Attribution of deaths to multiple causes

17. 09. 2024 Elizabet Ukolova

The research and this conference paper were supported by the SCOR Foundation for Science through the funding for the "SCOR Chair in Mortality Research.

Because current methods of attribution of deaths to multiple causes do not care about how much individual causes contribute to the actual death.

All conditions are equally important.

The most important is the condition, that actually contributes most to the death from officially coded underlying cause.

Outline

Causal pie models

What are they good for? How do they work? How can they be used in multiple-cause of death analysis?

Causal pie models with mediator

What are they good for?

How do they work?

How can they be used in multiple-cause of death analysis?

Causal pie models: What are they good for?

"Causal pie model helps to clarify the multifactorial and complex interactive nature in disease causation" (Liao & Lee, 2010).

Example: smoking, hypertension, obesity and lack of exercise are risk factors for ischemic heart disease.

What is the proportion of subjects who developed the outcome thru a particular causal pie? (quantifying importance of some class of disease causation)

If you reduce some risk factor, what impact does it have on the outcome?

- 1. Fit the positive linear odds model.
 - Assumption: Causal pie components can only increase the risk of the outcome and they act additively.
- 2. Use model coeffitients to calculate odds ratios.
- 3. Use odds ratios to calculate population attributable fraction.
- 4. Use population attributable fractions to calculate causal pie weights.

Step 1				Þ								
I	Regression	Sta	ndard (one-								
Variables c	coefficients	s er	rors si	ded)								
Intercept b_0	0.0006	0.0	0.003 0.	0223								
Hypertension b_1	0.0025	0.0	0.0010 0.	0064								
Obesity b_2	0.0021	0.0	0.008	0049								
Smoking \times lack of exercise b_3	0.0032	0.0	0.0014 0.	0125							(1)	
Hypertension \times obesity $b_{\mathbf{A}}$	0.0031	0.0	0.0017 0.	0303	$(b_0 +$	$b_1)/(1 - $	$(b_0 + b_1))$	$(b_0$	$+b_1 + b_1$	$_2 + b_4)/(1$	$-(b_0+b_1)$	$(1 + b_2 + b_4))$
Smoking \times obesity \times lack	0.0094	0.0	0.0028	0004		$b_0/(1-1)$	b_0)			$b_0/(1$	$(-b_0)$	
or exercise D ₅							2		/			
			Risk factor pro	ofiles/target	levels	Number o	of subjects (%)					
						Cases	Controls	Step 2	PAFs			
		Smoking	Hypertension	Obesity	Lack of exercise	$(n_1 = 159)$	$(n_0 = 20,813)$	ORs	(%)			
No risk factor/eliminating all		0	0	0	0	0 (0.00)	1448 (5.40)	1.00	89.97			
One risk factor/eliminating three risk	k factors	1	0	0	0	0 (0.00)	617 (2.30)	1.00	89.97			
		0	1	0	0	4 (2.51)	617 (2.30)	5.17	69.75			
		0	0	1	0	0 (0.00)	751 (2.80)	4.50	70.60			
		0	0	0	1	4 (2.51)	4424 (16.50)	1.00	89.97			
Two risk factors/eliminating two risk	factors	1	1	0	0	0 (0.00)	188 (0.70)	5.17	69.75			
		1	0	1	0	2 (1.26)	349 (1.30)	4.50	70.60			
		1	0	0	1	5 (3.14)	1716 (6.40)	6.33	77.96			
		0	1	1	0	5 (3.14)	965 (3.60)	13.83	33.07			
		0	1	0	1	5 (3.14)	2520 (9.40)	5.17	69.75			
	1.0	0	0	1	1	10 (6.29)	3137 (11.70)	4.50	70.60			
Three risk factors/eliminating one ris	sk factor	1	1	1	0	3 (1.89)	348 (1.30)	13.83	33.07			
		1	1	0	1	7 (4.40)	697 (2.60)	10.50	57.74			
		1	0	1	1	20 (12.58)	1501 (5.60)	25.50	37.54			
Four risk factors/eliminating none		0 1	1 1	1 1	1 1	47 (29.56) 47 (29.56)	5497 (20.50) 2038 (7.60)	13.83 34.83	33.07 0.00			0/00
												6/23

Causal pie models: How do they work?

