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ABSTRACT
Public health measures necessitated by the COVID-19 pandemic have
affected cancer pathways by halting screening, delaying diagnostic tests
and reducing the numbers starting treatment. Specifically, this moves indi-
viduals from observed and treated pathways to unobserved and untreated
pathways. We introduce a semi-Markov model that includes both, extend-
ing an industry-based multiple state model used for life and critical illness
insurance. Our model includes events related to cancer diagnosis and pro-
gression based on publicly available population data for women aged
65–89 in England and on relevant medical literature. We quantify age-
specific excess deaths, for a period up to 5 years, along with years of life
expectancy lost and changes in cancer mortality by cancer stage. Our anal-
ysis suggests a 3–6% increase in breast cancer deaths, and a 4–6% increase
in registrations of advanced breast cancer, robust under sensitivity analy-
sis. This should be applicable to actuarial work in areaswhere longevity and
advanced age morbidity affect healthcare, retirement and insurance.

KEYWORDS
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1. Introduction

The COVID-19 pandemic has claimed more than 6.2 million lives worldwide as of May
2022 (WHO, 2022). The pandemic has alerted actuaries, epidemiologists and longevity specialists
not only because of the increased number of deaths, but also because of the potential future impact of
healthcare disruptions resulting from imposed public health measures. During the pandemic the UK
entered three national lockdowns, with the first being introduced on 23 March, 2020. Cancer path-
ways have been seriously affected by the changes in health practices due to a halt in cancer screening
(from late March 2020 till June 2020), significant increases in the number of patients waiting for key
diagnostic tests for more than 6 weeks, and significant reductions in the number of patients start-
ing cancer treatment. Cancer Research UK (CRUK) has reported that 3 million fewer people were
screened for cancer in the UK between March and September 2020. Moreover, the number of cancer
patients starting a cancer treatment decreased by 12% between April 2020 andMarch 2021 compared
to the pre-pandemic levels, whereas the number of people waiting formore than 6 weeks for key diag-
nostic tests has soared to 215,000 in March 2021 from 67,000 in March 2020 (CRUK, 2021). These
figures sparked fear of a shift to later diagnosis for people having the disease but not diagnosed yet.
This could restrict the opportunities for feasible treatment and worsen cancer survival. This has also
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triggered concerns regarding changes in cause-specific mortality, e.g. from cancer, impacting trends
of all-cause mortality.

To the best of our knowledge, this is the first actuarial study developed to quantify the impact
of healthcare disruptions on cancer mortality. Lai et al. (2020) point out dramatic reductions in the
demand for, and supply of, cancer services in response to the COVID-19 pandemic by showing that
these reductions could increase excess mortality among cancer patients. Sud et al. (2020) indicate
a significant reduction in cancer survival as a result of treatment delay, mostly disruption in cancer
surgery. Maringe et al. (2020) also note substantial increases in avoidable cancer deaths in England
as a result of diagnostic delays of over a year. Arık et al. (2021) report significant increases in type-
specific cancermortality as a result of diagnostic delays. Alagoz et al. (2021) project a small long-term
cumulative impact on breast cancer (BC) mortality in the US over the next decade due to initial
pandemic-related disruptions.

Early empirical studies suggested that COVID-19 is more likely to affect older people and those
with comorbidity (Chen et al., 2020; Grasselli et al., 2020; Richardson et al., 2020; Zhou et al., 2020).
Furthermore, developing COVID-19 has been shown to be a greater risk for cancer patients depend-
ing on type of malignancy, age, and gender (Garassino et al., 2020; Lee et al., 2020; Pinato et al., 2020;
Saini et al., 2020). Pinato et al. (2021) reported that cancer patients in the UK have beenmore severely
affected by the COVID-19 pandemic compared to those in continental Europe.

Part of the contribution of this work is providing a modelling framework, which goes beyond the
aforementioned empirical work, to investigate the impact of a pandemic, such as COVID-19, on BC
mortality and morbidity. Our modelling approach also allows the extension of a multiple state model
introduced by the UK ContinuousMortality Investigation (CMI) Committee (CMI, 1991) and a crit-
ical illness model widely applied by the insurance industry (Reynolds & Faye, 2016). Specifically,
the model outlined in CMI (1991) is a 3-state semi-Markov model, consisting of healthy, sick, and
all-cause death states, while the model described in Reynolds and Faye (2016) is a 4-state Markov
model, consisting of the following states: healthy, sick, death from critical illness causes and death
fromother causes. Going beyond thesemodels, ourmodel additionally includes states relevant to can-
cer progression and undiagnosed cases, and it also accounts for changes in diagnostic and treatment
services.

Thus, the proposed modelling framework can also be implemented by the insurance industry in
the context of critical illness and life insurance applications as demonstrated by Arık et al. (2023). Par-
ticularly, we are interested in how the pandemic, causing major disruption to the health service, may
affect mortality associated with disorders normally treated by the health service. It is assumed that
the pandemic may give rise to changes by preventing or delaying the detection or diagnosis of BC.
We examine the impact of diagnostic delays up to 5 years, as Maringe et al. (2020) state that ‘the effect
of delayed presentation on patients with cancer is not immediate, and premature death as a result
might occur up to 5 years later . . . ’ (p. 1024). This is motivated by screening programmes and cancer
treatments having been largely affected by lockdowns. This is relevant and important to insurers since
BC remains one of the most common conditions amongst female critical illness claims (Aviva, 2015;
CMI, 2011). It is worth to noting that a screening programme is available for BC, which plays a
crucial role for early diagnosis and increases the chances of BC survival (CRUK, 2020a). However,
according to CRUK (2021), 7200 fewer cases of BC were diagnosed between April–December 2020
compared to the same period in 2019, 60% fewer cases were diagnosed via screening, whilst 22%
fewer patients started treatment from April 2020 till March 2021, compared with the same period in
2019.

Quantifying the impact of cancer diagnosis delays by considering cancer stage is complex in the
light of insufficient data, but a Markov approach provides a suitable modelling framework (Adams
et al., 2015; Baione & Levantesi, 2018; Buchardt et al., 2015; Castelli et al., 2007; Hacariz et al., 2021;
Hubbard et al., 2016; Lu et al., 2011; Soetewey et al., 2022). We establish a semi-Markov model with
multiple states, including observed and unobserved BC cases, based on: (i) available cancer regis-
tration and deaths data in England, provided by the Office for National Statistics (ONS); and (ii)
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published clinical studies.Our approach presents amore detailedmodel of BC as compared to existing
multiple state models adapted by the insurance industry (CMI, 1991; Reynolds & Faye, 2016). Our
model differs from these earlier literaturemodels in two importantways: (i) by differentiating between
observed and unobserved cancer cases; and (ii) by introducing cancer stage information.

Furthermore, we focus onmortality at older ages, from 65 years and over. These ages are important
for pension plans and healthcare. Besides, in the existence of continuing mortality improvements,
relatively high survival from BC would continue impacting older women (Shachar et al., 2016),
with further implications on critical illness insurance (Aviva, 2015). Accordingly, we estimate age-
specific, short-term excess deaths, in addition to years of life expectancy lost (YLL) from cancer, with
particular emphasis on ages above 65.

This paper is organised as follows. In Section 2 we introduce the model for BC risk. In Section 3
we calibrate the model in a pre-pandemic environment. In Section 4 we introduce two ‘pandemic’
scenarios. In Section 5 we estimate excess deaths and YLLs under a pre-pandemic model calibration
and pandemic scenarios. In Section 6 we provide a sensitivity analysis formodel assumptions. Finally,
in Section 7 we discuss our findings and their implications along with strengths and limitations of our
approach.

2. Methodology

2.1. Definitions of breast cancer stages

BCmortality is themost common cancer diagnosed inwomen, in addition to being one of the leading
causes of death for women (ONS, 2019a; PHE, 2017). The most common type of BC is known to be
‘invasive’ BC that indicates cancer cells spreading from the ducts into the surrounding (breast) tissues,
with the two most well-known ones are ‘invasive ductal carcinoma’ and ‘invasive lobular carcinoma’.
Invasive BC can be described from early to advanced stage BC (CRUK, 2020c). The clinical model of
BC progression is a well-defined staging model of the form:

No BC → Stage 1 BC → Stage 2 BC → Stage 3 BC → Stage 4 BC → Dead from BC

where a higher stage number shows that cancer tumour is bigger or has spread from breast to distant
parts of the body, also known as ‘metastasis’. This staging model, namely TNM, categorises cancer
from Stage 1 to Stage 4 based on the tumour (T) size, that can be between 1–4with 1 for small tumours
and 4 for large tumours; whether or not lymph nodes (N) have cancer cells, that can change between
0–3; and whether or not the cancer cells move to other parts of the body (M), that can be either 0 or
1 (CRUK, 2020b; ONS, 2017).

The progression from Stage 1 to Stage 4 is assumed to be real and physical, whether observed or
not. It is possible that ‘transition into Stage 1 BC’ is the nearest equivalent in the model to ‘onset of
BC’.We assume that ‘dead from BC’ is accessible only from Stage 4, and ‘dead from other causes’ (not
shown above) is accessible from all ‘live’ states.

The clinical staging model above takes no account of what is observed or unobserved, i.e. all
women free of BC and dead from BC are observed. In reality, an individual in one of BC Stages 1–4
may be observed to be so, or unobserved, represented by separate states. Transitions are possible:

• forward through stages of BC; and
• from ‘No BC’ or an unobserved BC state to an observed BC state.

The latter possibility we take to be the same as ‘diagnosis’ event, that is the first occurrence of BC
observed. Thus a woman who is diagnosed with Stage 3 BC makes a transition from either ‘Stage 2,
Unobserved’ or ‘Stage 3, Unobserved’ to ‘Stage 3, Observed’ and so on.
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Figure 1. A breast cancer semi-Markov model in continuous time.
Note: Intensitiesμmay be functions of age x and/or duration z.

2.2. Modelling unobserved breast cancer

We distinguish BC death from other causes of death and define life histories accordingly, keeping in
mind that the main focus of this work is providing a methodology on quantifying the impact of BC
diagnostic delays.

In Figure 1, we introduce a model of BC progression, based on the stages described in Section 2.1,
but introducing some simplifications (Section 2.3) based on the available data and published clinical
studies (Section 3). Figure 1 shows a schematic representation of a continuous-timemodel for the life
history of a woman at age x. Age-specific transition intensities from state i to state j are denoted by
μ
ij
x , where x is age-at-entry to state i. Age- and duration-dependent transition intensities at age x and

duration z from state i to state j are denoted byμ
ij
x,z. Stages 1, 2 and 3 of BC combined are represented

by States 1 and 2 in the model, State 1 being observed cases and State 2 being unobserved cases. All
stage 4 cases of BC are represented by State 3 of the model, and are assumed to be observed. We note
here that ‘stage’ and ‘state’ are distinct concepts in this paper.

In the semi-Markovmodel considered here, Figure 1, the usual Kolmogorov equations in aMarkov
model are replaced by a system of integral-differential equations, with integrals over duration being
required for certain states. Often such integrals can be intractable. In our model, which has no more
than one duration-dependent transition in any possible life history, the required integrals are of low
dimension and the modified Kolmogorov equations can be solved numerically using standard meth-
ods (Appendix 1). In particular, we apply a fourth-order Runge–Kutta scheme to solve the modified
Kolmogorov equations under consideration (Macdonald et al., 2018). The Runge-Kutta scheme is
outlined in Appendix 2. We also note that a trapezium rule is employed to approximately calculate
related integrals in the modified Kolmogorov equations. The related algorithms for the (modified)
Kolmogorov equations are developed in the R programming language.

