Figures 9
and 10 for CEA. The selected vine structures for the remaining regions are included in the
supplementary materials.

5 Scenario-based analysis

In this section, we simulate samples from the selected S-vine models to assess and quantify
the impact of extreme cold temperatures on cause-specific deaths as well as the total number
of deaths, using a scenario-based approach. In the scenario-based analysis, we investigate the
impact of extreme cold temperatures on death distributions, both with and without making
additional assumptions about the level of respiratory deaths being high. Based on these
results, we investigate the regional differences in cold-related deaths and identify the most
affected regions by extreme cold temperatures. Additionally, we break down total deaths by
causes and identify the most temperature-sensitive cause for each region.

Based on the selected CCC-vine models, we simulate temperature and death data for 1
million pairs of two consecutive months and for all six regions. In our scenario-based analysis,
we consider two conditioning events. First, we look at scenarios conditioning only on cold
temperatures, i.e. T10. Second, we look at scenarios conditioning both on cold temperatures
and respiratory deaths, i.e. T10 and Respiratory. In each case, we compute the monthly
deseasonalized deaths by cause and in total under various scenarios. We also compare the
prediction intervals computed from the CCC-vine models with those from the VAR models
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and find that VAR models tend to underestimate the upper tail risk of deseasonalized deaths,
particularly when we experience two consecutive months of extreme cold temperatures.

5.1 Scenarios conditioning only on cold temperatures

In this section, our baseline scenario does not impose any restrictions on the values of the
temperature index T10. We consider the distribution of deseasonalized deaths at time t
under three temperature scenarios as follows:

1. The T10 index at time t exceeds its 90th percentile.9

2. The T10 index at time t− 1 exceeds its 90th percentile.

3. The T10 index at both time t and t− 1 exceeds its 90th percentile.

The first scenario describes the circumstance where the number of extreme cold days in
the current month t is higher than its 90th percentile threshold based on historical data.
Therefore, it measures the contemporaneous impact of extreme cold temperature on excess
deaths. The second scenario describes the circumstance where the number of extreme cold
days in the previous month t − 1 is higher than its 90th percentile threshold. Therefore, it
measures the lagged impact of extreme cold temperature in previous month on excess deaths
of the current month. The third scenario describes the circumstance where the number of
extreme cold days in both the current month t and the previous month t− 1 are exceeding
its 90th percentile threshold. Therefore, it measures the impact of extreme cold temperature
in two consecutive months on the excess deaths of current month. These three scenarios will
be compared against a baseline scenario where there is no condition imposed on the value
of temperature index T10. Roughly we have 105 pairs for Scenario 1, 105 pairs for Scenario
2, and slightly more than 104 pairs for Scenario 3.

Prediction intervals of aggregated deaths by region We compute the prediction
intervals of monthly deaths at the 10th and 90th percentiles under different scenarios, as
well as the median level (50th percentile) of the monthly deseasonalized deaths. For insur-
ance pricing and government planning, adverse mortality experience is far more critical than
favourable mortality experience. Therefore, our focus is on the 90th percentile of the distri-
bution. Figure 11 plots the prediction intervals for the six regions as well as the median of
monthly deseasonalized deaths, for both the CCC-vine models and VAR models. We observe
that, although the median deaths estimated by the two approaches are relatively close, the
90th percentiles produced by the CCC-vine models are noticeably higher in some regions.
The VAR models yield prediction intervals that are largely symmetric. The prediction inter-
vals from the CCC-vine models tend to be asymmetrical and skewed to the right, reflecting
the commonly observed heavy-tailed behaviour of death count series. These observations
demonstrate the usefulness of the proposed CCC-vine models in capturing tail events and
extreme dependence. Since the CCC-vine models provide better fit over VAR models and
thus the prediction intervals are expected to be more credible.

9The 90th percentile is computed based on the historical T10 data over the period 2000–2018.
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Figure 11: Prediction intervals of monthly deseasonalized total deaths at 10th and 90th
percentiles. The dot represents the median of the distribution. Baseline scenario does not
impose any restrictions.

Across the six regions, we can see that CEA has the highest number of excess deaths under
all scenarios, closely followed by SEA. This result is not surprising as these two regions have
large population exposures. Moreover, SEA has a relatively warm climate across the six
regions (as shown in Table 1), so it may be less resilient against extreme cold temperatures.
SWP appears to primarily experience excess deaths in Scenarios 1 and 3, but not in Scenario
2. For regions with relatively small populations such as CWP and SPL, the number of excess
deaths are considerably lower.

From Figure 11 Panel (a), we can see that for all regions, Scenario 1 shifts up the 10th
and 90th percentiles of monthly death distribution, indicating a higher likelihood of extreme
mortality events under extreme temperatures. Scenario 3 seems to have the most severe
impact on extreme mortality, where the shift in 90th percentile is the biggest across all six
regions. This indicates that longer periods of unusually cold temperatures lead to higher
excess mortality. Finally, Scenario 2 does not seem to have the same impact on the death
distribution compared to the other two scenarios: for most regions, the shift in the level of
the 90th percentile is much smaller compared to Scenarios 1 and 3. Nevertheless, it indicates
that if extreme cold temperatures occurred in the previous month, excess deaths are likely
to happen regardless of the temperature situation in the current month. In summary, two
consecutive months of extreme cold temperatures are most likely to trigger extreme mortal-
ity events.

