Estimating the impact of the COVID-19 pandemic on breast cancer deaths among older women

Dr. Ayşe Arık

Department of Actuarial Mathematics and Statistics, Heriot-Watt University, and the Maxwell Institute for Mathematical Sciences, UK

joint work with Andrew Cairns, Erengul Dodd, Angus S Macdonald, and George Streftaris

Funding from: Predictive Modelling for Medical Morbidity Risk Related to Insurance – SoA Estimating The Impact Of The COVID-19 Pandemic On Breast Cancer Deaths - An Application On Breast Cancer Life Insurance – SCOR Foundation for Science

Living to 100 Symposium, Hong Kong, 16 February 2023

SOA Antitrust Compliance Guidelines

Active participation in the Society of Actuaries is an important aspect of membership. While the positive contributions of professional societies and associations are well-recognized and encouraged, association activities are universal to consomer by preserving the free economy and prohibiting anti-competitive business practices; they promote competition. There are both state and free antituut as universal to consort by preserving the free economy and prohibiting anti-competitive business practices; they promote competition. There are both state and free antituut as universal subout as a state and the preserving the free economy and prohibiting anti-competitive business practices; they promote competition. There are both state and free antituut as universal universal to a state and the primary U.S. antituut tails worked prilon federal law. The Berman Act; the primary U.S. antituut tails us coles; follow federal law. The Berman Act; the primary U.S. antituut tails us coles; follow federal law. The Berman Act; the primary U.S. antituut tails us coles; follow federal law. The Berman Act; the primary U.S. antituut tails coles; follow federal law. The Berman Act; the primary U.S. antituut tails coles; follow federal law. The Berman Act; the primary U.S. antituut tails coles; follow federal law. The are showed and the primary of the primary tails and the primary of the primary tails and the primary tails and the primary of the primary tails and the pri

There is no safe harbor under the antitrust law for professional association activities. Therefore, association meeting participants should refrain from discussing any activity that could potentially be construed as having an anti-competitive effect. Discussions relating to product or service printing, market aliocations, membership restrictions, product standardization or other conditions or intale could arguing by be perceived as a servisin to intale and may expose the SOA and its members to antitrust enforcement procedures.

While participating in all SOA in person meetings, webinars, teleconferences or side discussions, you should avoid discussing competitively sensitive information with competitors and follow these guidelines:

- · Do not discuss prices for services or products or anything else that might affect prices
- · Do not discuss what you or other entities plan to do in a particular geographic or product markets or with particular customers.
- · Do not speak on behalf of the SOA or any of its committees unless specifically authorized to do so.
- Do leave a meeting where any anticompetitive pricing or market allocation discussion occurs.
- · Do alert SOA staff and/or legal counsel to any concerning discussions
- · Do consult with legal counsel before raising any matter or making a statement that may involve competitively sensitive information.

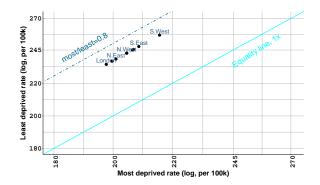
Adherence to these guidelines involves not only avoidance of antitrust violations, but avoidance of behavior which might be so construed. These guidelines only provide an overview of prohibited activities. SOA legal coursel reviews meeting agenda and materials as deemed appropriate and any discussion that departs from the formal agenda should be sorutinized carefully. Antitrust compliance is everyoned in the seek legal coursel if you have any questions or concerns.

Presentation Disclaimer

Presentations are intended for educational purposes only and do not replace independent professional judgment. Statements of fact and opinions expressed are those of the participants individually and, unless expressly stated to the contrary, are not the opinion or position of the Society of Actuaries, its cosponsors or its committees. The Society of Actuaries does not endorse or approve, and assumes no responsibility for, the content, accuracy or completeness of the information presented. Attendees should note that the sessions are audio-recorded and may be published in various media, including print, audio and video formats without further notice.

