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Research Article

Makeham mortality models as mixtures: Advancing mortality
estimations through competing risks frameworks

Silvio C. Patricio1

Trifon I. Missov2

Abstract

BACKGROUND
The Makeham term serves as a fundamental component in mortality modeling, offering a
constant additive hazard that accounts for background mortality factors usually unrelated
to the aging process. This term, widely employed in mortality analysis, provides a crucial
mechanism for capturing mortality risks unrelated to age-related deterioration.

OBJECTIVE
The objective of this paper is to explore how Makeham models, which are widely used
for studying mortality, can be understood and analyzed within the context of competing
risks. The paper seeks to provide insights into the mathematical properties, interpretation,
and applicability of Makeham models in modeling age-dependent and age-independent
mortality risks. Additionally, the paper aims to demonstrate formally that competing-risk
models can be represented as mixture models, thereby facilitating a deeper understanding
of risk-specific mortality dynamics.
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CONTRIBUTION
Expressing competing-risk models as mixtures aids identifying the overall and age-
specific share of deaths according to each of the competing risks. In particular, Makeham
mortality models, when represented as mixtures, provide, first, a semantically and compu-
tationally convenient platform to disentangle age-dependent from age-independent mor-
tality, and second, a straightforward specification that can easily be extended to account
for unobserved heterogeneity. By expressing Makeham models as a convex combination
of probability distributions, we are able to estimate the age-profile of age-independent
mortality, especially at the oldest ages, at which we intuitively assume that most deaths
are age-dependent (senescent). We are also able to estimate the senescent mortality com-
ponent, which is the one to focus on when studying the aging process and its characteris-
tics.

1. Introduction

Death can occur due to various causes, each characterized by its own failure time. In-
dividuals are exposed to a finite number of such causes, and the interplay of the latter
determines the observed length of life.

Let there be a finite number of causes of death3 labeled c1, c2, . . . , cn. Suppose a
non-negative random variable Tk with a hazard function hk(x) captures the age at death
from cause ck, k = 1, 2, . . . ,n, when ck is the only cause of death. Failure time Tk mea-
sures the ‘absolute potency’ of cause ck. The length of life for an individual is captured
then by the random variable Y = min(T1, . . . ,Tn), whose hazard function, µ(x), reflects
the competing n cause-specific risks of dying (see, for example, Chiang 1961; Berman
1963; Gail 1975).

Makeham models are widely used for studying mortality as they account for a sim-
ple and straightforward competing-risk framework. They are characterized by a hazard
function of the type

µ(x) = h(x) + c , (1)

where h(x) is another hazard function. In this family of models, the hazard function h(x)
represents the age-dependent risk of death, often associated with the aging process, while
the Makeham term c characterizes the age-independent risk. This structure allows for a

3 We will use the terms ‘causes of death’ and ‘causes’ interchangeably to describe the exhaustive set of path-
ways leading to death. An individual can die from one of n such competing causes, where n can be finite
or infinite. By ‘causes of death’ and ‘causes’ we do not necessarily refer to diseases according to WHO’s
International Classification of Diseases.
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clear differentiation between risks that vary with age and those that do not. When

h(x) = aebx , (2)

(1) reduces to the Gompertz–Makeham (GM) model (Gompertz 1825; Makeham 1860),
while for

h(x) =
aebx

1 + aγ
b (ebx − 1)

, (3)

(1) yields the gamma-Gompertz–Makeham (ΓGM) model (Vaupel, Manton, and Stallard
1979). Beard (1959) and Kannisto (1994) provide alternative logistic curves with differ-
ent asymptotes. The hazard h(x) can be extended by an additive component that reflects
infant and childhood mortality, as in Siler’s model (Siler 1979)

h(x) = a1e
−b1x + aebx . (4)

The Gompertz–Makeham, gamma-Gompertz–Makeham, and Siler models reflect a
competing risk framework: An individual dies either as a result of biological processes at
early or late ages or due to some extrinsic risk c, whatever strikes first. In this framework,
c is often termed ‘premature’, capturing risks independent of age, which typically account
for sudden, unexpected deaths not directly linked to aging. On the other hand, h(x) is
associated with the ‘senescent’ risk, reflecting the natural decline in health due to aging.
In the Siler model, the negative exponential in h(x) captures the infant mortality risk.

