

Presented by: Germans Savcisens (DTU) Collaborators: Tina Eliassi-Rad (NU) Lars Kai Hansen (DTU) Laust Mortensen (KU) Lau Lilleholt (KU) Ingo Zettler (KU) Anna Rogers (ITU) Sune Lehmann (DTU) Other Contributors: Søren Mørk Hartmann (DST)

SCOR Chair on mortality research (Workshop)

Using Sequences of Life-events to Predict Human Lives

About Me

- Originally from Latvia
- MSc in Human-Centered AI (DTU)
- PhD in Computational Social Science (DTU)
- (Previously) Lecturer in Algorithmic Fairness, Accountability, and Ethics (ITU)
- Upcoming **Postdoctoral Associate Researcher** at the Khoury College of Computer Sciences (Northeastern University):
 - Trustworthy Network Science
 - Fair and Just Machine Learning
 - Team Formation Problem

Article Published: 18 December 2023

Using sequences of life-events to predict human lives

<u>Germans Savcisens</u>, <u>Tina Eliassi-Rad</u>, <u>Lars Kai Hansen</u>, <u>Laust Hvas Mortensen</u>, <u>Lau Lilleholt</u>, <u>Anna</u> <u>Rogers</u>, <u>Ingo Zettler</u> & <u>Sune Lehmann</u> [⊡]

Nature Computational Science 4, 43–56 (2024) Cite this article

Code Availability:SocialComplexityLab/life2vec (github.com)carlomarxdk/life2vec-light (github.com)

Main contributions of the research:

- 1. Propose a framework (transformer-based) to analyze large-scale socioeconomic and health data
- 2. Demonstrate the power of dense representation
- 3. Adapt explainability methods to understand predictions

Agenda

Introduction

Part I: Data

Part II: Representation Learning and NLP

Part III: Forming Labour and Health Language

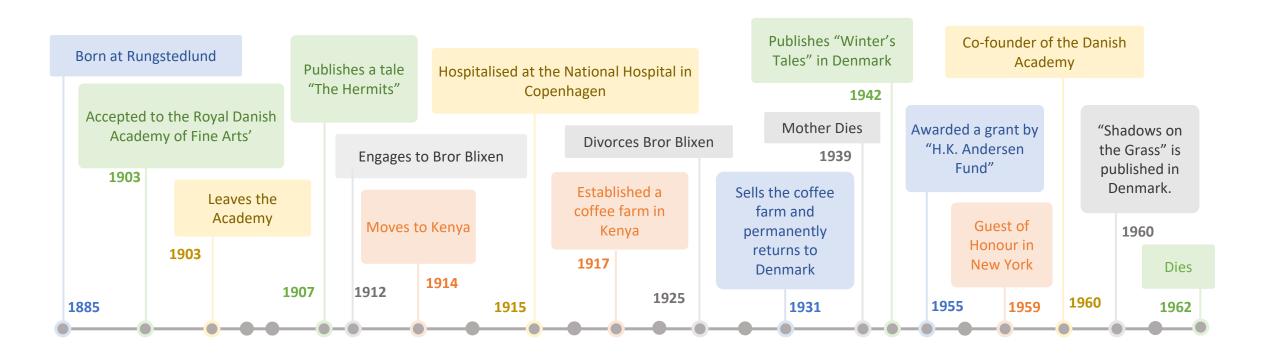
Part IV: Capturing the structure with the life2vec

Part V: life2vec as a foundation model

Conclusion

Life Trajectories

Life of Karen Blixen* (Danish author)