						Risk facto	r profile:	s/target l	evels	Number o	f subjects (%)		Step	3	n			*
				Smo	oking	Hypertens	ion C	Desity	Lack of exercise	Cases $(n_1 = 159)$	Controls $(n_0 = 26,813)$	ORs	PAFs (%)	PAF	=	'n×	$\langle \frac{OR_j - OR_j}{OR_j}$	<u>'j</u>
No risk fact	or/elimiı	nating all			0	0		0	0	0 (0.00)	1448 (5.40)	1.00	89.97		$\overline{j=1}$	L	ONJ	
One risk fac	tor/elim	inating thre	e risk f	actors	1	0		0	0	0 (0.00)	617 (2.30)	1.00	89.97		-			
					0	1		0	0	4 (2.51)	617 (2.30)	5.17	69.75	11/h	st nra	nnor	tion of ca	soc would
					0	0		1	0	0 (0.00)	751 (2.80)	4.50	70.60	VVIIC	πρισ	ροι	tion of cus	ses would
					0	0		0	1	4 (2.51)	4424 (16.50)	1.00	89.97	ho o	limin	ntor	d if hyner	toncion ic
Two risk fac	tors/elin	ninating two	o risk fa	ictors	1	1		0	0	0 (0.00)	188 (0.70)	5.17	69.75	DEE		alet	u, ij nyper	
		0			1	0		1	0	2 (1.26)	349 (1.30)	4.50	70.60	elim	inate	sd?		
					1	0		0	1	5 (3.14)	1716 (6.40)	6.33	77.96	CIIII	mate	ч.		
					0	1		1	0	5 (3.14)	965 (3.60)	13.83	33.07					
					0	1		0	1	5 (3.14)	2520 (9.40)	5.17	69.75					
					0	0		1	1	10 (6.29)	3137 (11.70)	4.50	70.60					
Three risk fa	actors/el	iminating or	ne risk	factor	1	1		1	0	3 (1.89)	348 (1.30)	13.83	33.07					
		0			1	1		0	1	7 (4.40)	697 (2.60)	10.50	57.74					
					1	0		1	1	20 (12.58)	1501 (5.60)	25.50	37.54					
					0	1		1	1	47 (29.56)	5497 (20.50)	13.83	33.07					
Four risk fac	tors/elin	ninating nor	ne		1	1		1	1	47 (29.56)	2038 (7.60)	34.83	0.00					
	Smoking	Hypertension	Obesity	Lack of exercis	e Case	s Controls	OR	PAFs										
	0	0	0	0	0,000	0 0,0540	1,00											
	1	0	0	0	0,000	0,0230	1,00											
	0	1	0	0	0,025	0,0230	5,17	0,020	2									
	0	0	1	0	0,000	0 0,0280	4,50											
	0	0	0	1	0,025	0,1650	1,00											
	1	1		0	0,000		5,17	0,000	U									
	1	0	0	1	0,012	4 0.0640	6.33											
	0	1	1	0	0,031	4 0,0360	13,83	0,021	2									
	0	1	0	1	0,031	.4 0,0940	5,17	0,025	3									
	0	0	1	1	0,062	9 0,1170	4,50											
	1	1	1	0	0,018	0,0130	13,83	0,012	8	-								
-	1	1	0	1	0,044	0 0,0260	10,50	0,017	5									
larget scenario	1	0	1	1	0,125	0,0560	25,50	0.100									_	10.0
	1	1		1	0,295	6 0.0760	34 83	0,199	2								7/	/23
	1	1	1	1	0,200		04,00	5 0 275										

Causal pie models: How do they work?

$$W = A^{-1} \times (1 - F)$$

W... Is a vector of causal pie weights for each target level;

A... Is a matrix, those elements equal to 1 if causal pie denoted in the column is affected by the intervention denoted in the row, 0 otherwise.

F... Is a vector of PAFs.