2.3. Modelling assumptions

We introduce the following modelling assumptions.
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A1: States 1 and 2 both represent Stages 1–3 of BC progression. We do not attempt to model
transitions from State 2 to State 1, or progression between Stages 1–3 explicitly as this is
not supported by available data. Note that Stages 1–3 BC have a similar pattern for one-
year survival (ONS, 2016b). State 3 represents Stage 4 of BC progression. This accords with
assumptions in some epidemiological studies (Zhao et al., 2020).

A2: State 5 (‘Dead, BC’) is accessible only from State 3 (‘Metastatic BC’). That is, earlier stages of
BC lead to death from BC only by first progressing to metastasis.

A3: All individuals entering State 3 are observed to do so, whether their progression prior to enter-
ing that state was observed or not. That is, death fromBCwithoutmetastatic BCbeing noticed
pre-mortem is rare enough to ignore (Redig & McAllister, 2013).

The model also includes a state representing unobserved cases of BC, State 2 (‘Pre-metastatic Not
Observed’). With the pandemic shock in mind, for the purpose of modelling changes in BCmortality
caused by dramatic changes in the health service, we add two more model assumptions relating to
State 2:

A4: Neither the manner in which we observe BC, nor the presence of a pandemic, affect the over-
all new cases of cancer. Therefore, we assume the total transition from ‘No BC’ to BC stays
constant. That is

μ01
x + μ02

x = μ∗
x , (1)

where μ∗
x is independent of any particular pandemic scenario.

A5: Individuals in State 1 (‘Pre-metastatic Observed’) are assumed to be treated for BC, while
individuals in State 2 are assumed not to be treated. Therefore, we assume μ13

x,z < μ23
x,z for the

same age.Moreover, we assume that treatment givenwhile in State 1, e.g. the type of treatment,
does not depend on any particular pandemic scenario, so the transition intensities μ13

x,z and
μ23
x,z also do not depend on any particular pandemic scenario.

A4 and A5 suggest a convenient parametrisation of the model:

μ01
x = αxμ

∗
x , μ02

x = (1 − αx)μ
∗
x , μ13

x,z = βx,zμ
23
x,z (0 < βx,z < 1), (2)

where 0 < αx < 1 quantifies the proportional relationship betweenμ01
x andμ02

x , andwill later be used
to determine pandemic scenarios. For simplicity, and lacking data to support other assumptions, we
assumeαx = α andβx,z = β .We suppose thatμ23

x,z represents the rate of progression tometastatic BC
in the absence of treatment, and β measures the effectiveness of treatment. So, our approach assumes
that μ∗

x and β are fixed regardless of any pandemic scenario.

3. Calibration of themodel

The overall aim is to estimate occupancy probabilities for eachmodel state at future times. Calibrating
the model involves estimating the age distribution in State 0 between 1 January 2020 and 31 Decem-
ber 2024, and the transition intensities in themodel. Themodel is partly calibrated based on estimates
of the population of women in England, in age groups 65–69, . . . , 85–89. These population estimates
are the closest available data to represent exposure in State 0, which consists of women free of BC.
However, we note that these population estimates do not distinguish between BC free and undiag-
nosed BC cases, and could therefore represent potentially higher exposure in State 0. We also use
data information from published clinical studies and a set of cancer data collected by the ONS. We
describe the various data sources in the following sections.
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Table 1. Age-specific transition intensities for the semi-Markov model in Figure 1.

Age μ01
x μ04

x μ35
x

65–69 0.00333 0.00878 0.28060
70–74 0.00286 0.01521 0.36002
75–79 0.00324 0.02693 0.40000
80–84 0.00355 0.05142 0.49711
85–89 0.00377 0.09684 0.50000

Note:μ01
x andμ04

x are based on the ONS data,μ35
x is based on a published study.

Source: See Section 3.1 and Zhou et al. (2020).

Table 2. Transition intensities and the corresponding modelling assumptions for the semi-Markov model in Figure 1.

Transition intensity μ01
x μ02

x μ13
x,z μ23

x,z μ35
x μ04

x μ14
x μ24

x μ34
x

Modelling assumption αμ∗
x (1 − α)μ∗

x βμ23
x,z μ23

x,z μ35
x μ04

x μ04
x μ04

x μ04
x

Note: Refer to (2) regarding the relationship betweenμ01
x andμ02

x .

3.1. Available data: population incidence andmortality rates of breast cancer

We consider new cancer diagnoses/registrations and deaths data between 2001–2020 in England,
provided by theONS. Cancer registrations are split by five-year age groups (20–24, 25–29, . . . , 85–89),
type of tumour, single calendar year, and gender. Causes of death data have similar granularity, up to
2021. Corresponding mid-year population estimates are available from the ONS.

Figure 2 exhibits available ONS-provided data at various ages, including screening age groups
47–73, from 2001 to 2020 for cancer incidence and up to 2021 for mortality. Note that the first
screening programme was introduced in 1988, targeting women aged 50–64. Later, the screening
was extended to age 70 between 2002 and 2004, including the age groups 47–73 at which screening
takes place since an announcement made in 2007 (Advisory Committee on Breast Cancer Screen-
ing, 2006; Duffy et al., 2010; NHS, 2021; Quinn & Allen, 1995). In Figure 2, five-year age groups are
represented by their mid-points. Figure 2(a) shows BC incidence, which is calculated as new cancer
registrations divided by mid-year population estimates. BC incidence generally shows an increasing
trend over calendar time at all ages with higher incidence at older ages, up to 2019. There is a sharp
decline in 2020, due to the national lockdowns introduced as a response to the COVID-19 pandemic,
representing a decrease in BC incidence as low as 25% from age 65 onwards, compared to the same
period in 2019. Figure 2(b) shows BC mortality, which is calculated as deaths from BC divided by
mid-year population estimates, and points out a decreasing trend. In this study, our focus is on older
age groups, with an emphasis on those aged 65 and above, as we are mainly interested in quantify-
ing the immediate effects of early health disturbances on BC mortality. Figure 2(b) shows an overall
increase in BCmortality in 2020, with a particular surge among women aged 65 and older, which has
been as high as 7% compared to the same period in 2019. Mortality from other causes, not including
BC as a cause, shows a more heterogeneous distribution across different ages with a decreasing trend,
apart from the last two calendar years (Figure 2(c)).

3.2. Key transition intensities

This section outlines assumptions and sources used to calibrate the overall process. For obtaining
the transition intensities in Figure 1, and in the absence of a large-scale study covering all necessary
transitions, we determine the key transition intensities after a number of simplification in the mod-
elling framework. The key transition intensities are determined based on available data and published
studies, as shown in Table 1.

Table 2 summarises all transition intensities in Figure 1, along with the related modelling assump-
tions (see Section 2.3).
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Figure 2. Breast cancer incidence, mortality, and all-cause mortality (excluding breast cancer). Note: The data is by five-year age
groups between 2001–2017/2018 in England.

Survival probabilities from other causes for BC patients could vary depending on cancer stage, in
comparison to the general population (Cho et al., 2013). However, in the absence of comprehensive
data, as indicated in Table 2, we assume that transition intensities to death due to other causes from
all ‘live’ states are equal to each other, particularly equal to μ04

x , i.e.:

μ14
x = μ24

x = μ34
x = μ04

x . (3)

Note that we ignore any time trend in BC incidence and mortality rates, or in mortality rates from
other causes, in the calculation period (1 January 2020 to 31 December 2024). Also, to the best of our
knowledge, there is no available literature regarding the level of α and β , which are used to determine
μ02
x and μ23

x,z, respectively, in (2). Hereby, we carry out sensitivity analyses to measure the impact of
parameters α and β on model findings. Specifically, we consider a range of values between 0.4 and
0.8 for α and between 1

5 and
1
10 for β . We also investigate the impact of different values of μ35

x , that is
20% lower, or 20% higher, than the rates in Table 1 (Section 6).

3.2.1. Determiningμ01
x : clinical diagnosis of breast cancer

We do not have suitable empirical data on clinical diagnosis by age and stage. This is particularly
important for determining transitions to State 1 and State 3. Available data include BC registrations
by stage in England for year of diagnosis 2012–2015 (ONS, 2016a). However, it is not recommended
to use this yearly information (ONS, 2016b), due to issues relating to the potential incomplete nature
of the data. Therefore, we determine the transition intensities μ01

x , based on 81% of overall cancer
registrations, provided by the ONS, as suggested in ONS (2016b) (Table 1). For consistency with the
μ35
x intensities, which were obtained based on data between 2010–2015 (see Section 3.2.5), we also

determine μ01
x based on the same time period. The ONSmid-year population estimates for England,
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Figure 3. Rates of transition from State 1 to State 3.
Note: Circles are observed values and lines are fitted values from 3rd (two dash), 4th (solid), 6th (dotted), and 7th (dashed) degree polynomials.

Source: Figure 1 in Colzani et al. (2014).

Table 3. Rates of transition from State 1 to State 3 in different durations (years).

time 0 1 2 3 4 5 6 8 10

μ13
x,z 0 0.03 0.04 0.03 0.024 0.021 0.02 0.0194 0.0194

Note: The values are determined based on Figure 1 in Colzani et al. (2014).

during the same time period, are used to calculate the exposure in State 0. The resulting transition
intensities μ01

x are shown in Table 1, along with other key transition intensities.
We note that an alternative source for defining μ01

x could be cancer registrations reported
byRutherford et al. (2013); Rutherford et al. (2015) (See Table 1 inRutherford et al. (2013); Rutherford
et al. (2015)). Although this data is more granular than the ONS data, stratified by both age and stage
for women in the east of England between 2006–2010, the corresponding exposure is not available
from the same source. Therefore, we have chosen to use the ONS data for our results.

3.2.2. Determiningμ04
x : other-causemortality

Other causes of deaths and relatedmid-year population estimates are available between 2001 and 2018
in England (see Section 3.1). Hereby, the transition intensity from State 0 to State 4,μ04

x , is determined
using deaths from other causes from 2010 to 2015 in England, divided by the correspondingmid-year
population estimates in the same years. The time period is chosen so that it is consistent with the time
period of other transition intensities.

3.2.3. Determiningμ13
x : developingmetastatic breast cancer

Colzani et al. (2014) estimate risk of developing first distant metastasis by age within 10 years of diag-
nosis of first invasive BC for women in Stockholm andGotland Swedish counties between 1990–2006,
noting fairly stable rates after a peak at about 2 years for women older than 50 years (Figure 3).

We assume that the transition intensity from State 1 to State 3,μ13
x,z, follows a functional form, indi-

cating a steep increase in the first two years with stable rates afterwards, based onColzani et al. (2014).
Figure 3 shows observed values, taken from Figure 1 in Colzani et al. (2014), and fitted values based
on some polynomial functions.