The Makeham term in all models described by the general framework in Equation
(1) accounts for a competing exponentially distributed risk. Previous studies, such as Gail
(1975), Elandt-Johnson (1976), and Hakulinen and Rahiala (1977), discuss mathematical
properties and practical implications of assuming independence among failure times, as
well as the consequences when this assumption is violated. They do not study, though, the
representation of competing-risk models as mixtures, in which every distribution charac-
terizes deaths due to a specific risk out of n competing ones.

Here, we demonstrate that a Makeham (and any other competing-risk) model can be
represented as a mixture, that is, as a convex combination of probability distributions cor-
responding to dying from each cause of failure in the presence of the risks from all others.
The weights in this convex combination capture the probabilities of each cause striking
first. Representing Makeham models as mixtures provides insight into the interactions of
various risk factors. By distinguishing among these risks, mixture models facilitate tar-
geted health interventions, improve predictive capabilities, and aid elucidating complex
mortality patterns.
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2. The relationship

Suppose in a population death can occur due to n causes c1, c2, . . . , cn, and each individ-
ual is characterized by a corresponding random vector T = (T1,T2, . . . ,Tn)

′ represent-
ing the hypothetical failure time from each cause in the absence of other causes. Then,
a non-negative continuous random variable Y , capturing the actual length of life for an
individual, can be represented as Y = min(T1,T2, . . . ,Tn), its hazard function can be
expressed as

hY (x) = h(x, 1) + h(x, 2) + · · ·+ h(x,n) , (5)

and its probability density function (PDF) can be represented as

f(x) =

n∑
j=1

h(x, j) exp

{
−

n∑
k=1

H(x, k)

}
, (6)

where the hazard h(x, k) captures the risk of dying due to cause ck, given that no other

competing cause struck before x, and H(x, k) =
x∫
0

h(t, k)dt is the corresponding kth

cumulative sub-hazard function, k = 1, . . . ,n. (6) implies that the PDF of Y can be
expressed as a mixture

f(x) =

n∑
j=1

πjgj(x) , (7)

where gj(x) = f(x | j) denotes the PDF of the lifespan for individuals that die due to cj ,
j = 1, 2, . . . ,n while being exposed to all n risks, and πj is the probability that cause cj
strikes first among all competing causes.

3. Proof

Proof. Denote the hazard function of Tj , j = 1, . . . ,n, by

hj(t) = lim
∆↓0

1

∆
P(t < Tj ≤ t+∆|Tj > t) ,
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and the corresponding survival function by Sj(t). The survival function of T is given by

ST(t1, · · · , tn) = P

 n⋂
j=1

[Tj > tj ]

 , tj ∈ (0,∞), j = 1, . . . ,n ,

which satisfies ST(0, · · · , 0) = 1 and ST(∞, · · · ,∞) = 0. The function S(·) is contin-
uous from the right and monotonically non-increasing in each argument.

Note that we cannot observe the failure times T1, . . . ,Tn simultaneously. As a result,
ST(t1, · · · , tn) cannot be observed, nor can its form be tested (Elandt-Johnson 1976).
Instead, as highlighted by Moeschberger and David (1971), what we observe is the indi-
vidual lifetime denoted by Y = min(T1, . . . ,Tn). The corresponding survival function
is given by

SY (t) = P (Y > t) = ST(t, · · · , t) , (8)

where t is the observed failure time.
With the assumption that P(Ti = Tj) = 0 for all i ̸= j, i, j = 1, . . . ,n, we can

define the random variable J as the index of the smallest Ti. Therefore, J = j implies
that cause cj is responsible for the death, and Tj < Ti for all i ̸= j, i = 1, . . . ,n.
Applying the law of total probability and the Bayes’s theorem to Equation (8), we get

SY (t) =

n∑
j=1

P (Y > t, J = j) =

n∑
j=1

P (Y > t | J = j)P (J = j) .