Purpose of the study

- Insights on breast cancer
- A Markov model for breast cancer
- Mumerical illustrations


Breast cancer (BC) is

- the most common cancer diagnosed in women
- one of the leading causes of death for women

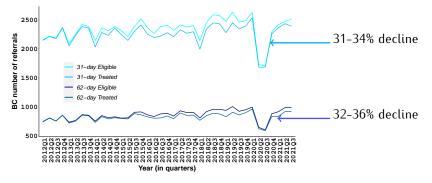
Investigate BC rates in the presence of:

• major disruptions to health services, particularly caused by a catastrophic event, e.g. the COVID-19, preventing or delaying the diagnosis of BC

Most v. least deprived by region: BC incidence in England - 2017

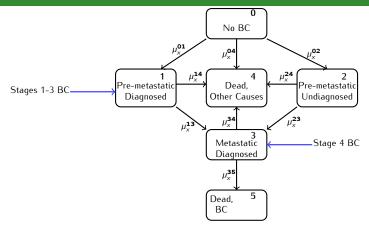
- Not a life-style cancer
- Rates for least deprived higher (higher screening?)
- Less regional variation as compared to, e.g., lung cancer

Regional variation: BC mortality in England - 2018



 ✓ Rate is per 10K
✓ Deprivation is not significant

What insights we gain from BC data


- **Socio-economic differences** are less relevant as compared to, e.g., lung cancer incidence/mortality
- Not (easily) controllable or preventable risk factors
- Regional inequality exists but relatively low
 - High BC screening awareness
 - National BC screening programme for ages 47-73
- The availability of BC screening is crucial for early diagnosis, as BC can be curable

Changes in BC during COVID: referrals in Scotland

- A significant decline in BC referrals during COVID-19 in Quarters 2-3 2020 as compared to the same period in 2019
- A significant fall, 19%, in BC registrations between April December 2020 (PHS, 2021)

Multi-state model for BC transitions

- 'Dead from BC' is only accessible from 'Metastatic Diagnosed'
- Onset of BC remains unchanged $\Rightarrow \mu_x^{01} + \mu_x^{02} = \mu_x^*$
- Treatment is available in 'Pre-metastatic Diagnosed' NOT in 'Pre-metastatic Undiagnosed' $\Rightarrow \mu_x^{13} < \mu_x^{23}$

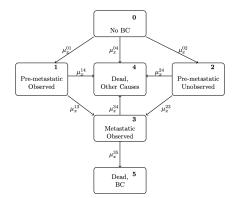
() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

A convenient parametrisation of the model

Due to the assumption relating to an unchanged overall onset of BC

$$\mu_x^{01} + \mu_x^{02} = \mu_x^*$$

we can write


$$\begin{split} \mu_x^{01} &= \alpha \, \mu_x^* \\ \mu_x^{02} &= (1-\alpha) \, \mu_x^*, \qquad 0 < \alpha < 1 \end{split}$$

Also we assume

$$\mu_x^{13} = \beta \, \mu_x^{23}, \qquad \beta < 1$$

Transitions to death due to other causes from all 'live' states are equal to $\mu_{\rm x}^{\rm 04}$

$$\mu_x^{14} = \mu_x^{24} = \mu_x^{34} = \mu_x^{04}$$

Dr. Ayşe Arık

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Calibration of the Markov model

- Based on available ONS data and published clinical studies
- 500,000 women in 'No BC' at time zero, taken as January 1, 2020
- 100,000 women in each age group 65-69, 70-74, ..., 85-89
- Additional deaths, absolute changes (AC) in BC mortality, years of life expectancy lost (YLL) with

$$\mathsf{YLL}_t^{\mathsf{cause}} = \sum_x D_{x,t}^{\mathsf{cause}} L_x$$

where

- $D_{x,t}^{\text{cause}}$ is age-specific additional deaths
- L_x is defined using standard life tables

< 3 k < 3 k

BC Markov model: pre-Covid rates

Age	μ_x^{01}	μ_{x}^{04}	μ_x^{13}	μ_x^{35}
65–69	0.00361	0.00867	0.01954	0.28060
70–74	0.00268	0.01516	0.01954	0.36002
75–79	0.00310	0.02779	0.01954	0.40000
80–84	0.00302	0.05416	0.01954	0.49711
85–89	0.00472	0.09857	0.01954	0.50000