Here, we define μ13
x,z as a function of duration only, using a 4th degree polynomial, given as

μ13
x,z = 0.00088644 + 0.04191138z − 0.01574062z2 + 0.00207282z3 − 0.00008998z4, (4)

for a given age x and 0 ≤ z < 10. This function is not suitable for extrapolation to durations z> 10.
Parameters are estimated from the data in Table 3.

We also consider a special case of the semi-Markovmodel in Figure 1, i.e. aMarkovmodel, assum-
ingμ13

x = 0.01954. This is an estimate of first distantmetastasis rates reported in Colzani et al. (2014),
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Table 4. Proportionality constants applied to transition intensities in the pandemic scenarios.

μ01
x /μ02

x μ04
x

Pandemic period α 65–84 85–89

April–Nov. 2020 0.8 1.13 1.12
Dec. 2020–Nov. 2021 1 1.13 1.12
Dec. 2021–Dec. 2022 1 1.10 1.09
Jan.–Dec. 2023 1 1.07 1.06
Jan.–Dec. 2024 1 1.04 1.03

Note: Proportionality constants are the same across all ages in both pandemic scenarios.

based on a population study involving 14,188 women diagnosed with first invasive BC from 1 January
1990 to 31 December 2006 (see Figure 3 and also Table 1 in Colzani et al. (2014)).

Note that rates of transition from State 2 to State 3,μ23
x,z, in the semi-Markovmodel are determined

based on a polynomial function in the form of (4), following (2). In the case of the Markov model,
rates of transition from State 2 to State 3, μ23

x , are not duration dependent and are determined based
on (2), where duration z is ignored, with μ13

x = 0.01954.

3.2.4. Determining β: measure of treatment effectiveness
State 2 is important in ourmodel for being able to quantify the potential impact of a major disruption
to health services on cancer mortality. However, there is no empirical data regarding unobserved BC.
For modelling purposes we assume that rates of transition from States 1 and 2 to State 3 are related
through parameter β , which represents a measure of treatment effectiveness, as shown in (2). There
is no available data regarding how a BC tumour can grow in the absence of treatment, although this
is expected to differ by tumour subtypes. This is mainly because patients are required to be treated
as soon as they are diagnosed (Nakashima et al., 2018). However, there is information in the lit-
erature about tumour growth for patients waiting for surgery that can be used as a proxy for the
tumour growth in the lack of treatment leading to a more advanced BC stage. We use this to establish
a reasonable value for β .

Lee et al. (2016) quantify tumour growth rates for 1328 women diagnosed with invasive BC, dur-
ing wait times for surgery, at Seoul National University Hospital between 2013–2014. They report
significant changes depending on surrogate molecular subtypes, e.g. larger diameter changes in more
aggressive molecular subtypes, and a frequent upgrade from Stage 1 to Stage 2 during waiting times
for surgery, where the median waiting time is 31 days. Nakashima et al. (2018) report significant
changes in tumours between diagnosis and surgery for 64% of 309 patients diagnosed with invasive
BC between 2014–2016, where the mean waiting time is 56.9 days. Yoo et al. (2015) report significant
increases in tumour sizes of 55% of 957 patients, diagnosed with invasive BC between 2002–2010,
where the median time interval between initial and second examination is 28 days. This information
suggests a considerable change in BC tumours for more than half of the observed populations during
a period of one or two months, and therefore points towards the transition intensity μ23

x,z being con-
siderably higher than μ13

x,z, in the absence of any treatment. We consider a range of values between 1
5

and 1
10 for β in the absence of empirical data and literature information.

3.2.5. Determiningμ35
x : metastatic breast cancer relatedmortality

Survival frommetastatic BC can be highly correlated to age, tumour type, and treatment, in addition
to other patient- or disease-related factors (den Brok et al., 2017; Purushotham et al., 2014). Zhao
et al. (2020) report BC deaths by age within 12 months of Stage 4 BC diagnosis, using a cohort,
between 2010–2015, obtained from the National Cancer Institute Surveillance, Epidemiology and
End Results (SEER) database. We define rates of transition to State 5, μ35

x , based on the numbers
shown in Table 1 in Zhao et al. (2020). Note that ‘No early death’ shows the number of patients that
survived for 12 months, whilst ‘Total early death’ displays the number of patients deceased within
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12 months in that study. Thus, we use a Uniform Distribution of Deaths assumption, to define the
exposure under ‘Total early death’ (Hossain, 1994). Specifically, we assume that ‘No Early Death’ con-
tributes a full year and each ‘Early Death’ half a year on average to the exposure. The resulting rates,
μ35
x , presented in Table 1, are assumed to remain unchanged during the calculation period from 1

January 2020 to 31 December 2024. Note that we add small increments to the rates at ages 75–79 and
85–89 where these are rounded to 0.4 and 0.5, respectively.

4. Pandemic scenarios

We consider two pandemic scenarios. Scenario 1 (S1) introduces a significant change in transitions
to death from other causes, but does not involve any BC-related assumption. Thus, it reflects what
would have been expected if the pandemic-related health disruptions had not affected BC diagnosis.
In Scenario 2 (S2) we additionally assume a decline in cancer diagnoses.

S1: The pandemic is assumed to result in increased deaths from other causes. This accords with
empirical evidence (Section 4.1).

S2: In addition to the assumption in S1, we further assume a decline in BC diagnosis, i.e. a decline
in the number of transfers to State 1 (Section 4.2). This is represented by changing the level of
a given α in (2) based on Table 4. Since we assume that the onset of BC remains unchanged
before and after the pandemic, see (1) and (2), we accordingly adjust the total transition
intensity into State 2, μ02

x (Assumption A4).

Table 4 summarises the assumptions made in relation to some of the key transition intensities in
the pandemic scenarios. These assumptions are explained in Sections 4.1–4.2. Note that a one-day
time step is employed to facilitate algorithms associated with the (modified) Kolmogorov equations
(Appendix 1). Specifically, one year is considered as 360 days whereas one month is represented as
30 days.

4.1. Scenario 1: excessmortality due to COVID-19 in england

There is evidence suggesting that the COVID-19 pandemic has caused an increase in excess mortal-
ity, which can be linked to Scenario 1. The Office for Health Improvement and Disparities (OHID)
in England monitors excess mortality by age, sex, Upper Tier Local Authority, ethnic group, level
of deprivation, cause of death and place of death since 21 March 2020, in order to have a better
understanding of the impact of COVID-19. They report ratios representing relative changes between
registered and expected excess deaths for each group (OHID, 2022). We use a set of ratios, shown in
Table 4, to define the potential increase in transition to death from other causes.

The age-specific transition intensities to death due to other causes, μ04
x , are assumed to increase

by a factor of 1.13 for ages 65–84 and 1.12 for ages 85+ from April 2020 until November 2021, while
we assume they increase by a factor 1.10 for ages 65–84 and 1.09 for ages 85+ from November 2021
until the end of 2022 (OHID, 2022). Given the gradual decrease in the excess mortality between April
2020 and December 2022, we assume that μ04

x could still be higher than the pre-pandemic levels for
an additional period of two years. Specifically, μ04

x is assumed to increase by the following factors:
1.07 for ages 65–84 and 1.06 for ages 85+ in 2023; 1.04 for ages 65–84 and 1.03 for ages 85+ in 2024.

4.2. Scenario 2: changes in breast cancer risk amid COVID-19

There is no evidence suggesting that the COVID-19 pandemic increased BC incidence. Therefore,
we assume that overall new cases of cancer are not affected by the pandemic (A4 under Section 2.3).
This implies that the onset of BC is assumed to be unchanged by the pandemic, and therefore μ∗

x is
not affected. We further assume that there is no time trend in BC risk over the next five years.
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However, cancer registrations are known to have reduced during national lockdowns (CRUK,
2021). Particularly, Public Health Scotland (PHS) reported that BC registrations were 19% lower than
the 2018/2019 average during the nine months of the pandemic (April–December 2020), as a result
of initial health disruptions (PHS, 2021). The number of BC registrations in the second quarter of
2020 is noted to start returning back to the pre-pandemic levels towards the end of 2020. Based on
the available information, we assume that, for all ages, diagnosis of BC,μ01

x , is decreased by 20% from
April 2020 until the end of 2020. This is achieved by reducing the level of α by 20% (see pandemic sce-
nario S2 in Section 4). Following that, it is then assumed that they are restored back to pre-pandemic
levels. The intensityμ02

x is adjusted accordingly, keeping the overall BC onset rate unchanged (see (2)
and Table 4).

5. Results

In this section we quantify the impact of initial health disruptions caused by the COVID-19 pan-
demic on BC mortality based on two pandemic scenarios, using the semi-Markov model developed
in Figure 1 and also a simplified Markov modelling setting. We present the main findings based on
different scenarios, associatedwith a pre-pandemicmodel calibration and pandemic scenarios S1 and
S2. These findings are obtained for selected values ofα and β , which areα = 0.6 and β = 1

7 . Note that
α is associated with the level of BC diagnosis whereas β is related to the availability of BC treatment
(see (2) in Section 2.3). We further note the lack of suitable data for determining the values of these
parameters. Therefore, we test for sensitivity of the results to changes in α and β in Section 6.

Table 5 compares age-specific occupancy probabilities, denoted by tp
ij
x from state i to state j at age x,

based on the semi-Markov BCmodel, Figure 1, over one and 5 years from 1 January 2020. As a special
case of the model in Figure 1, we also present results with a Markov model, which is determined by
removing duration dependency in rates of transition from State 1 to State 3, μ13

x,z, and accordingly
in μ23

x,z, as well. Therefore, in the Markov model, we determine constant values for μ13
x and μ23

x over
both age and time (Section 3.2.3). This simplified model is more in line with relevant critical illness
models in the insurance literature (CMI, 1991; Reynolds & Faye, 2016) can therefore facilitate further
comparisons. In addition, contrasting to the semi-Markov model allows assessment of the impact on
BC risk of the possibly more realistic assumption of duration dependence after a pre-metastatic BC
diagnosis.

5.1. Observed and unobserved breast cancer cases: 5p01x , 5p02x , and 5p03x
Table 5 shows that for a woman free of BC at time zero, 1 January 2020, the probability of being
diagnosed with pre-metastatic BC over the following 5 years, 5p01x , has decreased by 3–6%, across
different ages, in Scenario 2, as compared to the pre-pandemic calibration. The results show bigger
changes at older ages in Scenario 2, consistent in both models. The decline in 5p01x has remained less
than 3% in Scenario 1. At the same time, the probability of having BC and staying undiagnosed, 5p02x ,
increases by 1–3% over 5 years in Scenario 2 based on the Markov model. The increase is mostly
higher at younger ages. The increase in the same probability, 5p02x , is less than 2% under the semi-
Markov model.

Meanwhile, results under both models show that for a woman with no BC at time zero, the proba-
bility of being diagnosed withmetastatic BC over the following 5 years, 5p03x , increases at certain ages,
for instance, by 5% to 6% at ages 80–84 in Scenario 2, as compared to the pre-pandemic calibration.
An increase in 5p03x , up to 4%, occurs at ages 65–69 and 70–74 based on the semi-Markov model.

In Scenario 1 the modelling mostly reveals a decline in 5p02x , up to 3%, as compared to the pre-
pandemic levels based on both models, and no considerable changes in 5p03x , apart from the decrease
in the youngest age in theMarkovmodel. The decrease in 5p02x and occasional decrease in 5p03x in Sce-
nario 1 can be associated with the increase in deaths from other causes, since the transition intensities
from States 2–3 to ‘Dead, Other Causes’ are assumed to be equal to μ04

x .
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Table 5. Occupancy probabilities for women (%) being in different states over 5 years.