The function

S(t | j) = P (Y > t | J = j) =
P(t < Tj < mini̸=j Ti)

P(Tj < mini ̸=j Ti)

represents the cause-specific survival function for cause cj , while the quantity

πj = P (J = j) = P(Tj < min
i ̸=j

Ti)
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is the probability that cause cj strikes first among all competing causes. Thus,

SY (t) =
n∑

j=1

πjS(t | j) . (9)

Assuming ST is differentiable, we can express the density of Y as

fY (t) = − d

dt
SY (t) =

n∑
j=1

f(t, j) =

n∑
j=1

πjf(t | j) , (10)

where f(t | j) = − d
dtS(t | j) represents the density of lifetimes due to competing cause

cj . Integrating f(t, j) with respect to t, we can derive πj . The hazard function of Y is
given by

hY (t) =
fY (t)

SY (t)
=

n∑
j=1

h(t, j) , (11)

where h(t, j) = f(t,j)
SY (t) . This function is sometimes called the jth sub-hazard rate and

should not be confused with the function h(t | j) = − d
dt logS(t | j) = f(t | j)/S(t | j).

Equations (9)–(11) illustrate that, no matter if the failure times T1, . . . ,Tn are inde-
pendent or not, the distribution of lifetimes can be expressed as a convex combination of
n probability distributions, each representing the time to death for individuals affected by
a given cause cj , j = 1, . . . ,n.

Note 1: The assumption on the identity of the forces of mortality

As previously mentioned, the function ST(t1, · · · , tn) is not directly observable, nor can
its form be tested. In practical applications, an additional assumption on the identity of
the forces of mortality is typically made:

h(t, j) = hj(t), j = 1, . . . ,n. (12)

600 http://www.demographic-research.org
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This assumption implies that SY (t) can be expressed as a product of the individual sur-
vival functions Sj(t):

SY (t) = ST(t, · · · , t) =
n∏

j=1

Sj(t) .

This assumption suggests that the events [Tj > t], j = 1, . . . ,n are independent. Note
that this does not necessarily imply independence of the random variables T1, . . . ,Tn

(see, for example, Gail 1975).
Assumption (12) simplifies the mathematical representation of the model and the

statistical estimation of its parameters. It also ensures the model’s identifiability, which
is essential for uniquely determining the model parameters from the available data (see,
for example, Kalbfleisch and Prentice 2011).

As noted by Elandt-Johnson (1976), directly observing the ‘time-to-death from a
given cause of death’ random variable is not feasible, and estimating its associated sur-
vival function requires additional assumptions. In addition, Crowder (1991) demonstrates
that even when the marginal survival functions Sj(tj) of the failure time Tj are known,
observations of Y and J do not determine their joint survival function ST . Therefore,
assuming independence between events like [Tj > t], j = 1, . . . ,n, or even between the
random variables Ti and Tj , for i ̸= j, j = 1, . . . ,n, though not necessarily reflecting
the true interaction mechanism among different causes of death, provides a reasonable
framework for distinguishing between extrinsic and senescent mortality.

Note 2: On the independence assumption for cause-specific failure times

When we assume that the random variables Tj , j = 1, 2, . . . ,n, are mutually indepen-
dent, the survival function ST (t1, · · · , tn) simplifies to

∏n
j=1 Sj(tj), making the proof

of the relationship rather straightforward. However, assuming independence of cause-
specific failure times has at least two implications: First, the associated cause-specific
risks of dying act independently of one another, and second, eliminating one cause of
death does not affect the force of mortality of the other cause. However, the adequacy of
this assumption varies depending on the specific cause of death and its complex relation-
ship with other causes. A comprehensive model should acknowledge that (a) a simple
constant term, such as the Makeham term, may not accurately capture the complex mech-
anisms underlying premature deaths; (b) lifetimes may not be independent, highlighting
the need for a more sophisticated modeling approach; and (c) the dependence of lifetimes,
reflecting behavioral, social, and environmental risk factors, may vary across different age
groups.
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According to Cox (1959), when considering two risks, data collected on variables
Y and J will not provide evidence contradicting the assumption that the failure times
associated with these risks are independent of each other. In other words, observations of
Y and J will not suggest dependence between the failure times linked to these risks.

Even when circumventing the assumption of independence of lifetimes by using
the method proposed by Gumbel and Mustafi (1967) for random variables T1 and T2

following extreme value distributions, the estimation of correlation parameters is complex
(see Tawn 1988). Thus, applying such a model to aggregate (life-table) mortality data is
challenging.

Note 3: The case of an infinite number of causes

Note that the relationship holds also when the number of competing causes, denoted as
n, is infinitely large. However, increasing the number of causes typically leads to an
increase in the number of model parameters, which can pose significant challenges in
accurately estimating the model (see, for example, Bühlmann and Van De Geer 2011). In
practical implementations, where n is very large, this expansion of parameter space can
intensify issues such as the dominance of certain risks over others, which can complicate
the understanding of individual risks’ impacts on the overall mortality distribution and
pose substantial challenges in interpreting and applying the model results effectively.