- μ_x^{01} : BC registrations by age and stage for women in the east of England between 2006-2010 (Rutherford et al. 2013, 2015); ONS data, the east of England
- μ_x^{04} : ONS data, the east of England, 2006-2010
- μ_x^{13} : Average metastasis rates per 1000 person-years (Colzani et al., 2014)
- μ_x^{35} : BC deaths by age within 12 months after Stage 4 BC diagnosis (Zhao et al., 2020)

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

In order to quantify the impact of COVID on BC mortality, we have

- Scenario 1: Excess deaths from other causes by a factor of
 - 1.13 for ages 65-84 and 1.12 for ages 85+ bw April 2020 Nov 2021
 - 1.10 for ages 65-84 and 1.09 for ages 85+ bw Nov 2021 Dec 2022
 - 1.07 for ages 65-84 and 1.06 for ages 85+ in 2023
 - 1.04 for ages 65-84 and 1.03 for ages 85+ in 2024
- Scenario 2: Scenario 1 + Decline in BC diagnoses
 - Slowdown in μ_x^{01} by 20% bw April Dec 2020
 - Increase in $\mu_{\rm x}^{\rm 02}$ to keep the onset of BC, $\mu_{\rm x}^{*},$ unchanged

BC Net Survival: pre-Covid rates

	'Pre-me	tastatic (Observed'	'Metastatic Observed'						
Age	1-year	5-year	10-year)-year 1-year		10-year				
	(%)	(%)	(%)	(%)	(%)	(%)				
		ONS approach								
65–69	99.75	95.57	87.58	75.45	24.10	5.70				
70–74	99.69	94.81	86.06	69.60	15.86	2.44				
75–79	99.66	94.37	84.91	66.70	12.49	1.48				
80-84	99.58	93.42	82.29	60.12	7.00	0.45				
85-89	99.57	92.81	78.89	59.36	5.94	0.30				
Our model										
65–69	99.75	95.64	87.95	75.53	24.59	6.04				
70–74	99.69	94.95	86.81	69.77	16.53	2.73				
75–79	99.66	94.66	86.38	67.03	13.53	1.83				
80-84	99.59	94.06	85.59	60.83	8.33	0.69				
85–89	99.59	94.05	85.57	60.65	8.21	0.67				

Assume 'Dead, BC' to be the ONLY cause of death AFTER BC diagnosis

- Lower BC cancer net survival at older ages
- Consistent results: ONS approach vs. Our model

For a woman aged x, diagnosed with pre-metastatic BC, BC survival in t years using ONS approach:

$$\frac{100\% - {}_{t}p_{x}^{\mathbf{14}} - {}_{t}p_{x}^{\mathbf{15}}}{100\% - {}_{t}p_{x}^{\mathbf{14}}}$$

Short-term implications up to 5 years

	Occupancy Probabilities										
From State 0					From	State 1	From S	State 3			
Age	${}_{5}p_{x}^{00}$	${}_{5}p_{x}^{01}$	${}_{5}p_{x}^{02}$	${}_{5}p_{x}^{03}$	${}_{5}p_{x}^{04}$	${}_{5}p_{x}^{05}$	$_{1}p_{x}^{15}$	${}_{5}p_{x}^{15}$	${}_1p_x^{35}$	${}_{5}p_{x}^{35}$	
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	
	Pre-pandemic calibration										
65-69	92.92	1.62	0.82	0.26	4.24	0.14	0.25	4.24	24.37	74.17	
70–74	90.65	1.17	0.59	0.17	7.30	0.12	0.31	4.82	30.02	81.26	
75–79	84.81	1.27	0.64	0.17	12.97	0.14	0.34	4.91	32.54	82.49	
80-84	74.38	1.08	0.55	0.13	23.71	0.14	0.40	5.05	38.21	84.45	
85–89	58.73	1.35	0.68	0.16	38.89	0.19	0.39	4.45	37.62	79.34	
	Scenario 2										
65-69	92.57	1.57	0.85	0.26	4.60	0.15	0.25	4.23	24.36	74.04	
70–74	90.06	1.13	0.61	0.17	7.90	0.13	0.31	4.80	30.00	81.04	
75–79	83.79	1.22	0.66	0.17	14.01	0.15	0.33	4.87	32.51	82.11	
80-84	72.66	1.03	0.55	0.13	25.48	0.15	0.40	4.97	38.15	83.78	
85–89	56.54	1.26	0.68	0.16	41.16	0.20	0.39	4.34	37.52	78.36	