Occupancy probabilities (%)

From State 0 From State 1 From State 3

5p00x 5p01x 5p02x 5p03x 5p04x 5p05x 1p15x 5p15x 1p35x 5p35x

Age M M S-M M S-M M S-M M M S-M M S-M M S-M M M

Pre-pandemic calibration
65–69 93.09 1.50 1.47 0.76 0.68 0.24 0.31 4.29 0.13 0.16 0.25 0.16 4.24 5.98 24.36 74.15
70–74 90.49 1.25 1.22 0.63 0.57 0.18 0.23 7.32 0.13 0.16 0.31 0.20 4.82 6.82 30.02 81.25
75–79 85.07 1.33 1.31 0.67 0.61 0.18 0.24 12.59 0.15 0.19 0.34 0.22 4.92 6.97 32.56 82.61
80–84 75.07 1.29 1.26 0.65 0.59 0.15 0.20 22.66 0.17 0.21 0.40 0.26 5.09 7.21 38.26 84.79
85–89 59.71 1.09 1.07 0.55 0.50 0.13 0.17 38.36 0.16 0.19 0.39 0.25 4.47 6.29 37.65 79.54

Pandemic scenarios
S1
65–69 92.73 1.49 1.46 0.75 0.68 0.23 0.31 4.66 0.13 0.16 0.25 0.16 4.23 5.96 24.36 74.03
70–74 89.90 1.24 1.22 0.63 0.56 0.18 0.23 7.93 0.13 0.16 0.31 0.20 4.80 6.79 30.00 81.03
75–79 84.09 1.32 1.29 0.67 0.60 0.18 0.23 13.60 0.15 0.19 0.33 0.22 4.88 6.91 32.53 82.24
80–84 73.42 1.26 1.24 0.64 0.57 0.15 0.20 24.36 0.17 0.21 0.40 0.26 5.02 7.10 38.20 84.15
85–89 57.53 1.05 1.03 0.53 0.48 0.13 0.17 40.61 0.15 0.19 0.39 0.25 4.36 6.12 37.55 78.56

S2
65–69 92.73 1.45 1.42 0.78 0.70 0.24 0.32 4.66 0.14 0.17 0.25 0.16 4.23 5.96 24.36 74.03
70–74 89.90 1.20 1.18 0.65 0.58 0.18 0.24 7.93 0.14 0.17 0.31 0.20 4.80 6.79 30.00 81.03
75–79 84.09 1.28 1.25 0.69 0.62 0.18 0.24 13.60 0.16 0.20 0.33 0.22 4.88 6.91 32.53 82.24
80–84 73.42 1.22 1.20 0.66 0.59 0.16 0.21 24.36 0.18 0.22 0.40 0.26 5.02 7.10 38.20 84.15
85–89 57.53 1.02 1.00 0.55 0.49 0.13 0.17 40.61 0.16 0.20 0.39 0.25 4.36 6.12 37.55 78.56

Notes: Women have no breast cancer or clinically diagnosedwith breast cancer at time zero, 1 January 2020. Results are based onMarkov (M) and semi-Markov (S-M)models in the pre-pandemicmodel
calibration and the pandemic scenarios, Scenario 1 (S1) and Scenario 2 (S2), for α = 0.6,μ13 = 1

7μ
23.
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These findings are aligned with documented information that cancer patients have been more
vulnerable to the SARS-CoV-2 coronavirus and affected worse by the pandemic, compared to the
general population (Garassino et al., 2020; Lee et al., 2020; Pinato et al., 2020; Saini et al., 2020). It is
also worth noting that the PHS reported falls in Stages 1–2 BC in Scotland along with small increases
in Stages 3–4 BC in 2020 (PHS, 2021).

5.2. Breast cancermortality: 5p05x , 5p15x , and 5p35x
For women with clinical cancer diagnosis, i.e. women in either State 1 or State 3 at time zero, 1 Jan-
uary 2020, we define cancer mortality as the probability of moving to State 5, for the period under
consideration.

The dependence of BCmortality on age becomesmore evident if we consider a longer period after
diagnosis, where bigger changes are observed in more advanced ages for women with metastatic BC,
consistent in bothmodels (Table 5). For instance, in the pre-pandemic calibration, one-yearmortality
for a woman aged 65–69 with metastatic BC is estimated as 24.36%, whereas at ages 80+ one-year
mortality is around and above 37%. On the other hand, the variation in mortality, with respect to
different ages, for women in State 1 is very small even after 5 years.

The results in Table 5 also show that mortality in 5 years after metastatic BC diagnosis is estimated
to be between 74.15–84.79%, whereas the mortality for a woman with pre-metastatic BC diagnosis
differs in the presence of duration dependence: (i) around 4–5% under the Markov model; and (ii)
6–7% under the semi-Markov model.

Meanwhile, the relationship between 5-year mortality and age is not straightforward to interpret
due to the following reasons:

• We have simplified BC progression using two states, with BC Stages 1–3 being combined and
included in States 1 and 2, due to lack of reliable data. Ideally, BC Stage 3, which indicates
locally advanced BC, should be treated differently than Stages 1 and 2, since survival from Stage
3 can be markedly different than that from Stages 1 and 2 (Maringe et al., 2020; Rutherford
et al., 2015).

• In the absence of sufficient data, we have assumed constant transition intensities over periods
of 5 years. Given the trends of BC incidence and mortality over time in Figure 2, this may not
be realistic.

• The probability of metastasis decreases with age, while mortality risk increases with age in the
presence of any BC-related condition (Purushotham et al., 2014). The net effect of these two
forces might be another reason for not seeing a consistent trend by age in 5-year BC mortality
rates.

All-cause mortality, including death from BC, for women with pre-metastatic or metastatic BC is
also presented over periods of 5 years, where age dependence is clear (Tables A1 and A2).

There is a relative decline in the cancer mortality, less than 2%, across different ages in the pan-
demic scenarios in comparison to the pre-pandemic calibration under both models. This decline is
as a result of increases in excess mortality (Section 4.1). However, across pandemic scenarios, our
modelling shows no change in the cancer mortality for women with clinical diagnoses (Table 5).
This is because our approach assumes that there is no change in the onset of BC before and after the
pandemic, and the corresponding probabilities are conditional on BC diagnosis.

The models also allow us to obtain cancer survival rates. Cancer-specific survival, as used by
the ONS, is one of most widely accepted survival measures. It is stated to be a ‘net’ measure and
interpreted as the number of people being alive ‘after cancer diagnosis’. This measure is considered
to represent a ‘hypothetical situation in which the cancer of interest is the only possible cause of
death’ (Mariotto et al., 2014; ONS, 2019b; Swaminathan & Brenner, 2011). We refer to this as the
‘ONS approach’. For a woman diagnosedwith pre-metastatic BC at age x, for instance, cancer-specific
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survival in t years can be obtained based on the ONS approach as follows:

1 − tp14x − tp15x
1 − tp14x

, (5)

where tp14x represents mortality from other causes, while tp15x represents mortality from BC.
Table 6 compares 1-, 5-, and 10-year survival probabilities based on bothMarkov and semi-Markov

models in the pre-pandemic calibration using (5) based on the ONS approach and an adjustment of
our models. We adjust the models developed here by setting the transition intensities to ‘Dead, Other
Causes’ after being diagnosed with BC or having BC without a clinical diagnosis, i.e. μ14

x ,μ24
x and

μ34
x , equal to zero. This allows ‘Dead, BC’ to be the only cause of death.
Table 6 shows that cancer survival is worse at older ages. It suggests that cancer-specific survival

probabilities based on the ONSmethodology applied to our data are reasonably consistent with those
based on the adjustedmodels. Themain difference between themodels has risen for womenwith pre-
metastatic BC, with and without a clinical diagnosis, where lower estimates are obtained in the longer
term based on the semi-Markov model. The estimates across ages change to a slightly higher degree
in the longer term based on the ONS methodology as compared to the adjusted models.

We note that our findings for womenwith pre-metastatic andmetastatic BC are broadly agreement
with the ONS statistics, where 5- and 10-year age standardised survival rates (aged 15 to 99 years) for
women diagnosed with BC between 2011-2015 were reported to be above 80% and 50%, respectively.
Whilst very few excess deaths for women diagnosed with Stages 1–2 BC were observed, compared
with general population, after the first year of diagnosis, one-year age standardised survival rate for
women diagnosed with Stage 4 BC in 2015, followed up to 2016, was noted to be 65.8% (ONS, 2017).
Furthermore, we found that cancer survival has worsened significantly in the absence of any treat-
ment, in State 2, as compared to thosewheremedical treatmentswere available in State 1. For instance,
10-year cancer survival of women with pre-metastatic BC at ages 65–69 would have declined from
around 84–87% to 34–42%, with higher rates in theMarkovmodel, if these women could have stayed
undiagnosed and taken nomedical care during the 10 years. This is aligned with the existing medical
literature (Joseph et al., 2012; Verkooijen et al., 2005).

Cancer survival probabilities in the pandemic scenarios are not provided in Table 6. This is because
survival is conditioned upon diagnosis of BC, which is the event disrupted by the pandemic.

5.3. Excess deaths

The estimated numbers of deaths over 5 years, by age, due to BC and other causes, can be determined
by using 5p05x and 5p04x , respectively. Estimates of excess deaths, in the corresponding period, are then
calculated as the differences between estimated numbers of deaths in the pre-pandemic calibration
and the pandemic scenarios (Table 7). We note that the time trend in mortality is ignored.

Our findings show that deaths fromother causes increase by 5–8%, with higher changes at younger
ages, corresponding to 363–2,255 excess deaths, per 100,000 women at different ages, in Scenarios
1–2, compared to the pre-pandemic calibration under both models. Our model also gives a 3–6%
increase in deaths from BC across different ages in Scenario 2 based on both settings, with higher
increases for younger ages. This corresponds to 5–8 excess BC deaths at different ages under the
Markov model, and 6–10 excess deaths under the semi-Markov model.

5.4. Years of life lost

We calculate age-specific years of life lost (YLL) from BC and other causes at a given time t, denoted
by YLLcausex,t , as

YLLcausex,t = Dcause
x,t ex, (6)
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Table 6. 1-, 5-, and 10-year survival probabilities (%) for women from breast cancer.