Interpretation: The independent effect due to hypertension is in 20,22%, the independent effect due to obesity is 19,37% and the joint effect of both is in 17,31% of cases.

Example: Death from COVID-19 in USA in 2021 happened on average with 4,3 additional causes of death. Which of them could be the most important one and what proportion of death developed thru the causal pie including this/these particular cause/s?

	Respiratory	Hypertension	Diabetes	Ischemic HD	Dementia	OR	Cases	Controls	Cases %	Controls %	PAF	PAF %
Elim none	0	0	0	0	0	1,00	103468	894476	0,336	0,421	0,000	0,000
	0	0	0	0	1	1,00	16287	245111	0,053	0,115	0,003	0,259
	0	0	0	1	0	1,00	11035	217828	0,036	0,102	0,003	0,252
Elim 1	0	0	1	0	0	1,11	8557	57334	0,028	0,027	0,010	0,994
	0	1	0	0	0	1,00	10948	124307	0,036	0,058	0,004	0,431
	1	0	0	0	0	1,22	89310	175408	0,290	0,082	0,075	7,455
	0	0	0	1	1	1,12	1530	26687	0,005	0,013	0,005	0,454
	0	0	1	0	1	1,11	1446	14007	0,005	0,007	0,013	1,291
Elim 2	0	0	1	1	0	1,11	3026	40821	0,010	0,019	0,013	1,310
	0	1	0	0	1	1,11	3990	49947	0,013	0,023	0,005	0,536
	0	1	0	1	0	1,11	3434	63286	0,011	0,030	0,005	0,540
	0	1	1	0	0	1,12	7188	49339	0,023	0,023	0,014	1,433
	1	0	0	0	1	1,22	5091	18728	0,017	0,009	0,077	7,735
	1	0	0	1	0	1,22	6386	22259	0,021	0,010	0,077	7,733
	1	0	1	0	0	1,27	7402	9728	0,024	0,005	0,086	8,625
	1	1	0	0	0	1,22	8187	17948	0,027	0,008	0,079	7,897
	0	0	1	1	1	1,14	331	4906	0,001	0,002	0,016	1,551
	0	1	0	1	1	1,15	868	13375	0,003	0,006	0,005	0,543
	0	1	1	0	1	1,14	1272	14117	0,004	0,007	0,016	1,551
Flim 3	0	1	1	1	0	1,13	2331	33642	0,008	0,016	0,016	1,551
Elim 2	1	0	0	1	1	1,28	457	1797	0,001	0,001	0,080	7,959
Eumo	1	0	1	0	1	1,28	564	1254	0,002	0,001	0,090	8,959
	1	0	1	1	0	1,28	1819	3756	0,006	0,002	0,090	9,014
	1	1	0	0	1	1,27	1439	3698	0,005	0,002	0,080	8,013
	1	1	0	1	0	1,26	2179	5895	0,007	0,003	0,080	8,009
	1	1	1	0	0	1,30	6084	7145	0,020	0,003	0,092	9,160
	0	1	1	1	1	1,20	306	4657	0,001	0,002	0,016	1,551
	1	0	1	1	1	1,34	116	323	0,000	0,000	0,093	9,295
Elim 4	1	1	0	1	1	1,36	269	884	0,001	0,000	0,080	8,013
Elim 2 Elim 3 Elim 4 Elim 5	1	1	1	0	1	1,35	525	1104	0,002	0,001	0,093	9,295
	1	1	1	1	0	1,35	1589	3056	0,005	0,001	0,093	9,295
Elim 5	1	1	1	1	1	1,52	137	318	0,000	0,000	0,093	9,295

Preventing other respiratory diseases would lead to 7,5% of reduction in COVID-19 deaths. Joint effect of other diseases is negliable, however interactions with diabetes contribute more then 1% as well.

CPW₀₀₀₀₀ is 0,907, which means that 90% of COVID-19 deaths would not be prevented even if eliminating all of these diseases. Most frequent causes associated with diabetes were not that important in contributing to COVID-19 deaths. Among the rest, other respiratory disease and diabetes are the most important multiple causes of death. Relations between entities (for example exposure, outcome and mediator) are modelled as mechanisms/pathways. Such models are based on structural equation modelling.