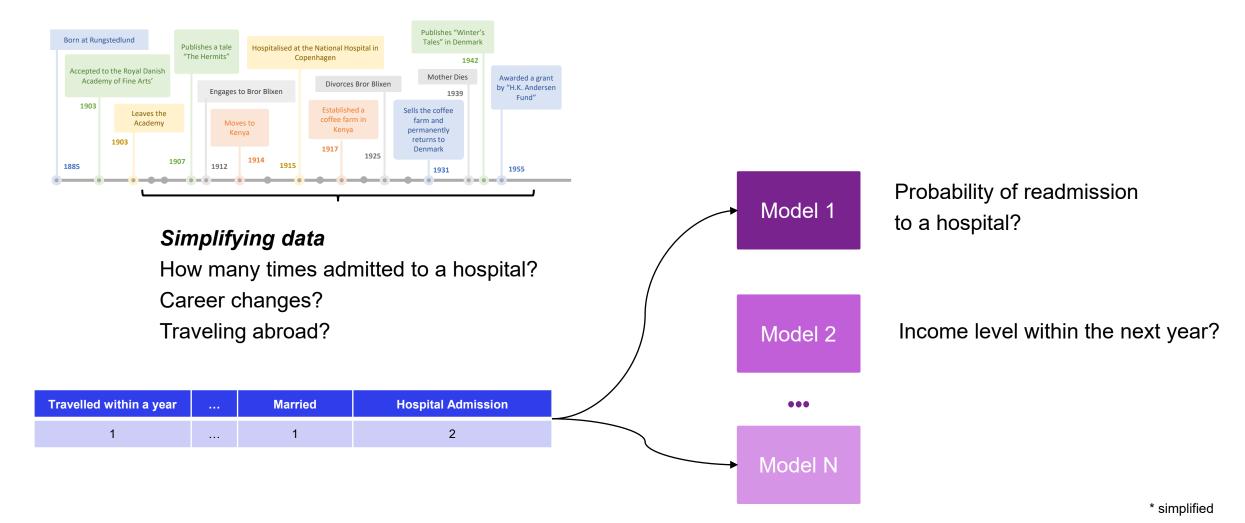
The Problem

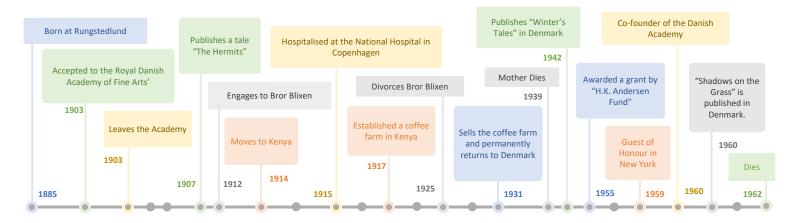
Issues associated with longitudinal data modelling:

- Features have **mixed formats** (continuous and categorical).
- Various data sources
- Events have an "uneven" sampling rate.
- Missing values
- The number of records per person varies a lot

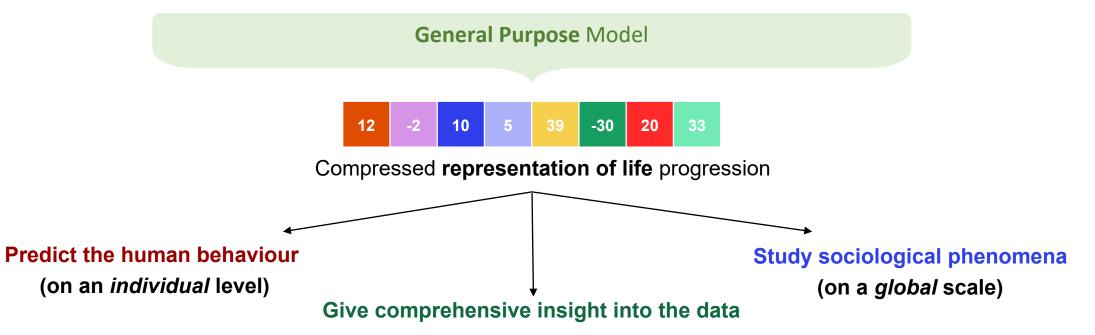
Classical models are not that good at handling it!

The Problem





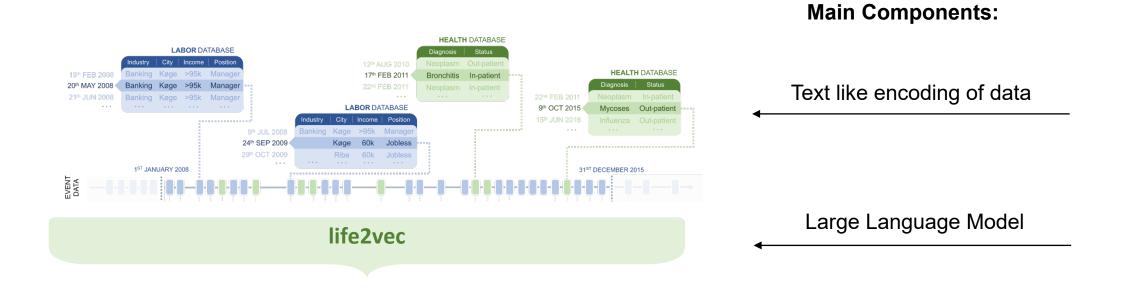
We want a single model that takes nuanced life trajectories



Our Work

We are **not there yet**,

...but we have done the first steps



Part I

Life-Trajectories and Data

Danish National Registry

People

Names, population, health, elections, housing, church, gender equality...

Social conditions

Criminal offences, social benefits for senior citizens, cash benefits, placements...

Transport Cars, goods transport, passenger transport, infrastructure, traffic accidents...