Based on results from the CCC-vine models, we compare the 90th percentiles of the predicted
deaths under all scenarios across the six regions. For CEA, SEA, and SWP, we can see that
the increase from the unconditional scenario to Scenario 3 is notably bigger than the increase
in the cases of Scenarios 1 and 2. On the other hand, for CWP, MID, and SPL, it seems
that extreme cold temperatures do not have a huge influence on the 90th percentile of the
predicted deaths, indicating that the “worst” case scenario remains somewhat unchanged
under different temperature scenarios. We suspect that this is also due to a higher level
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of adaptation to cold climates in these two regions. It is also interesting to note that
in all regions but CWP, the 10th percentile of monthly deaths actually decreases when
(additionally) conditioning on low temperatures in the previous month (i.e., going from
baseline to Scenario 2 and from Scenario 1 to Scenario 3). This observation can potentially
be explained by the so-called “harvesting effect”, which suggests an increase in mortality
level due to a short-term, acute environmental event is likely to be followed by a decrease in
mortality in the preceding period.

Prediction intervals by region and cause To obtain further insights into how cause-
specific deaths are affected by extreme temperatures, we break down the total deaths into the
six major causes considered in our modeling, under three temperature scenarios. We plot the
prediction intervals of monthly cause-specific deaths in Figure 12. The corresponding results
and plots based on VARmodels are included in the supplementary materials. We can see that
Vascular, Other, and Respiratory have the top 3 largest contributions to cold-related deaths
for the 90th percentile, under all scenarios across all regions. On the other hand, Diabetes,
External, and Neoplasms seem largely unaffected by extreme cold temperatures. Therefore,
we conclude that the main drivers of cold-related excess mortality are Vascular, Other, and
Respiratory. Figure 12 also provides more insight into the harvesting effect observed in the
10th percent quantiles. Recall that the harvesting effect is indicated by a decrease in the
10th percentile of excess death when going from baseline to Scenario 2 and from Scenario 1
to Scenario 3, respectively. It appears across all causes in some regions (CEA, SEA, MID),
but only for some of the causes in other regions (CWP, SPL, SWP). This again highlights
regional differences in cold-related deaths.

5.2 Scenarios conditioning on both cold temperature and respira-
tory deaths

It is well-acknowledged that flu seasons are often associated with an elevated level of respira-
tory deaths. In light of this, we assess the impact of extreme cold temperatures conditioning
on heightened respiratory death counts. In this section, our baseline scenario does not im-
pose any restriction on the values of temperature index, but conditions on the death count
of Respiratory in the current month (i.e. time t), requiring it to exceed its 90th percentile.
Similarly, we consider the distribution of deseasonalized deaths at time t under three tem-
perature scenarios as follows:

1. The T10 index at time t exceeds its 90th percentile, and Respiratory death at time t
exceeds its 90th percentile.

2. The T10 index at time t−1 exceeds its 90th percentile, and Respiratory death at time
t exceeds its 90th percentile.

3. The T10 index at both time t and t − 1 exceeds its 90th percentile, and Respiratory
death at time t exceeds its 90th percentile.

In terms of the sample size, roughly we have 105 for the baseline scenario, 3× 104 pairs for
Scenario 1, 2 × 104 pairs for Scenario 2, and slightly less than 5 × 103 pairs for Scenario 3.
In Table 6, we report some key statistics of Respiratory deaths for the six regions. It can
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Figure 12: Prediction intervals of monthly deseasonalized cause-specific deaths at 10th and
90th percentiles based on CCC-vine. The dot represents the median of the death distribution.
Baseline scenario does not impose any restrictions.

23



be seen that, the mean values are much smaller than the standard deviations, indicating
that the distribution of Respiratory deaths is largely fat-tailed. The 90th percentile for each
region is also presented in the table.

Table 6: Summary statistics of Respiratory.

Region Mean
Standard

90th pctldeviation

CEA 13.89 287.20 256.90
CWP 1.72 47.06 43.00
MID 13.79 291.20 246.60
SEA 22.53 232.31 243.70
SPL 9.68 127.35 129.20
SWP 21.96 167.78 165.30

Prediction intervals of aggregated deaths by region We first look at the 10th, 50th,
and 90th percentiles of the prediction intervals of monthly deaths in Figure 13. Based on the
CCC-vine models, compared to Figure 11, it is clearly shown that there is a substantial in-
crease in the 90th percentiles of total predicted deaths by region. We suspect this increase in
excess deaths is partly due to the positive dependence between Respiratory and other causes,
particularly Vascular. Besides this increase, we observe that for all regions, the distributions
of predicted deaths become more skewed to the right when we impose restrictions on a high
level of Respiratory deaths. This shape better reflects tail mortality risk under extreme
events. Another interesting observation is that, in Figure 13, the 10th percentiles are always
above 0 across all regions. While under the scenarios described in Section 5.1, the 10th
percentiles are consistently negative, indicating less than expected number of deaths in the
“best cases”. When comparing the results from the CCC-vine models and the VAR models,
again, we argue that the VAR model is likely to underestimate the extreme mortality risk
due to extreme cold temperatures, given the inferior goodness of fit performance. For CEA,
CWP, SEA, and SWP, Scenario 3 has the highest number of deaths for the 90th percentile
(i.e. in the “worst case”). It should also be noted that for a majority of regions, the 10th
percentiles do not change much from the baseline scenario to the other three scenarios.