The model:

Aim: To calculate, which of these pathways is most likely followed.

Causal pie models with mediator: How do they work?

- 1. Estimation of the transition rates in the direct acyclic graphs (parameters of the model).
- 2. Using transition rates to calculate attributable fractions (population, or among the exposed etc.).

Mediator status	Exposure status								
and disease status	E=0	E=I							
M=0, D=0	m	n _i							
M=1, D=0	m ₂	n ₂							
M=0, D=1	m ₃	n ₃							
M=I, D=I	m ₄	n ₄							
Total	$m = m_1 + m_2 + m_3 + m_4$	$n = n_1 + n_2 + n_3 + n_4$							

1. Estimations of the transition rates (parameters) in the direct acyclic graphs.

MLE estimation \rightarrow maximize following expression:

$$l = \sum_{i=1}^{4} m_i \times \log(p_{0i}) + \sum_{i=1}^{4} n_j \times \log(p_{1j})$$

Where p_{0i} and p_{1j} jsou transition probabilities for either exposed or unexposed to *i/j*. They are equal to the set of equations.

Where λ are initial incidence rates, for example λ_{M1} is equal to proportion of unexposed subject who aquire the mediator.

$$p_{01} = e^{-(\lambda_{M1} + \lambda_{D1}) \times T}$$

$$p_{02} = \frac{\lambda_{M1}}{\lambda_{D3} - \lambda_{M1}} \times \left[e^{-(\lambda_{M1} + \lambda_{D1}) \times T} - e^{-(\lambda_{D1} + \lambda_{D3}) \times T} \right]$$

$$p_{12} = \frac{\lambda_{M1} + \lambda_{M2}}{\lambda_{D3} + \lambda_{D4} - (\lambda_{M1} + \lambda_{M2})} \times \left[e^{-(\lambda_{M1} + \lambda_{M2} + \lambda_{D1} + \lambda_{D2}) \times T} - e^{-(\lambda_{D1} + \lambda_{D2} + \lambda_{D3} + \lambda_{D4}) \times T} \right]$$

$$p_{03} = \frac{\lambda_{D1}}{\lambda_{M1} + \lambda_{D1}} \times \left[1 - e^{-(\lambda_{M1} + \lambda_{D1}) \times T} \right]$$

$$p_{13} = \frac{\lambda_{D1} + \lambda_{D2}}{\lambda_{D1} + \lambda_{D2} + \lambda_{M1} + \lambda_{M2}} \times \left[1 - e^{-(\lambda_{M1} + \lambda_{D1}) \times T} \right]$$

$$p_{14} = 1 - p_{11} - p_{12} - p_{13}$$

Causal pie models with mediator: How do they work?

2. Using transition rates to calculate attributable fractions (population, or among the exposed etc.).

Mediator status	Exposure status								
and disease status	E=0	E=I							
M=0, D=0	m	n							
M=1, D=0	m ₂	n ₂							
M=0, D=1	m ₃	n ₃							
M=I, D=I	m ₄	n ₄							
Total	$m = m_1 + m_2 + m_3 + m_4$	$n = n_1 + n_2 + n_3 + n_4$							

Example: Death certifiers were "forced" to record other conditions predominantly into the second part of the death certificate, since the ACS (Automated Coding System) does not select underlying causes of death predominantly from there. What pathway between leading triads of causes of death in the USA in 2021 could be the most probable one? Each cause of death was tried in each position.