4. Related results

Makeham models are a special case of Equation (5) when n = 2, h1(x) = c and
h2(x) = h(x), as in Equation (1). This hazard function is comprised of additive compet-
ing risks of two causes of death: One of them, denoted by c1, is age-independent, while
the other, denoted by c2, is age-dependent. Each cause is described by its own failure
time, captured by the not necessarily independent random variables T1 and T2, respec-
tively. The probability density function (PDF) of the actual lifetime Y = min(T1,T2)
can then be represented as

f(x) = c exp {−cx−H(x)}+ h(x) exp {−cx−H(x)} , (13)

where H(x) =
x∫
0

h(t)dt is the cumulative hazard function of T2. From Equation (13), it

is easy to represent a Makeham model of the type in Equation (1) as a mixture model:

f(x) = πg1(x) + (1− π)g2(x), (14)
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where gj(x) = f(x | j) denotes the PDF of the lifespan for individuals who die from cj ,
j = 1, 2, being exposed to both the age-independent and the age-dependent risk of dying.

Each term in Equation (14) has a straightforward interpretation. For example,

π =

∫ ∞

0

c exp {−cx−H(x)} dx , (15)

known as the mixing proportion (McLachlan, Lee, and Rathnayake 2019), represents
the probability of dying from the age-independent (premature) risk in the presence of a
competing age-dependent (senescent) risk of dying, – that is, π is the premature mortality
prevalence. On the other hand, the functions

g1(x) =
c

π
exp {−cx−H(x)} and g2(x) =

h(x)

1− π
exp {−cx−H(x)} (16)

capture the PDFs of the distribution of deaths due to each of the two causes: In the
presence of competing premature and senescent risks of dying, g1 represents the PDF of
premature deaths, while g2 denotes the PDF of senescent deaths.

By representing the class of models in Equation (1) as a mixture of two probabil-
ity distribution functions, we can determine the threshold age, x∗, that separates the age
interval with prevailing premature deaths from the one with predominant senescent mor-
tality:

x∗ = max{max{x : g1(x) = g2(x)}, 0} . (17)

Note that Equation (18) can alternatively be derived by knowing Equation (1) only:

x∗ = max{max{x : h(x) = c}, 0} . (18)

In Equation (18), x∗ can be viewed as a critical transition point after which the age-
dependent (senescent) risk overtakes the age-independent (external) one as the predomi-
nant risk. In a mixture model setting like Equation (17), x∗ marks a shift in the predom-
inant subpopulation risk. For Makeham models, it indicates a change in the dominant
risk of dying, from external to senescent. In addition, mixture models account for the
interplay between these risks over different age ranges.

From Equation (18), we can express the proportion of non-aging-related deaths at
age x as

p(x) = c/(h(x) + c) . (19)
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p(x) reflects the age-specific prevalence of premature mortality. Table 1 presents closed-
form expressions for x∗ and p(x) for four popular Makeham mortality models.

Table 1: Expressions for the threshold age x∗, separating the age intervals
with prevailing premature and senescent mortality, as well as the
proportion of non-aging-related deaths at age x, p(x), in Gompertz–
Makeham, gamma-Gompertz–Makeham, Beard–Makeham,
Kannisto–Makeham, and Siler model settings

Model h(x) x∗ p(x)

Gompertz–Makeham aebx 1
b ln c

a
c

aebx+c

Γ-Gompertz–Makeham aebx

1+γ a
b (e

bx−1)
1
b ln

c(b−aγ)
a(b−cγ)

c

aebx

1+γ a
b (e

bx−1)
+c

Beard–Makeham aebx

1+kaebx
1
b ln c

a(1−kc)
c

aebx

1+kaebx
+c

Kannisto–Makeham aebx

1+aebx
1
b ln c

a(1−c)
c

aebx

1+aebx
+c

Siler a1e
−b1x + a2e

b2x no closed-form c

a1e−b1x+a2eb2x+c

Note that assuming a constant age-independent risk of dying does not imply a con-
stant force of mortality for the distribution of premature deaths (in the presence of a
competing senescent risk). The force of mortality for this subpopulation is given by

h(x | 1) = exp {−cx−H(x)}∫∞
x

exp {−cy −H(x)} dy
. (20)