Cancer Survival (%)

From State 1 From State 2 From State 3

1-year 5-year 10-year 1-year 5-year 10-year 1-year 5-year 10-year

Age M S-M M S-M M S-M M S-M M S-M M S-M M M M

ONS approach
65–69 99.75 99.84 95.57 93.76 87.57 84.44 98.32 98.90 74.75 67.52 42.95 34.87 75.45 24.09 5.70
70–74 99.69 99.79 94.81 92.65 86.06 82.65 97.90 98.61 70.62 62.15 37.67 29.50 69.60 15.86 2.44
75–79 99.66 99.77 94.38 92.06 84.95 81.32 97.68 98.47 68.47 59.45 34.70 26.66 66.71 12.52 1.49
80–84 99.58 99.72 93.46 90.75 82.48 78.35 97.18 98.13 63.96 53.89 29.13 21.58 60.16 7.06 0.46
85–89 99.57 99.72 92.83 89.97 79.04 74.17 97.13 98.10 61.52 51.41 24.22 17.45 59.38 5.98 0.31

Adjusted model
65–69 99.75 99.84 95.64 93.85 87.95 84.93 98.33 98.90 75.08 67.88 43.94 35.84 75.53 24.59 6.04
70–74 99.69 99.80 94.95 92.84 86.81 83.60 97.91 98.62 71.26 62.84 39.40 31.13 69.77 16.53 2.73
75–79 99.66 99.78 94.66 92.40 86.38 83.11 97.70 98.48 69.66 60.71 37.75 29.48 67.03 13.53 1.83
80–84 99.59 99.73 94.06 91.53 85.59 82.23 97.23 98.16 66.46 56.46 34.87 26.70 60.83 8.33 0.69
85–89 99.59 99.73 94.05 91.50 85.57 82.21 97.22 98.15 66.38 56.35 34.80 26.64 60.65 8.21 0.67

Note: Results are for women with pre-metastatic and metastatic breast cancer, and for women with undiagnosed breast cancer based on Markov (M) and semi-Markov (S-M) models, using (5), in the
pre-pandemic calibration for α = 0.6,μ13 = 1

7μ
23.



16 A. ARIK ET AL.

Table 7. Age-specific excess number of deaths and years of life expectancy lost (YLL), per 100,000 women.

Excess deaths YLL

Dead (Other) Dead (BC) Dead (Other) Dead (BC)

State 4 State 5 State 4 State 5

Age M S-M M S-M M S-M M S-M

S1
65–69 363 363 0 0 7003 7010 −8 0
70–74 608 607 −1 −1 9301 9293 −11 −15
75–79 1012 1012 −1 −2 11767 11770 −16 −23
80–84 1700 1700 −3 −4 14350 14348 −25 −34
85–89 2255 2255 −5 −6 13167 13169 −27 −35

S2
65–69 363 363 8 10 7000 7010 152 193
70–74 607 607 7 9 9298 9293 113 138
75–79 1011 1012 8 10 11762 11770 92 116
80–84 1699 1699 7 9 14342 14340 63 76
85–89 2253 2253 5 6 13158 13158 29 35

Note: Results are based on Markov (M) and semi-Markov (S-M) models in the pandemic scenarios, Scenario 1 (S1) and Scenario 2
(S2), as compared to the pre-pandemic calibration, for α = 0.6,μ13 = 1

7μ
23.

Table 8. Average life expectancies at various ages, denoted by ex .

Age 65–69 70–74 75–79 80–84 85–89

ex 19.31 15.31 11.63 8.44 5.84

Note: The values are based on the 2018–2020 national standard life tables.
Source: See ONS (2021) for women.

where Dcause
x,t shows the corresponding excess deaths from a given cause, and ex is a function that

quantifies the number of years lost for deceased people aged x at time of death. Here ex is determined
as average life expectancy at age x using standard life tables (WHO, 2013). Also, total YLL for all ages,
YLLcauset , are calculated as

YLLcauset =
∑
x

Dcause
x,t ex. (7)

We refer to standard life tables as a source for the years loss function, following WHO (2013). Par-
ticularly, we use the 2018–2020 national standard life tables for women in the UK, with the life
expectancies for women for ages 65–89, ex, shown in Table 8 (ONS, 2021).

Table 7 shows that the semi-Markov model gives more years of life lost due to BC, as compared to
theMarkovmodel. This is a direct result of the formermodel estimating higher numbers of death due
to BC. For deaths from other causes, we found 7,000–14,350 years of life lost across Scenarios 1 and
2 under the Markov model, with almost identical results under the semi-Markov model (Table 7).

6. Sensitivity analysis

In this sectionwe assess the sensitivity of ourmain findings to the values of certainmodel parameters.
Table 9 shows different parametrisation for pre-pandemicmodel calibration and pandemic scenarios.

6.1. Impact of parameter α

In the pre-pandemic calibration and the pandemic scenarios in Section 5, it was assumed that 60%
of women developing BC, would actually be diagnosed with BC, in a given year, by choosing α = 0.6
(Section 5).We now vary the value of α, while keeping all othermodel characteristics fixed in the pre-
pandemic calibration and pandemic scenarios. Higher and lower diagnosis rates are represented by
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Table 9. Parameter values applied in different sections.

Parametrisation in Section 5 α = 0.6, β = 1/7
Parametrisation in Section 6 α = 0.4, β = 1/7

α = 0.8, β = 1/7
α = 0.6, β = 1/5
α = 0.6, β = 1/10
α = 0.6, β = 1/7, 20% lower value forμ35

x

α = 0.6, β = 1/7, 20% higher value forμ35
x

assuming α = 0.8 and α = 0.4, respectively. Changing α mainly affects transitions to State 2 and State
3, along with smaller impacts on State 0 and State 5. For a woman free of BC, the probabilities of being
in States 2–3 over 5 years have changed considerably as compared to the pre-pandemic calibration
when α = 0.6 (Table A1). Specifically, we observe an increase, mostly around 2 times higher, when
α = 0.4 and a decline, by 70% in 5p02x and 50% in 5p03x , when α = 0.8. Changes in State 0 and State 5
are more evident in the presence of lower diagnosis under both modelling settings.

Changes in excess deaths and YLL from other causes remain similar to those obtained for α = 0.6
(Tables 7, A3 and A4). Considering excess deaths from BC, a lower pre-pandemic diagnosis rate of
α = 0.4 leads to an increase of about 2%, corresponding 7 or less deaths across different ages, as
compared to the corresponding pre-pandemic calibration, in the Markov model, whereas the semi-
Markov model suggests a slightly higher increase, about 3%, around and less than 10 deaths at the
same ages. Meanwhile, a higher diagnosis rate of α = 0.8 leads to a more dramatic increase in BC
deaths, which is about 9–12%, corresponding 7–11 excess deaths, for the same ages under both
models.

6.2. Impact of parameter β

In the pre-pandemic calibration and the pandemic scenarios in Section 5, we assumed β as low as 1
7 ,

assuming that the transition from State 2 to State 3, μ23
x,z, can be 7 times higher than the transition

from State 1 to State 3,μ13
x,z. This ismainlymotivated by the absence of treatment in State 2, alongwith

the potential pace of BC tumour growth (Section 3.2.4). All else being equal, we vary the value of β
by replacing it with 1

5 and
1
10 . Note that there is no change inμ13

x,z, withμ13
x = 0.01954 in the Markov

model, or determined by (4) in the semi-Markov model (Section 3.2.3). Similar to Section 6.1, the
main impact of changes in β appears to be on State 2 and State 3, with higher changes occurring
when β = 1

10 . A smaller value of β leads to more transitions into State 3, leaving a smaller number
of women in State 2 in the relevant pre-pandemic model calibration (Table A1). The numbers in
State 5 increase with a decreasing level of β over time, because of the higher numbers of women with
advanced BC (Stage 4 BC) in State 3.

Tables A5 andA6 show comparable outcomes for excess deaths and YLL from other causes. Excess
deaths, along with YLL, from BC differ slightly from those obtained when β = 1

7 . For a relatively
higher value of β , 15 , BC deaths are around 2–5% higher across different ages, indicating 3–7 excess
deaths, as compared to the corresponding pre-pandemic calibrations, in both modelling settings. For
a smaller value of β , 1

10 , deaths are around 3–6% higher than the relevant pre-pandemic calibrations,
corresponding to 7–14 excess deaths at different ages.

6.3. Impact of transitions to death from breast cancerμ35
x

In the pre-pandemic calibration and the pandemic scenarios in Section 5, we assumed the transition
to death from BC, μ35

x , to follow the rates reported in Table 1. We now consider μ35
x to be 20% lower,

or 20% higher, than the rates in Table 1, where the pre-pandemic model calibrations in these cases
are shown in Table A1. The main effect of a change in this particular transition intensity is on cancer
mortality (State 5), and on State 3. For instance, an increase in the level of μ35

x leads to a decrease
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in the number of women in State 3 and an increase in State 5. A considerable increase in 5-year
cancer mortality, 5p15x and 5p35x , corresponding less than 11% and 8% increase across different ages,
respectively, is also observed as a result of a higher level of μ35

x . This leads to a higher level of overall
mortality, as well. The changes in cancer mortality are more evident for women with advanced BC.

Similarly to Sections 6.1–6.2, varying rates ofμ35
x mainly results in changes in the number of excess

BC deaths, while other outcomes, e.g. excess deaths from other causes, have remained comparable
to the ones in Section 5. An increasing level of μ35

x leads to higher number of excess BC deaths,
5–12 deaths across different ages, whereas a decreasing level of μ35

x results in smaller number of BC
deaths, 4–9 excess deaths at the same ages, with a similar effect on YLL fromBC.However, the relative
increase across ages, in comparison to the relevant pre-pandemic calibration, has remained the same,
3–6%, independent of the level of μ35

x , under both models (Tables A7 and A8).
We also obtain cancer survival probabilities, up to 10 years, for different values ofμ35

x , provided in
Appendix 7. Note that different values of α and β are not relevant to this calculation. Consistent with
the findings in Tables 6, A9 and A10 point towards higher changes in cancer survival for women with
pre-metastatic BC using different modelling settings, with these changes becomingmore profound in
time. Although an increasing level of μ35

x results in lower cancer survival for women with metastatic
BC, our model still suggests smaller differences between cancer survival at the oldest and youngest
age groups in comparison to ONS methodology.

7. Discussion

During national lockdowns, essential BC diagnostic services were severely affected, along with cancer
referral pathways. Health-seeking behaviour was also adversely affected, as only patients with urgent
concerns were encouraged to use available services (Maringe et al., 2020). It is therefore important to
further examine possible implications of late diagnoses on cancer rates and excess deaths.

In this paper we have developed a versatile modelling framework for measuring the impact of the
COVID-19 related initial health disruptions on BC risk. Our approach is based on well-established
and practisedMarkov multiple-state modelling methodology, and incorporates insightful calibration
in the presence of limited relevant data. The semi-Markovmodel developed here allows for a generally
realistic assumption of duration dependence in transition rates between certain cancer states, as also
suggested in other literature. It also significantly enhances related models in insurance literature and
practice, by accounting for states relevant to cancer progression, undiagnosed cases, and changes in
diagnostic and treatment services.

Maringe et al. (2020) noted a 7.9–9.6% increase in the number of deaths due to BC in a 5-year
period after diagnosis, assuming that cancers could only be diagnosed through urgent referrals with
up to 80% reductions in cancer referrals. We assume 20% reduction in BC diagnosis based on a more
recently published report (PHS, 2021). As a result we found a substantial impact due to initial health
disruptions, with a 3–6% increase in the number of deaths from BC at different ages, and a 5–8%
increase in deaths from other causes, in comparison to the pre-pandemic calibration. For BC deaths
in particular, this represents a material effect, considering that BC mortality has been decreasing
steadily over recent years in many countries (CRUK, 2022; Verdecchia et al., 2007). Our results are
also aligned with earlier literature (Maringe et al., 2020; Sud et al., 2020), pointing out the need for
policy interventions to cope with additional cancer deaths caused by diagnoses delays. Nonetheless,
further evaluation of cancer survival will be necessary as more data become available in the future.
Also, our results showed considerable differences among certain occupancy probabilities, e.g. 5p15x ,
between the semi-Markov and Markov models, highlighting the significance of assuming duration
dependence in the modelling.