Top triads: COVID-19 + diabetes + respiratory disease

COVID-19 + ischemic heart disease + respiratory disease

	COVID-19	Respiratory	Diabetes/HD
Version 1	E	D	Μ
Version 2	Μ	D	E
Version 3	D	E	Μ
Version 4	Μ	E	D
Version 5	D	М	E
Version 6	E	М	С

	I	Ш	Ш	IV	V	VI	max	sex	age	
F_1_999_40_88_1	0.30	0.01	0.14	0.35	0.03	0.16	IV	F		
F_1_999_40_88_2	0.00	0.08	0.00	0.02	0.76	0.14	V	F		со
F_1_999_40_88_3	0.20	0.00	0.00	0.60	0.11	0.09	IV	F		dia
F_1_999_40_88_4	0.01	0.00	0.00	0.40	0.51	0.08	V	F		res
F_1_999_40_88_5	0.00	0.41	0.00	0.00	0.19	0.41	П	F		d
F_1_999_40_88_6	0.00	0.10	0.27	0.13	0.05	0.45	VI	F	-84	
F_1_999_65_88_1	0.30	0.00	0.04	0.45	0.05	0.16	IV	F	65	
F_1_999_65_88_2	0.00	0.00	0.00	0.04	0.82	0.14	V	F		со
F_1_999_65_88_3	0.25	0.00	0.00	0.55	0.09	0.12	IV	F		
F_1_999_65_88_4	0.00	0.00	0.00	0.24	0.66	0.10	V	F		res
F_1_999_65_88_5	0.00	0.33	0.00	0.00	0.15	0.52	VI	F		d
F_1_999_65_88_6	0.00	0.16	0.14	0.07	0.08	0.55	VI	F		
F_2_999_40_88_1	0.31	0.02	0.14	0.37	0.05	0.11	IV	F		
F_2_999_40_88_2	0.00	0.10	0.02	0.12	0.66	0.10	V	F		со
F_2_999_40_88_3	0.24	0.00	0.02	0.57	0.09	0.08	IV	F		dia
F_2_999_40_88_4	0.00	0.00	0.00	0.34	0.58	0.07	V	F		res
F_2_999_40_88_5	0.00	0.37	0.09	0.03	0.12	0.39	VI	F		d
F_2_999_40_88_6	0.00	0.20	0.24	0.08	0.07	0.40	VI	F	+	
F_2_999_65_88_1	0.33	0.01	0.05	0.43	0.06	0.12	IV	F	ő	
F_2_999_65_88_2	0.00	0.00	0.00	0.05	0.84	0.11	V	F		со
F_2_999_65_88_3	0.29	0.00	0.00	0.53	0.08	0.09	IV	F		1
F_2_999_65_88_4	0.00	0.00	0.00	0.19	0.72	0.09	V	F		res
F_2_999_65_88_5	0.00	0.36	0.01	0.00	0.11	0.51	VI	F		d
F_2_999_65_88_6	0.00	0.24	0.11	0.04	0.08	0.52	VI	F		

Triad	verze	max
	1	0.35
COVID-19+	2	0.76
diabetes +	3	0.60
respiratory	4	0.51
disease	5	0.41
	6	0.45
	1	0.45
COVID-19+	2	0.82
IHD +	3	0.55
respiratory	4	0.66
disease	5	0.52
	6	0.55
	1	0.37
COVID-19+	2	0.66
diabetes +	3	0.57
respiratory	4	0.58
disease	5	0.39
	6	0.40
	1	0.43
COVID-19+	2	0.84
IHD +	3	0.53
respiratory	4	0.72
disease	5	0.51
	6	0.52

Mostly, the most probable pathway to death is Version 2, causal pie V.

Example: In Czechia, 90% of death are due to combinations of causes, most of them are cardiovascular diseases. What role plays contributory cause of death in the relationship between underlying cause and its consequence?