In many Makeham mortality models, we can derive closed-form expressions for
different characteristics of the distributions of deaths in the mixture. For example, the
remaining life expectancy at age x is given by

ex =
1

S(x)

∫ ∞

0

S(x+ t) dt , (21)

where S(·) is the survival function. Substituting S(x) = S(x | 1) =
∫∞
x

g1(y) dy and
S(x) = S(x | 2) =

∫∞
x

g2(y) dy in Equation (21) yields ex for the subpopulation struck
by the premature and senescent competing risk, respectively. The modal age at death
for these subpopulations corresponds to the maximum of g1(x) and g2(x), respectively.
Note that for any non-decreasing h(x), the modal age at death for the non-senescent
subpopulation is zero. For the senescent subpopulation (with PDF g2), the modal age at
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death is the age where the overall force of mortality equals the relative derivative of h(x)
with respect to age:

h(x) + c =
dh(x)/dx

h(x)
. (22)

For the Gompertz–Makeham model, if b > c, the senescent modal age at death is given
by

MGM =
1

b
ln

b− c

a
, (23)

while for the gamma-Gompertz–Makeham model, it is given by

MΓGM =
1

b
ln

(
b

a
·
b− aγ − c

(
1− aγ

b

)
b+ aγc

)
. (24)

When c = 0, the expressions for MGM and MΓGM reduce to the modal age at death for
the Gompertz and the gamma-Gompertz model, respectively (for details, see Missov et al.
2015). The modal age at death can also be expressed for the Beard–Makeham model as

MBM =
1

b
ln

b− c

a(1 + ck)
, (25)

while in the Siler model setting, there is no closed-form expression. Note that, given the
improvements in human mortality and the rise of longevity, we may observe a decreasing
trend for c over time. This leads to a convergence of the overall modal age at death to the
senescent one.

We can also derive closed-form expressions for π in a Gompertz–Makeham and a
gamma-Gompertz–Makeham setting. From Equation (15), we can express π = ce0,
where e0 is the life expectancy at birth of the Makeham model. Using closed-form
expressions for e0 (see, for example, Missov and Lenart 2013; Castellares et al. 2020;
Castellares, Patricio, and Lemonte 2020), we can derive expressions for π in terms of
special functions. For the Gompertz–Makeham model, we have that

π =
c

a

(a
b

) c
b

e
a
b Γ
(
−c

b
,
a

b

)
, (26)
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where Γ(u,x) =
∫∞
x

tu−1e−tdx, x > 0, u ∈ R is a complementary incomplete gamma
function. For the gamma-Gompertz–Makeham model, the closed-form expression for π
is given by

π =
cγ

b+ cγ
2F1

(
1

γ
, 1;

1

γ
+

c

b
+ 1; 1− aγ

b

)
, (27)

where 2F1(m, p; q; z) = Γ(q)
Γ(p)Γ(q−p)

∫ 1

0
up−1(1−u)q−p−1(1− zu)−mdu is the Gaussian

hypergeometric function.
We now focus explicitly on the Gompertz–Makeham model. The Makeham term

has first been used to adjust Gompertz mortality estimates (Makeham 1860), resulting
in the Gompertz–Makeham model. A non-negative continuous random variable Y has a
Gompertz–Makeham distribution if its hazard function is given by

µ(x) = aebx + c, a, b > 0, c ≥ 0; x ≥ 0, (28)

and survival function

S(x) = exp
{
−a

b

(
ebx − 1

)
− cx

}
. (29)

From Equations (28) and (29), it is straightforward to derive the Gompertz–Makeham
PDF:

f(x) = c exp
{
−a

b

(
ebx − 1

)
− cx

}
+ aebx exp

{
−a

b

(
ebx − 1

)
− cx

}
. (30)

According to Castellares, Patricio, and Lemonte (2022), there are four different shapes
for f(x): (a) it may have a local maximum that is not located at the boundary; (b) It
may have a local maximum both at the boundary and inside the parameter space; (c) it
may have a global maximum at the boundary; and (d) it may have a global maximum at
the boundary and an inflection point inside the parameter space (Norström 1997). The
four shapes are displayed in Figure 1. While only panel (a) in Figure 1 corresponds to the
pattern observed in human mortality, panels (b)–(d) were included to illustrate the diverse
dynamics of mortality when decomposing senescence and premature mortality.