7.1. Strengths and limitations

Low availability of suitable data was a major challenge in this study, limiting our ability to make data-
driven inferences and to quantify uncertainty through appropriate statistical measures. A related key
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issue was the incompleteness of BC stage information in population-based cancer data. Neverthe-
less, our models are based on a pragmatic combination of available data, literature information and
modelling assumptions. The models have produced insightful findings, while the results are broadly
consistent with existing literature. Our modelling approach has also provided estimates of excess
deaths both from BC and from other causes. Furthermore, sensitivity testing has been carried out
to take into account parameter uncertainty to a certain extent. As expected, model outputs are sensi-
tive to the choice of key model parameters. Importantly, sensitivity to parameter α demonstrates the
model’s ability to capture the impact of health-service disruptions to BC mortality. Relative changes
in cancer mortality and deaths from other causes have shown consistent results based on different
parametrisations in various pre-pandemic model calibrations and pandemic scenarios.

Our approach provides a valuable model, relating to delays in the provision of BC diagnostic and
treatment services, which can bemore accurately calibrated asmore data become available. Availabil-
ity of more data can help expand the modelling setting by providing more information in relation to
the progression of BC. Our model can also be used to represent different levels of BC service avail-
ability in non-pandemic times and therefore also provides a framework for comparing health service
provision in different countries. It can allow further insights regarding the impact of a pandemic on
different health services by changing the levels of α and β parameters.

There are important areas for further research. The modelling framework can be extended in a
number of ways, including the following:

• employing a more detailed clinical model for BC, e.g. by involving locally advanced BC
and/or considering treatment and recovery options, which would allow distinguishing between
recurrence of non-metastatic BC and developing of metastatic BC;

• considering multi-morbidity as an underlying condition, allowing for the potential impact on
excess deaths;

• introducing time trend for BC mortality and morbidity over years;
• formally measuring parameter and model uncertainty.

7.2. Implications of this research

Our study can inform decision makers by increasing awareness about the continuing impact of
the COVID-19 pandemic. The estimated results can be helpful while implementing evidence-based
health interventions.

Our findings can also help life insurers understand the impact of late diagnoses or prevented treat-
ment of a major cancer in women, on cancer mortality and survival rates. The modelling framework
developed here can be useful for assessing different scenarios of cancer diagnoses, not just under
pandemic circumstances, but also given different levels of health service provision.

Our work can add value while considering insurance pricing and valuation assumptions related
to ages of 65 years and over, which is also important for pension plans and healthcare at advanced
age. Our model can be particularly relevant to critical illness and life insurance. For example, BC
is one of the most common causes of critical illness claims among women, accounting for 44%
of all claims in 2014 in the UK (Aviva, 2015; CMI, 2011). In addition, our approach provides a
more detailed modelling framework, as compared to one currently used by the insurance indus-
try (Reynolds & Faye, 2016), and can therefore provide better insights in relation to insurance cash
flows. For instance, Arık et al. (2023) show that accounting for duration-dependent rates in BC pro-
gression can have an impact on actuarial net premiums, affecting short and long-term insurance
products differently, while a semi-Markov model leads to intuitive results aligned with the medical
literature. Furthermore, a detailed comparison between the semi-Markov model in Figure 1 and the
industry-based model in Reynolds and Faye (2016) is provided in Arık et al. (2023).

Increases in population longevity, together with the relatively and increasingly long BC survival,
mean that BC will continue to significantly affect older women (BCRF, 2021; Shachar et al., 2016).
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In this article we have explored the short-term impact of COVID-19 related BC diagnostic delays on
related mortality in an older population.
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Appendices

Appendix 1. Modified Kolmogorov equations with duration dependence for breast
cancer model
Modified Kolmogorov equations for the 6-state BCmodel, in Figure 1, are given as below. Note that more details can be
found inCMI (1991), based on a 3-statemultiplemodel, allowing recovery from the disease under inspection alongwith
duration dependence. Here, in order to make integrals clearer, we introduce actuarial selection notation. For instance,
μ13
x,z is shown based on select attained age [x] with duration z, specifically μ13

x,z = μ13
[x]+z .

d
dt t

p00x = −tp00x
(
μ01
x+t + μ02

x+t + μ04
x+t

)
(A1a)

d
dt t

p01x = tp00x μ01
x+t − tp01x μ14

x+t −
∫ t

u=0
up00x μ01

x+ut−up11[x+u]μ
13
[x+u]+t−u du (A1b)

d
dt t

p02x = tp00x μ02
x+t − tp02x μ24

x+t −
∫ t

u=0
up00x μ02

x+ut−up22[x+u]μ
23
[x+u]+t−u du (A1c)

d
dt t

p03x =
∫ t

u=0
up00x μ01

x+ut−up11[x+u]μ
13
[x+u]+t−u du

+
∫ t

u=0
up00x μ02

x+ut−up22[x+u]μ
23
[x+u]+t−u du − tp03x

(
μ34
x+t + μ35

x+t
)

(A1d)

d
dt t

p04x = tp00x μ04
x+t + tp01x μ14

x+t + tp02x μ24
x+t + tp03x μ34

x+t (A1e)

d
dt t

p05x = tp03x μ35
x+t (A1f)

We note that the select notation on age [x] is kept in the equations below, where this is based on the assumption of
being in the relevant initial state.

d
dt t

p11[x] = −tp11[x]
(
μ13
[x]+t + μ14

[x]+t

)
(A2a)

d
dt t

p13[x] = tp11[x]μ
13
[x]+t − tp13[x]μ

34
[x]+t − tp13[x]μ

35
[x]+t (A2b)

d
dt t

p14[x] = tp11[x]μ
14
[x]+t + tp13[x]μ

34
[x]+t (A2c)

d
dt t

p15[x] = tp13[x]μ
35
[x]+t (A2d)

https://doi.org/10.1016/S1470-2045(07)70246-2
https://doi.org/10.1097/01.sla.0000171305.31703.84
https://covid19.who.int
https://doi.org/10.1371/journal.pone.0144144
https://doi.org/10.12659/MSM.924858.PMID: 32778637
https://doi.org/10.1016/S0140-6736(20)30566-3


24 A. ARIK ET AL.

d
dt t

p22[x] = −tp22[x]
(
μ23
[x]+t + μ24

[x]+t

)
(A2e)

d
dt t

p23[x] = tp22[x]μ
23
[x]+t − tp23[x]

(
μ34
[x]+t + μ35

[x]+t

)
(A2f)

d
dt t

p24[x] = tp22[x]μ
24
[x]+t + tp23[x]μ

34
[x]+t (A2g)

d
dt t

p25[x] = tp23[x]μ
35
[x]+t (A2h)

d
dt t

p33[x] = −tp33[x]
(
μ34
[x]+t + μ35

[x]+t

)
(A2i)

d
dt t

p34[x] = tp33[x]μ
34
[x]+t (A2j)

d
dt t

p35[x] = tp33[x]μ
35
[x]+t . (A2k)

Appendix 2. Runge-Kutta method for breast cancer model in Figure 1
Runge-Kutta methods estimate function values in a given small interval, and then use those values to obtain a better
estimate of the function under inspection. A fourth-order Runge-Kutta scheme is based on four recursive estimates of
the increment in the function value per time step (Macdonald et al., 2018).

We have a 6-state model in Figure 1, and hence, in full, a 6 × 6 matrix of occupancy probabilities denoted by hp
ij
x ≡

yt as

yt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

tp00x
tp01x
tp02x
...

tp55x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

d
dt

yt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d
dt t

p00x
d
dt t

p01x
d
dt t

p02x
...

d
dt t

p55x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= f (t, yt).

Now, suppose we would like to solve d
dt yt = f (t, yt), yt0 = y0. Then, we could write

ytn+1 = ytn + h
6

(k1 + 2k2 + 2k3 + k4) ,

for tn+1 = tn + h and

k1 = f (tn, ytn )

k2 = f
(
tn + h

2
, ytn + h

k1
2

)

k3 = f
(
tn + h

2
, ytn + h

k2
2

)

k4 = f
(
tn + h, ytn + hk3

)
.

Here, the four intermediate steps, denoted by k1, k2, k3 and k4, are also vector quantities such that

k1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

k001
k011
k021
...

k551

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, k2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

k002
k012
k022
...

k552

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, k3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

k003
k013
k023
...

k553

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, k4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

k004
k014
k024
...

k554

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Appendix 3. Occupancy probabilities over 5 years in pre-pandemic model calibration

Table A1. Occupancy probabilities (%) for women being in different states at the end of 5 years given that they have no breast cancer or clinically diagnosed with breast cancer at time zero, 1 January
2020, based on Markov (M) and semi-Markov (S-M) models in the pre-pandemic model calibration using different choices of α, β parameters andμ35.

From State 0 From State 1 From State 3 From State 1 From State 3

5p00x 5p01x 5p02x 5p03x 5p04x 5p05x 1p15x 5p15x 1p35x 5p35x 1p14x + 1p15x 5p14x + 5p15x tp34x + tp35x

Age M M S-M M S-M M S-M M M S-M M S-M M S-M M M M S-M M S-M M, t = 1 M, t = 5

α = 0.6;μ13 = 1
7μ

23

65–69 93.09 1.50 1.47 0.76 0.68 0.24 0.31 4.29 0.13 0.16 0.25 0.16 4.24 5.98 24.36 74.15 1.12 1.03 8.47 10.18 25.12 76.47
70–74 90.49 1.25 1.22 0.63 0.57 0.18 0.23 7.32 0.13 0.16 0.31 0.20 4.82 6.82 30.02 81.25 1.82 1.71 12.00 13.96 31.29 84.68
75–79 85.07 1.33 1.31 0.67 0.61 0.18 0.24 12.59 0.15 0.19 0.34 0.22 4.92 6.97 32.56 82.61 2.99 2.88 17.27 19.24 34.75 88.17
80–84 75.07 1.29 1.26 0.65 0.59 0.15 0.20 22.66 0.17 0.21 0.40 0.26 5.09 7.21 38.26 84.79 5.40 5.27 27.26 29.22 42.22 93.56
85–89 59.71 1.09 1.07 0.55 0.50 0.13 0.17 38.36 0.16 0.19 0.39 0.25 4.47 6.29 37.65 79.54 9.61 9.47 42.05 43.62 44.94 94.94

α = 0.8;μ13 = 1
7μ

23

65–69 93.73 1.50 1.47 0.29 0.26 0.12 0.16 4.29 0.07 0.08 0.25 0.16 4.24 5.98 24.36 74.15 1.12 1.03 8.47 10.18 25.12 76.47
70–74 91.04 1.25 1.23 0.24 0.21 0.09 0.12 7.32 0.06 0.08 0.31 0.20 4.82 6.82 30.02 81.25 1.82 1.71 12.00 13.96 31.29 84.68
75–79 85.65 1.34 1.31 0.25 0.23 0.09 0.12 12.60 0.08 0.09 0.34 0.22 4.92 6.97 32.56 82.61 2.99 2.88 17.27 19.24 34.75 88.17
80–84 75.63 1.29 1.27 0.25 0.22 0.08 0.11 22.66 0.09 0.11 0.40 0.26 5.09 7.21 38.26 84.79 5.40 5.27 27.26 29.22 42.22 93.56
85–89 60.18 1.09 1.07 0.21 0.19 0.07 0.09 38.37 0.08 0.10 0.39 0.25 4.47 6.29 37.65 79.54 9.61 9.47 42.05 43.62 44.94 94.94