- Baseline scenarios are carried out for $\alpha = 0.6$ and $\beta = \frac{1}{7}$.
- 3-6% decline in 'Pre-metastatic Diagnosed'
- Around 3% increase in 'Pre-metastatic Undiagnosed' (Vulnerability? Higher deaths from BC and other causes?)

Changes in BC pre- vs. post-pandemic

	Addition	al deaths	YI	_L	AC in BC mortality from			
	Dead	Dead	Dead	Dead	Pre-metastatic Diagnosed		Metastatic	
	(Other)	(BC)	(Other)	(BC)				
	State 4	State 5	State 4	State 5	State 1		State 3	
					1 year	5 year	1 year	5 year
Scenario 1								
65–69	358	0	6915	-8	0.00	-0.01	-0.01	-0.13
70–74	606	$^{-1}$	9273	-10	0.00	-0.02	-0.02	-0.22
75–79	1040	$^{-1}$	12090	-16	-0.01	-0.04	-0.03	-0.38
80–84	1766	-3	14901	-23	0.00	-0.08	-0.06	-0.67
85–89	2274	-6	13282	-34	0.00	-0.11	-0.10	-0.98
Scenario 2								
65–69	358	9	6912	164	0.00	-0.01	-0.01	-0.13
70–74	605	7	9269	106	0.00	-0.02	-0.02	-0.22
75–79	1039	8	12085	87	-0.01	-0.04	-0.03	-0.38
80-84	1765	6	14894	52	0.00	-0.08	-0.06	-0.67
85–89	2272	6	13270	36	0.00	-0.11	-0.10	-0.98

- Displaced mortality (in the presence of BC) in Scenario 1
- <u>5-8% increase</u> in both 'Dead from BC' and 'Dead from Other Causes' across different ages in scenarios 1-2
- Absolute change in BC mortality is less than 1%

Sensitivity analysis

• Sensitivity analysis is carried out, all else equal, with

- $\alpha = 0.4$ and $\alpha = 0.8$ (lower v. higher BC diagnoses)
- $\beta = \frac{1}{5}$ and $\beta = \frac{1}{10}$ (worse v. better BC treatment)
- μ_x^{35} is 20% lower and higher than the pre-pandemic level (lower v. higher BC deaths)
- Consistent results in relation to relative changes in BC mortality and deaths from different causes, under pre- and post-pandemic scenarios

Summary and future directions

- More equality in BC as compared to life-style cancers
- As compared to the pre-pandemic scenario
 - 5–8% increase in deaths from BC across different ages
 - 5-8% increase in deaths from other causes across different ages
 - Less than a 1% increase in the probability of death for women with pre-metastatic BC $(\rho_x^{\rm 15})$
 - A relatively significant increase in the probability of death for women with metastatic BC (p_x^{35}) as compared to women with pre-metastatic BC
- A more flexible setting using a semi-Markov model
- What are the implications for related insurance products?

< 3 k < 3 k

- Arık, A., Cairns, A., Dodd, E., Macdonald, A.S., Streftaris, G. The effect of the COVID-19 health disruptions on breast cancer mortality for older women: A semi-Markov modelling approach, working paper.
- Arık, A., Dodd, E., Cairns, A., Streftaris, G. Socioeconomic disparities in cancer incidence and mortality in England and the impact of age-at-diagnosis on cancer mortality, PLOS ONE, 2021.
- Arık, A., Dodd, E., Streftaris, G.. Cancer morbidity trends and regional differences in England – a Bayesian Analysis, PLOS ONE, 2020.

< 3 k < 3 k

Thank You!

Questions?

E: A.ARIK@hw.ac.uk W: http://www.macs.hw.ac.uk/~aa398/

Dr. Ayşe Arık