606 http://www.demographic-research.org

http://www.demographic-research.org


Demographic Research: Volume 51, Article 18

Figure 1: PDF of the Gompertz–Makeham distribution as a mixture
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Notes: The gray line presents f , the red line indicates g1, and the blue line represents g2. For (a) we have
a = 0.0005, b = 0.1, and c = 0.005; for (b) we have a = 0.05, b = 0.85, and c = 0.2; for (c) we have a = 0.4,
b = 0.8, and c = 0.2; and for (d) we have a = 0.05, b = 0.8, and c = 0.2.

The distribution of a Gompertz–Makeham random variable Y can be perceived as a
mixture – that is, its PDF in Equation (30) can be represented as a convex combination of
two probability distributions

f(x) = πg1(x) + (1− π)g2(x), (31)
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where

g1(x) =
c

π
exp

{
−a

b

(
ebx − 1

)
− cx

}
,

g2(x) =
ae−(c−b)x

1− π
exp

{
−a

b

(
ebx − 1

)} (32)

and π is given by Equation (26).
Under the assumption of identity of the forces of mortality, the survival function

takes the form

S(x) = S1(x)S2(x) = πG1(x) + (1− π)G2(x), (33)

with Gj(x) = S(x | j) =
∞∫
x

gj(t)dt and Sj(x) = exp
{
−
∫ x

0
hj(t)dt

}
, for j = 1, 2.

Figure 1 shows the decomposition of the Gompertz–Makeham PDF into senescent
(g2 density) and non-senescent (g1 density) components, from which we can see how non-
senescent deaths shift the mode of the distribution (also known as ‘modal age at death’)
to the left, sometimes even leading to a second peak of the distribution (panel (b) in Fig-
ure 1). Note that although the competing risks are Gompertz and Exponential, Equation
(32) suggests that the Gompertz–Makeham density is not represented by a convex com-
bination of a Gompertz and an Exponential distribution.

By representing the Gompertz–Makeham as a mixture of two distributions, we are
able to quantify the overall proportion of non-senescent deaths, given by the quantity
π, and also the proportion of non-senescent deaths at age x, equal to p(x). For the
Makeham–Gompertz model, the age-specific proportion of premature deaths can be ex-
pressed as p(x) = c/

(
aebx + c

)
. Figure 2 shows the proportion of senescent and non-

senescent deaths by age in a Gompertz–Makeham model for different parameter combi-
nations.
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Figure 2: Proportion of senescent and non-senescent deaths by age in the
Gompertz–Makeham setting
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Notes: For (a) we have a = 0.0005, b = 0.1, and c = 0.005; for (b) we have a = 0.05, b = 0.85, and c = 0.2;
for (c) we have a = 0.4, b = 0.8, and c = 0.2; and for (d) we have a = 0.05, b = 0.8, and c = 0.2.

The function p(x) aids in estimating the threshold age x∗ that separates the ages with
predominant non-senescent deaths from the ages with predominant senescent deaths. For
the Gompertz–Makeham model,

x∗ =

{
1
b ln

c
a c ≥ a

0 c < a
(34)

when x∗ = 0, g1(x) and g2(x) do not intersect (see, for example, panel (c) in Figure 2).
In all other cases, x∗ is their intersection point, (i.e., the point at which the proportion of
senescent and non-senescent deaths is equal).
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5. Applications

Expressing Makeham models in Equation (1) as a mixture can be advantageous for an-
alyzing the components of mortality, (e.g., the ones capturing premature and senescent
deaths). To illustrate these advantages, we estimate the Gompertz–Makeham model using
raw death counts and exposures after age 20 from the Human Mortality Database (HMD
2023) for France, Italy, Japan, and Sweden, years 1947 to 2020, males and females sepa-
rately.