α = 0.4;μ13 = 1
7μ

23

65–69 91.80 1.49 1.46 1.69 1.52 0.47 0.61 4.29 0.26 0.32 0.25 0.16 4.24 5.98 24.36 74.15 1.12 1.03 8.47 10.18 25.12 76.47
70–74 89.42 1.24 1.22 1.41 1.27 0.35 0.46 7.32 0.26 0.32 0.31 0.20 4.82 6.82 30.02 81.25 1.82 1.71 12.00 13.96 31.29 84.68
75–79 83.93 1.32 1.30 1.50 1.35 0.35 0.46 12.59 0.30 0.37 0.34 0.22 4.92 6.97 32.56 82.61 2.99 2.88 17.27 19.24 34.75 88.17
80–84 73.97 1.28 1.25 1.46 1.31 0.30 0.40 22.65 0.34 0.42 0.40 0.26 5.09 7.21 38.26 84.79 5.40 5.27 27.26 29.22 42.22 93.56
85–89 58.78 1.08 1.06 1.23 1.10 0.26 0.34 38.34 0.31 0.38 0.39 0.25 4.47 6.29 37.65 79.54 9.61 9.47 42.05 43.62 44.94 94.94

α = 0.6;μ13 = 1
5μ

23

65–69 93.09 1.50 1.47 0.83 0.76 0.19 0.26 4.29 0.10 0.13 0.25 0.16 4.24 5.98 24.36 74.15 1.12 1.03 8.47 10.18 25.12 76.47
70–74 90.49 1.25 1.22 0.69 0.64 0.14 0.19 7.32 0.10 0.13 0.31 0.20 4.82 6.82 30.02 81.25 1.82 1.71 12.00 13.96 31.29 84.68
75–79 85.07 1.33 1.31 0.74 0.68 0.15 0.20 12.59 0.12 0.15 0.34 0.22 4.92 6.97 32.56 82.61 2.99 2.88 17.27 19.24 34.75 88.17
80–84 75.07 1.29 1.26 0.71 0.66 0.13 0.17 22.66 0.14 0.17 0.40 0.26 5.09 7.21 38.26 84.79 5.40 5.27 27.26 29.22 42.22 93.56
85–89 59.71 1.09 1.07 0.60 0.55 0.11 0.14 38.36 0.12 0.16 0.39 0.25 4.47 6.29 37.65 79.54 9.61 9.47 42.05 43.62 44.94 94.94
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Table A1. Continued.

From State 0 From State 1 From State 3 From State 1 From State 3

5p00x 5p01x 5p02x 5p03x 5p04x 5p05x 1p15x 5p15x 1p35x 5p35x 1p14x + 1p15x 5p14x + 5p15x tp34x + tp35x

Age M M S-M M S-M M S-M M M S-M M S-M M S-M M M M S-M M S-M M, t = 1 M, t = 5

α = 0.6;μ13 = 1
10μ

23

65–69 93.09 1.50 1.47 0.67 0.58 0.29 0.37 4.29 0.17 0.20 0.25 0.16 4.24 5.98 24.36 74.15 1.12 1.03 8.47 10.18 25.12 76.47
70–74 90.49 1.25 1.22 0.56 0.49 0.22 0.28 7.32 0.16 0.20 0.31 0.20 4.82 6.82 30.02 81.25 1.82 1.71 12.00 13.96 31.29 84.68
75–79 85.07 1.33 1.31 0.59 0.52 0.22 0.28 12.59 0.19 0.23 0.34 0.22 4.92 6.97 32.56 82.61 2.99 2.88 17.27 19.24 34.75 88.17
80–84 75.07 1.29 1.26 0.57 0.50 0.19 0.24 22.66 0.22 0.26 0.40 0.26 5.09 7.21 38.26 84.79 5.40 5.27 27.26 29.22 42.22 93.56
85–89 59.71 1.09 1.07 0.49 0.42 0.16 0.21 38.35 0.20 0.24 0.39 0.25 4.47 6.29 37.65 79.54 9.61 9.47 42.05 43.62 44.94 94.94

α = 0.6;μ13 = 1
7μ

23;μ35 is 20% lower than the baseline level
65–69 93.09 1.50 1.47 0.76 0.68 0.26 0.33 4.29 0.11 0.14 0.20 0.13 3.66 5.14 20.02 66.26 1.07 1.00 7.90 9.36 20.80 68.85
70–74 90.49 1.25 1.22 0.63 0.57 0.19 0.26 7.32 0.11 0.14 0.25 0.16 4.23 5.96 24.84 74.13 1.76 1.67 11.43 13.13 26.15 78.04
75–79 85.07 1.33 1.31 0.67 0.61 0.20 0.26 12.59 0.13 0.16 0.28 0.18 4.34 6.12 27.04 75.96 2.93 2.84 16.72 18.43 29.32 82.35
80–84 75.07 1.29 1.26 0.65 0.59 0.17 0.23 22.66 0.15 0.19 0.33 0.21 4.56 6.43 32.04 79.18 5.34 5.22 26.79 28.53 36.18 89.42
85–89 59.71 1.09 1.07 0.55 0.50 0.15 0.19 38.36 0.14 0.17 0.32 0.21 4.00 5.60 31.52 73.80 9.54 9.43 41.68 43.06 39.15 91.67

α = 0.6;μ13 = 1
7μ

23;μ35 is 20% higher than the baseline level
65–69 93.09 1.50 1.47 0.76 0.68 0.22 0.29 4.29 0.15 0.18 0.29 0.19 4.73 6.70 28.47 80.14 1.16 1.06 8.95 10.89 29.21 82.23
70–74 90.49 1.25 1.22 0.63 0.57 0.16 0.21 7.32 0.15 0.18 0.36 0.24 5.31 7.53 34.83 86.28 1.87 1.75 12.48 14.65 36.06 89.32
75–79 85.07 1.33 1.31 0.67 0.61 0.16 0.22 12.59 0.17 0.21 0.39 0.26 5.39 7.65 37.65 87.18 3.04 2.92 17.71 19.88 39.76 92.07
80–84 75.07 1.29 1.26 0.65 0.59 0.14 0.18 22.66 0.19 0.24 0.46 0.31 5.51 7.82 43.90 88.46 5.46 5.32 27.63 29.76 47.68 96.08
85–89 59.71 1.09 1.07 0.55 0.50 0.12 0.15 38.36 0.17 0.21 0.45 0.30 4.85 6.83 43.21 83.46 9.66 9.52 42.34 44.04 50.18 96.93
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Table A2. Occupancy probabilities (%) for women being in different states at the end of 1 year given that they have no breast cancer or clinically diagnosed with breast cancer at time zero, 1 January
2020, based on Markov (M) and semi-Markov (S-M) models when α = 0.6;μ13 = 1

7μ
23.

From State 0 From State 1 From State 3 From State 1 From State 3

1p00x 1p01x 1p02x 1p03x 1p04x 1p05x 1p15x 5p15x 1p35x 5p35x 1p14x + 1p15x 5p14x + 5p15x tp34x + tp35x

Age M M S-M M S-M M S-M M M S-M M S-M M S-M M M M S-M M S-M M, t = 1 M, t = 5

Pre-pandemic calibration
65–69 98.58 0.33 0.33 0.21 0.21 0.02 0.01 0.87 0 0 0.25 0.16 4.24 5.98 24.36 74.15 1.12 1.03 8.47 10.18 25.12 76.47
70–74 98.02 0.28 0.28 0.18 0.18 0.01 0.01 1.51 0 0 0.31 0.20 4.82 6.82 30.02 81.25 1.82 1.71 12.00 13.96 31.29 84.68
75–79 96.82 0.31 0.31 0.20 0.20 0.01 0.01 2.66 0 0 0.34 0.22 4.92 6.97 32.56 82.61 2.99 2.88 17.27 19.24 34.75 88.17
80–84 94.43 0.33 0.33 0.21 0.21 0.02 0.01 5.01 0 0 0.40 0.26 5.09 7.21 38.26 84.79 5.40 5.27 27.26 29.22 42.22 93.56
85–89 90.20 0.34 0.34 0.21 0.22 0.02 0.01 9.23 0 0 0.39 0.25 4.47 6.29 37.65 79.54 9.61 9.47 42.05 43.62 44.94 94.94

Pandemic scenarios
S1
65–69 98.49 0.33 0.33 0.20 0.21 0.02 0.01 0.96 0 0 0.25 0.16 4.23 5.96 24.36 74.03 1.21 1.12 8.81 10.52 25.19 76.56
70–74 97.88 0.28 0.28 0.17 0.18 0.01 0.01 1.66 0 0 0.31 0.20 4.80 6.79 30.00 81.03 1.96 1.85 12.58 14.53 31.39 84.78
75–79 96.56 0.31 0.31 0.20 0.20 0.01 0.01 2.91 0 0 0.33 0.22 4.88 6.91 32.53 82.24 3.24 3.13 18.22 20.17 34.92 88.31
80–84 93.96 0.33 0.33 0.21 0.21 0.02 0.01 5.49 0 0 0.40 0.26 5.02 7.10 38.20 84.15 5.88 5.74 28.87 30.78 42.51 93.70
85–89 89.42 0.33 0.34 0.21 0.22 0.02 0.01 10.02 0 0 0.39 0.25 4.36 6.12 37.55 78.56 10.39 10.26 44.17 45.68 45.43 95.12

S2
65–69 98.49 0.28 0.28 0.25 0.26 0.02 0.01 0.96 0 0 0.25 0.16 4.23 5.96 24.36 74.03 1.21 1.12 8.81 10.52 25.19 76.56
70–74 97.88 0.24 0.24 0.21 0.22 0.01 0.01 1.66 0 0 0.31 0.20 4.80 6.79 30.00 81.03 1.96 1.85 12.58 14.53 31.39 84.78
75–79 96.56 0.26 0.26 0.24 0.25 0.02 0.01 2.91 0 0 0.33 0.22 4.88 6.91 32.53 82.24 3.24 3.13 18.22 20.17 34.92 88.31
80–84 93.96 0.28 0.28 0.26 0.26 0.02 0.01 5.49 0 0 0.40 0.26 5.02 7.10 38.20 84.15 5.88 5.74 28.87 30.78 42.51 93.70
85–89 89.42 0.28 0.29 0.26 0.27 0.02 0.01 10.02 0 0 0.39 0.25 4.36 6.12 37.55 78.56 10.39 10.26 44.17 45.68 45.43 95.12
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Appendix 4. Excess deaths and years of life expectancy lost at different age groups in
Section 6.1

Table A3. Age-specific excess number of deaths and years of life expectancy lost (YLL), per 100,000 women, based on Markov (M)
and semi-Markov (S-M) models in the pandemic scenarios, Scenario 1 (S1) and Scenario 2 (S2), as compared to the pre-pandemic
calibration, for α = 0.8,μ13 = 1

7μ
23.