Prediction intervals by region and cause Finally, we decompose total deaths by the six
causes and plot the prediction intervals of monthly cause-specific deaths in Figure 14. The
corresponding results and plots based on VAR models are included in the supplementary
materials. First, we can see that extreme cold temperatures still have very small impact
on deaths from Diabetes, External, and Neoplasms. When conditioning on a high level of
Respiratory deaths, we can see that extreme cold temperatures are still likely to cause excess
deaths from Vascular and Other. Additionally, we should anticipate regional variations in
the response of cause-specific mortality to extreme cold temperature events.
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Figure 13: Prediction intervals of monthly deseasonalized total deaths at 10th and 90th
percentiles. The dot represents the median of the distribution. Baseline scenario imposes
restrictions on high Respiratory deaths.

6 Conclusions

To quantify and model cold-related excess deaths, this paper investigates the relationship
between extreme cold temperatures and death counts from several major causes of death in-
cluding Diabetes, External, Neoplasm, Respiratory, and Vascular. An innovative stationary
CCC-vine model is proposed which allows for flexible dependence structures across variables
while taking advantage of preliminary data analysis and information pooling. Besides the
valuable contribution to the literature of mortality modeling, it should be noted that the
vine copula-based approach introduced in this project is readily applicable to other areas
such as joint risk modeling and portfolio management.

The empirical results illustrate good performance of our proposed model and provide new
insights into an important research area. Older age groups have always faced higher risks of
cold-related death. Understanding how and to what extent extreme cold affects mortality
of this vulnerable segment of the population is an important step toward finding better
solutions to protect the elderly against cold-related deaths, such as improved awareness and
increased heating coverage. Our results show that geographical differences across regions
also need to be taken into account when designing plans for cold weather on a national
level. Public health policies and interventions should be tailored to different demographic
and geographical factors.
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Figure 14: Prediction intervals of monthly deseasonalized cause-specific deaths at 10th and
90th percentiles based on CCC-vine. The dot represents the median of the death distribution.
Baseline scenario imposes restrictions on high Respiratory deaths.
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A Marginal models

Table A.1: Marginal models for causes of death and temperature index selected by the AIC.
Each cell contains the model family, parameter values, and p-value of a Cramér-von-Mises
goodness-of-fit test.

Region T10 Diabetes External Neoplasms Other Respiratory Vascular

CEA

Gamma Logistic Logistic Normal G Normal Student-t Laplace
(1.7, 0.2) (3.6, 15.5) (12, 17) (25, 78) (174, 339.1, 0.8) (16, 4829, 2) (-12, 294)

0.19 0.50 0.86 0.54 0.94 0.88 0.66

CWP
Gamma Normal Normal Logistic G Normal G Normal Logistic
(2, 0.3) (1, 10.4) (3.8, 14) (6.3, 14.3) (30, 63.6, 1.2) (2.0, 46.9, 0.8) (3.8, 36.8)
0.45 0.67 0.23 0.11 0.38 0.96 0.11

MID
Weibull Logistic S Normal S Normal Laplace Cauchy Student-t
(1.3, 8.9) (1.8, 16.4) (12.1, 31.5, 0.9) (22, 70.8, 0.8) (134, 240) (15, 82) ( -4.1, 581, 2.3)

0.54 0.98 0.98 0.65 0.82 0.17 0.84

SEA
Weibull Logistic Logistic S G Normal Laplace G Normal Laplace
(1.5, 8.4) (3.6, 16.1) (15, 19) (31.9, 67.2, 1.4, 0.9) (198, 229) (24, 232.5, 0.6) (1.5, 253.6)

0.26 0.15 0.98 0.64 0.72 0.60 0.48

SPL
Gamma Normal Normal Normal Student-t G Normal Laplace
(2.6, 0.3) (1.2, 16.9) (4.7, 22.4) (11, 44) (73.8, 148.1, 3.4) (10, 127.3, 0.7) (1.5, 130)

0.87 0.90 0.93 0.69 0.96 0.86 0.63

SWP

Lognormal Normal Normal S Normal Laplace S G Normal Laplace
(1.8, 0.6) (5.9, 22) (9.6, 22.6) (33.2, 50.9, 1.3) (130, 132) (22, 167.8, 0.6, 0.9) (34, 187)

0.76 0.68 0.16 0.78 0.38 0.97 0.36
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