Mazzuco, Suhrcke, and Zanotto (2021) highlight that the share of premature deaths
is also defined by the shape, scale, and location of the senescent deaths distribution. This
suggests a recommendation to maintain consistent senescent mortality parameters across
countries while allowing for variability in premature mortality parameters. However, we
will not keep the senescent mortality parameters constant for four main reasons: (1) The
population in two different years is comprised of individuals from different cohorts with
diverse life histories; (2) distinct genetic backgrounds, shaped by historical migrations
and evolutionary processes, introduce variations in susceptibility to age-related diseases,
potentially influencing senescent mortality; (3) the interplay between genetic factors and
environmental determinants, including diet, lifestyle, pollution, and healthcare access,
amplifies differences in senescent mortality patterns among countries; and (4) dispari-
ties in healthcare systems and socioeconomic factors add complexity, influencing disease
prevention, diagnosis, and treatment effectiveness among countries.

To estimate the parameters, we apply a Bayesian procedure (Gelman et al. 2013)
and assume a Poisson distribution for the death counts Dijk, where the multi-index ijk
represents age i in year j for country k (see, for example, Brillinger 1986). The Bayesian
estimates are obtained by the mode of the posterior distributions, also known as the max-
imum a posteriori probability (MAP) estimate (Patricio and Missov 2023).

The prior (and hyper-prior) distributions are defined as

aijk|α1,β1 ∼ InverseGamma(α1,β1);

bijk|α2,β2 ∼ InverseGamma(α2,β2);

cijk|α3,β3 ∼ InverseGamma(α3,β3);

α1 ∼ Gamma(2, 2);

α2 ∼ Gamma(2, 2);

α3 ∼ Gamma(2, 2);

β1 ∼ Gamma(1, 1);

β2 ∼ Gamma(1, 1);

β3 ∼ Gamma(1, 1),
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where a, b, and c are the Gompertz–Makeham model parameters. Since the parame-
ters are strictly positive, we choose an inverse-gamma prior distribution. The latter is
characterized by a heavy tail and keeps probability further from zero than the Gamma
distribution.

By specifying the prior distributions, we employed the NUTS algorithm, a variant
of Hamiltonian Monte Carlo known as the No-U-Turn Sampler (Hoffman and Gelman
2014; Betancourt 2017), via the Rstan R-package (Stan Development Team 2016) to
sample from the posterior distributions. Four chains were executed, each consisting of
6,000 iterations (4,000 warm-ups and 2,000 sampling). We assessed convergence using
the R-hat diagnostic and found that none of the R-hat values exceeded 1.05 (see, for
instance, Vehtari et al. 2021). We opted not to thin the chains as thinning is typically
unnecessary with the efficient Hamiltonian Monte Carlo method employed by Stan. The
point estimates provided are MAP estimates, and the intervals displayed represent 95%
highest density intervals for the posterior distributions.