Contributory cause of death

of death on the death certificate

			Fe	males	5		Males									
Ischemic heart disease+Chronic lower respiratory diseases+Heart failure	0.24	0.09	0.20		0.24	0.11	0.12		0.22	0.05	0.21		0.34	0.08	0.10	
Cerebrovascular diseases+Ischemic heart disease+Diseases of arteries	0.13 0.00	(0.47		0.2	2 <mark>1 0.</mark> 00	0.19	C	0.15 0. <mark>0</mark> 0) (.39		0.25	<mark>0.</mark> 00 0	.20	
Ischemic heart disease+Renal failure+Heart failure	0.18	0.18 0.11 0.20		0.	0.27		0.15 0.09		0.17 0.10		0.10 0.22		0.30	0.13	0.08	
Ischemic heart disease+Diabetes mellitus+Heart failure	0.24	0.11	0.19		0.20	0.12	0.13		0.24	0.10	0.2	2	0.22	0.10	0.11	
Ischemic heart disease+Diabetes mellitus+Diseases of arteries	0.3	5	0.12	0.11	0.12	0.14	0.16			0.50		0.11	0.07 <mark>0.08</mark>	0.12	0.13	
Ischemic heart disease+Diabetes mellitus+Other CVD	0.13 0.	13 0.10	0.14	0.1	9	0.3	1	0.0	9 0.13	0.15	0.	20	0.18	0.2	4	
Ischemic heart disease+Essential Hypertension+Heart failure	0.27	0.06	0.08	0.25		0.20	0.13		0.28	0.05	0.08	0.30		0.17	0.12	
Ischemic heart disease+Essential Hypertension+Diseases of arteries	0.3	86	0.05 0.04	0.24		0.16	0.16			0.47	0	0.05 .03	0.20	0.12	0.13	
Ischemic heart disease+Essential Hypertension+Other CVD	0.11 0.03	³ 0.27	,	0.28	3	0.	27	0.0	0.04 0.03	0.	39		0.26	0	.21	
Ischemic heart disease+Atrial fibrillation and flutter+Heart failure	0.20	<mark>0.05</mark> 0.09		0.38		0.18	0.10		0.19	<mark>0.04</mark> 0.11		0.41		0.16	0.08	
Ischemic heart disease+Cerebrovascular diseases+Heart failure	0.24	0.1	19	0.24	(0.11 0.09	0.13		0.24	0.14		0.25	0.17	0.09	0.11	
Ischemic heart disease+Diseases of arteries+Heart failure	0.27	0.1	1 0.16	5 <mark>0</mark>).19	0.14	0.14		0.25	0.09	0.19		0.25	0.12	0.11	
0.	0 0.1 (0.2 0.3	0.4	0.5 0.6	5 0.	7 0.8	0.9 1	0.0 0.0	0.1	0.2 0.3	0.4	0.5	0.6 0.7	0.8	0.9 1.0	
			F	athway 1	Pa	thway 2	Pathwa	3 =	Pathway	4 🔳 Pathy	way 5 🔳	Pathway	6			

We classified pathways to death based on 3 aspects: (i) whether the relationship between the underlying and immediate cause is influenced by the contributory cause, (ii) whether the immediate cause results from the underlying cause, and (iii) whether there is an interaction between contributory and underlying causes in their influence on the immediate cause. 19/23

We classified pathways to death based on 3 aspects: (i) whether the relationship between the underlying and immediate cause is influenced by the contributory cause, (ii) whether the immediate cause results from the underlying cause, and (iii) whether there is an interaction between contributory and underlying causes in their influence on the immediate cause. 20/23

Is it "OK" to force the regression coefficients to be strictly positive?

- Is it "OK" to include only aditivity?
- Is it "OK" to omit other factors (age)? (this can be solved easily, of course)
- Is it "OK" to consider that **all** cause of death records could really contribute to death?
- Is it "OK" not to have the true "Exposure" in the causal pies? (~ people who are actually alive)
- Is it "OK" to omit certain edges in directed acyclic graphs?

And many others...

Is it "OK" to force the regression coefficients to be strictly positive?

- Is it "OK" to include only aditivity?
- Is it "OK" to omit other factors (age)? (this can be solved easily, of course)
- Is it "OK" to consider that **all** cause of death records could really contribute to death?
- Is it "OK" not to have the true "Exposure" in the causal pies? (~ people who are actually alive)
- Is it "OK" to omit certain edges in directed acyclic graphs?

And many others...

We tried to show, how could deaths be attributed to multiple causes based on how important they are in the lethal process. Next, we tried to use models to compute probabilities of different pathways to death.

no unified rules for selection of immediate and contributory conditions \rightarrow no official statistics with them \rightarrow understand the pathway and interaction \rightarrow step towards such statistics \rightarrow better understanding of lethal process

Thank you