Excess deaths YLL

Dead (Other) Dead (BC) Dead (Other) Dead (BC)

State 4 State 5 State 4 State 5

Age M S-M M S-M M S-M M S-M

S1
65–69 363 363 0 0 7004 7010 −4 0
70–74 608 608 0 −1 9302 9308 −5 −15
75–79 1012 1012 −1 − 1 11769 11770 −8 −12
80–84 1701 1700 −2 −2 14352 14348 −13 −17
85–89 2255 2255 −2 −3 13168 13169 −13 −18

S2
65–69 363 363 8 10 7001 7010 155 193
70–74 607 608 8 10 9299 9308 118 153
75–79 1011 1011 9 11 11764 11758 100 128
80–84 1700 1699 9 11 14344 14340 76 93
85–89 2253 2253 7 9 13159 13158 43 53

Table A4. Age-specific excess number of deaths and years of life expectancy lost (YLL), per 100,000 women, based on Markov (M)
and semi-Markov (S-M) models in the pandemic scenarios, Scenario 1 (S1) and Scenario 2 (S2), as compared to the pre-pandemic
calibration, for α = 0.4,μ13 = 1

7μ
23.

Excess deaths YLL

Dead (Other) Dead (BC) Dead (Other) Dead (BC)

State 4 State 5 State 4 State 5

Age M S-M M S-M M S-M M S-M

S1
65–69 363 363 −1 −1 7001 7010 −15 −19
70–74 607 607 −1 −2 9299 9293 −21 −31
75–79 1012 1011 −3 −3 11764 11758 −33 −35
80–84 1700 1699 −6 −8 14346 14340 −51 −68
85–89 2254 2255 −9 −11 13165 13169 −53 −64

S2
65–69 362 363 7 10 6999 7010 143 193
70–74 607 607 7 8 9295 9293 102 122
75–79 1011 1011 6 8 11759 11758 75 93
80–84 1699 1698 4 6 14337 14331 38 51
85–89 2253 2253 0 1 13155 13158 3 6
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Appendix 5. Excess deaths and years of life expectancy lost at different age groups in
Section 6.2

Table A5. Age-specific excess number of deaths and years of life expectancy lost (YLL), per 100,000 women, based on Markov (M)
and semi-Markov (S-M) models in the pandemic scenarios, Scenario 1 (S1) and Scenario 2 (S2), as compared to the pre-pandemic
calibration, for α = 0.6,μ13 = 1

5μ
23.

Excess deaths YLL

Dead (Other) Dead (BC) Dead (Other) Dead (BC)

State 4 State 5 State 4 State 5

Age M S-M M S-M M S-M M S-M

S1
65–69 363 362 0 −1 7003 6990 −6 −19
70–74 608 608 −1 0 9301 9308 −8 0
75–79 1012 1011 −1 −2 11768 11758 −13 −23
80–84 1700 1701 −2 −3 14351 14356 −20 −25
85–89 2255 2255 −4 −5 13168 13169 −21 −29

S2
65–69 363 362 6 7 7001 6990 106 135
70–74 607 608 5 7 9299 9308 79 107
75–79 1012 1011 5 7 11764 11758 63 81
80–84 1700 1700 5 7 14345 14348 42 59
85–89 2254 2253 3 4 13161 13158 18 23

Table A6. Age-specific excess number of deaths and years of life expectancy lost (YLL), per 100,000 women, based on Markov (M)
and semi-Markov (S-M) models in the pandemic scenarios, Scenario 1 (S1) and Scenario 2 (S2), as compared to the pre-pandemic
calibration, for α = 0.6,μ13 = 1

10μ
23.

Excess deaths YLL

Dead (Other) Dead (BC) Dead (Other) Dead (BC)

State 4 State 5 State 4 State 5

Age M S-M M S-M M S-M M S-M

S1
65–69 363 362 −1 −1 7002 6990 −10 −19
70–74 607 608 −1 −1 9300 9308 −13 −15
75–79 1012 1011 −2 −2 11766 11758 −21 −23
80–84 1700 1700 −4 −5 14349 14348 −32 −42
85–89 2255 2255 − 6 −7 13167 13169 −34 −41

S2
65–69 362 362 11 13 6999 6990 210 251
70–74 607 607 10 13 9295 9293 157 199
75–79 1011 1011 11 14 11759 11758 128 163
80–84 1699 1698 11 13 14337 14331 90 110
85–89 2252 2252 7 9 13153 13152 43 53
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Appendix 6. Excess deaths and years of life expectancy lost at different age groups in
Section 6.3

Table A7. Age-specific excess number of deaths and years of life expectancy lost (YLL), per 100,000 women, based on Markov (M)
and semi-Markov (S-M) models in the pandemic scenarios, Scenario 1 (S1) and Scenario 2 (S2), as compared to the pre-pandemic
calibration, for α = 0.6,μ13 = 1

7μ
23,μ35 = 0.8μ35.

Excess deaths YLL

Dead (Other) Dead (BC) Dead (Other) Dead (BC)

State 4 State 5 State 4 State 5

Age M S-M M S-M M S-M M S-M

S1
65–69 363 362 0 −1 7003 6990 −7 −19
70–74 608 608 −1 −1 9301 9308 −9 −15
75–79 1012 1012 −1 −1 11768 11770 −14 −12
80–84 1700 1700 −3 −3 14351 14348 −22 −25
85–89 2255 2255 −4 −5 13168 13169 −24 −29

S2
65–69 363 362 7 8 7001 6990 130 154
70–74 607 608 6 8 9298 9308 99 122
75–79 1011 1012 7 9 11763 11770 81 105
80–84 1699 1699 7 9 14343 14340 56 76
85–89 2253 2254 4 6 13159 13163 26 35

Table A8. Age-specific excess number of deaths and years of life expectancy lost (YLL), per 100,000 women, based on Markov (M)
and semi-Markov (S-M) models in the pandemic scenarios, Scenario 1 (S1) and Scenario 2 (S2), as compared to the pre-pandemic
calibration, for α = 0.6,μ13 = 1

7μ
23,μ35 = 1.2μ35.

Excess deaths YLL

Dead (Other) Dead (BC) Dead (Other) Dead (BC)

State 4 State 5 State 4 State 5

Age M S-M M S-M M S-M M S-M

S1
65–69 363 363 0 0 7003 7010 −9 0
70–74 608 608 −1 −1 9301 9308 −12 −15
75–79 1012 1012 −2 −2 11767 11770 −18 −23
80–84 1700 1700 −3 −4 14350 14348 −28 −34
85–89 2255 2255 −5 −7 13167 13169 −29 −41

S2
65–69 362 362 9 12 7000 6990 170 232
70–74 607 608 8 10 9297 9308 125 153
75–79 1011 1012 9 11 11761 11770 101 128
80–84 1699 1699 8 11 14340 14340 68 93
85–89 2253 2253 5 7 13156 13158 31 41
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Appendix 7. Cancer survival at different age groups in Section 6.3

Table A9. 1-, 5-, and 10-year survival probabilities (%) for women from breast cancer.

Cancer Survival

From State 1 From State 2 From State 3

1-year 5-year 10-year 1-year 5-year 10-year 1-year 5 − year 10 − year

Age M S-M M S-M M S-M M S-M M S-M M S-M M M M

ONS approach
65–69 99.80 99.87 96.18 94.63 88.74 85.84 98.63 99.11 78.12 71.93 47.69 39.94 79.82 31.98 10.05
70–74 99.74 99.83 95.45 93.59 87.14 83.91 98.28 98.87 74.10 66.73 41.71 33.63 74.83 22.85 5.06
75–79 99.72 99.82 95.04 93.01 86.03 82.56 98.10 98.75 71.99 64.06 38.38 30.31 72.33 18.85 3.37
80–84 99.65 99.77 94.14 91.75 83.52 79.54 97.68 98.47 67.44 58.39 32.03 24.26 66.58 11.79 1.26
85–89 99.65 99.77 93.59 91.05 80.33 75.62 97.63 98.44 65.15 56.01 26.96 19.88 65.87 10.15 0.86

Adjusted model
65–69 99.80 99.87 96.24 94.71 89.08 86.27 98.64 99.11 78.41 72.25 48.66 40.92 79.89 32.55 10.60
70–74 99.75 99.83 95.57 93.74 87.83 84.78 98.29 98.87 74.68 67.36 43.42 35.30 74.97 23.69 5.61
75–79 99.72 99.82 95.28 93.32 87.33 84.20 98.12 98.76 73.07 65.23 41.44 33.22 72.61 20.19 4.08
80–84 99.66 99.78 94.67 92.43 86.40 83.14 97.72 98.49 69.74 60.83 37.84 29.56 67.19 13.69 1.87
85–89 99.66 99.78 94.66 92.40 86.38 83.11 97.70 98.48 69.66 60.71 37.75 29.48 67.03 13.53 1.83

Note: Results are for women with pre-metastatic and metastatic breast cancer, and for women with undiagnosed breast cancer based on Markov (M) and semi-Markov (S-M) models, using (5), in the
pre-pandemic calibration for α = 0.6,μ13 = 1

7μ
23,μ35 = 0.8μ35.
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Table A10. 1-, 5-, and 10-year survival probabilities (%) for women from breast cancer.

Cancer Survival

From State 1 From State 2 From State 3

1-year 5-year 10-year 1-year 5-year 10-year 1-year 5 − year 10-year

Age M S-M M S-M M S-M M S-M M S-M M S-M M M M

ONS approach
65–69 99.71 99.81 95.06 93.01 86.69 83.41 98.02 98.70 71.93 63.81 39.54 31.34 71.32 18.15 3.24
70–74 99.63 99.76 94.28 91.89 85.28 81.76 97.53 98.37 67.82 58.45 34.93 26.81 64.73 11.02 1.18
75–79 99.60 99.73 93.86 91.28 84.19 80.45 97.29 98.20 65.69 55.81 32.26 24.34 61.53 8.34 0.66
80–84 99.51 99.68 92.93 89.98 81.75 77.55 96.72 97.81 61.34 50.49 27.26 19.94 54.37 4.24 0.17
85–89 99.50 99.67 92.25 89.12 78.12 73.15 96.65 97.77 58.78 47.95 22.48 15.97 53.55 3.55 0.11

Adjusted model
65–69 99.71 99.81 95.14 93.11 87.11 83.94 98.03 98.70 72.28 64.19 40.53 32.28 71.41 18.57 3.45
70–74 99.64 99.76 94.44 92.09 86.08 82.78 97.55 98.37 68.50 59.18 36.65 28.40 64.92 11.53 1.33
75–79 99.60 99.74 94.16 91.67 85.71 82.36 97.31 98.21 66.96 57.13 35.29 27.09 61.88 9.07 0.82
80–84 99.52 99.68 93.59 90.83 85.03 81.62 96.78 97.84 63.97 53.15 32.97 24.95 55.07 5.07 0.26
85–89 99.52 99.68 93.58 90.81 85.01 81.60 96.76 97.83 63.90 53.05 32.91 24.91 54.88 4.98 0.25

Note: Results are for women with pre-metastatic and metastatic breast cancer, and for women with undiagnosed breast cancer based on Markov (M) and semi-Markov (S-M) models, using (5), in the
pre-pandemic calibration for α = 0.6,μ13 = 1

7μ
23,μ35 = 1.2μ35.
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