Figure 3 presents the threshold age of senescent mortality within the Gompertz–
Makeham framework. In France, post-2000, the threshold age remains relatively stable,
fluctuating between approximately 30 and 35 years for males and around 45 years for
females. Almost the same holds for Japanese males after 2010. For other populations,
notably after the 1990s, the threshold age exhibits a consistent linear increase. This trend
suggests that in recent years, senescent mortality prevalence has been postponed at an ap-
proximate rate of three months per year for both Italian males and females, French males,
and Japanese females. Swedish females experience a delay of around two months per
year, while Swedish males see a more significant postponement of approximately four
months per year. Japanese males and French females show a slower pace of postpone-
ment, at about half a month per year.
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Figure 3: Threshold age between premature and senescence mortality
estimated through the Gompertz–Makeham model
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In Figure 3, we observe a consistently low threshold age for males in France (from
1960 to 1998) and Italy (from 1965 to 1985). During these periods, the data show a com-
plexity that the Gompertz–Makeham model, shown in Figure 4, fails to capture. While
the Gompertz–Makeham model is simplistic and fits well the log-linear increase in the
risk of dying, it struggles to accommodate non-monotonic deviations from this pattern
in the starting ages of analysis (Missov and Németh 2016). This limitation leads to an
underestimation of the extrinsic risk parameter c. Consequently, while the Gompertz–
Makeham model adequately represents the data pattern for Sweden, it notably fails to
provide an accurate fit for France and Italy. This discrepancy is primarily attributed to
the complex data pattern observed between ages 20 and 45, which deviates from both the
log-linear increase in the risk of dying and the assumption of constant premature mortal-
ity risk. As a result, the estimated threshold age x∗ is simply the starting age of analysis
(see Figure 3).
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Figure 4: Fitted versus observed mortality rates for males from Sweden in
1965, France in 1966, and Italy in 1985
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The prevalence of premature mortality after age 20 decreases over time (see Fig-
ure 5), faster until about 1970 and more moderately afterward, reaching an almost con-
stant level in recent years. Sex-specific premature mortality seems to be balanced, with
Sweden having a prevalence for males slightly higher than the one for females over the
entire period. For French and Italian males, we observe a sudden increase from 1985 to
1990, leading to a persistent gap between male and female premature mortality prevalence
until the late 1990s for France and about a decade later for Italy. This period coincides
with the emergence of the global HIV/AIDS epidemic, impacting, in particular, France
and Italy (see, for example Hamers et al. 1998). During this period, both countries expe-
rience a substantial rise in HIV/AIDS-related deaths. Meanwhile, although Sweden and
Japan were also affected by the epidemic, the prevalence of HIV/AIDS was much lower
compared to Italy and France (Gibney, DiClemente, and Vermund 2006). Although ad-
vancements in HIV/AIDS treatment emerged, access to these treatments varied. It was
not until the later years of the 1990s that antiretroviral therapy became more widely ac-
cessible in France and Italy (Piot 2007; Ippolito et al. 2001).
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Figure 5: Overall prevalence of premature mortality after age 20 estimated
through the Gompertz–Makeham model
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Despite the overall prevalence of premature mortality converging for some coun-
tries and diverging for others, when we look at the age-specific prevalence of premature
mortality (Figure 6), we see a different picture. As expected, the prevalence of prema-
ture mortality decreases with age. However, for France, while the inter-sex difference in
overall prevalence seems to converge to zero, we do not observe this for the age-specific
prevalence at younger ages. The same trend is seen in Italy and Japan. For Sweden,
however, what we see is the opposite. The prevalence seems to be the same for males and
females between ages 30 and 45 and slightly higher for males from ages 60 to 75.
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Figure 6: Age-specific prevalence of premature mortality estimated through
the Gompertz–Makeham model
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Over time, the age-specific prevalence of premature mortality for the French popula-
tion seems to be stable for both sexes after 2000. The same holds for Japanese males after
2010 and for Italian males after 1990. For Sweden, the trend in age-specific prevalence of
premature mortality seems to be identical for both sexes. Other mortality measures, such
as the premature and senescent distributions of deaths, their force of mortality at ages 40,
60, and 80 and their modal age at death are presented in the appendix.

6. Conclusion

In this paper, we present a formal relationship that represents competing risk models as
a mixture of distributions, where each cause of death corresponds to a component distri-
bution, and an individual’s lifespan is a mixture of these component distributions. The
weights in this mixture correspond to the probabilities of each cause of death being the
first to occur among all competing causes. This representation allows for a clear under-
standing of how competing risks influence overall mortality and provides a framework
for modeling complex mortality patterns.

The mixture-model specification aids in representing the distribution of deaths as
a convex combination of distributions for risk-specific subpopulations. This facilitates
calculating various mortality and longevity measures for each subpopulation, as well as
assessing the overall and age-specific prevalence of each cause of death.
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We focus on the special case of Makeham mortality models that incorporate an age-
independent risk of dying. We represent these models as a mixture that reflects individual
lifetimes in a competing-risk setting. The interpretation is straightforward: An individual
dies either according to a baseline mortality mechanism or an exponential distribution.

In the case of a two-risk model, the Gompertz–Makeham, when components capture
senescent and premature deaths, we can estimate the threshold age that marks the change
of death prevalence from premature to senescent. We are also able to reconstruct the age-
specific profiles of the premature and senescent mortality components. To illustrate these
findings, we take advantage of a Bayesian approach to estimate the Gompertz–Makeham
model for the French, Italian, Japanese, and Swedish populations from 1947 to 2020
after age 20. The results suggest a postponement of senescent mortality prevalence at a
pace between two and four months per year for most of the populations included in our
analysis. The overall prevalence of premature mortality differs across age groups and
between sexes.
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Appendix

Figure A-1: Estimated force of mortality at ages 40, 60, and 80 through the
Gompertz–Makeham model for premature and senescent groups
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Figure A-2: Estimated senescence and overall modal age at death through
the Gompertz–Makeham model
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Figure A-3: Estimated non-senescent death distribution after age 20 through the
Gompertz–Makeham model
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Figure A-4: Estimated non-senescent death distribution through the
Gompertz–Makeham model
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