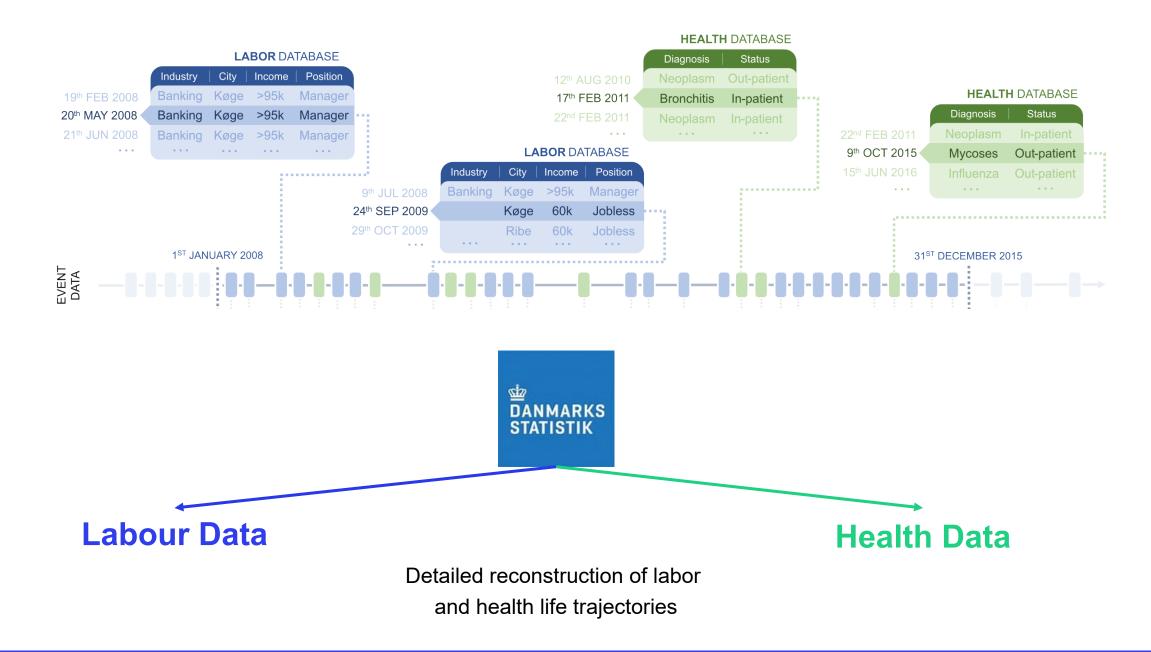
Labour and income Employment, unemployment, earnings, income, wealth...

Education and research Number of students, education programmes, innovation...

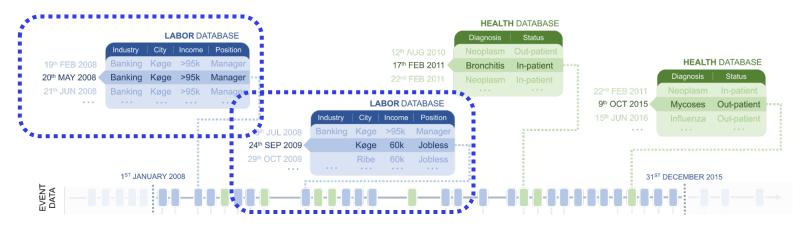
Culture and leisure Film, media, museums, music, digital behaviour, sports...

Personal raw data is tied to the Social Security Number (CPR)

**AI-Generated Image



Labour Data



Records of any reported and taxable income:

- Each record has around 70 features
- Hourly precision
- Timespan: 2008-2020
- Features have underlying structure

We focus on:

- Income (if applicable):
- Residence
 - Country of Origin / Citizenship
 - Address in Denmark
- Socio-economic status:
 - Age and sex
 - Employment status

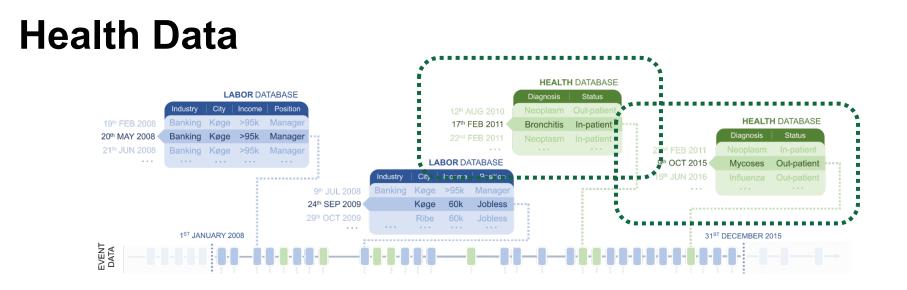
Labor Data: Hierarchies

Example of codes describing the **Industry**

DB07 Code	Interpretation
с	Manufacturing
18	Printing and Reproduction of Recorded Media
18. 1	Printing and Related Services
18.14	Bookbinding and Similar Services

Example of codes describing the **Occupation**

ISCO-08 Code	Interpretation
2	Professionals
2 6	Legal, Social and Cultural Professional
265	Creative and Performing Artists
2654	Dancers and Choreographers



Records of visits to a health practitioner or hospital:

- Focus on 3 features
- Diagnoses encoded in the ICD10 System

Features we use:

- Diagnosis (Initial, no follow-ups)
- **Patient type**: inpatient, outpatient, and emergency
- **Urgency**: Urgent, Non-urgent

Health Data: ICD-10

ICD-10 Code	Interpretation
501	Open wound of head
501. 3	Open wound of ear
S01.35	Open bite of ear
S01.352	Open bite of left ear
S01.352 D	Open bite of left ear (subsequent encounter)

Examples of ICD10 codes:

- **Y93.D**: Activities involved arts and handcrafts
- **W61.62XD**: Struck by duck, subsequent encounter
- H47.51: Disorders of visual pathways in (due to) inflammatory disorder

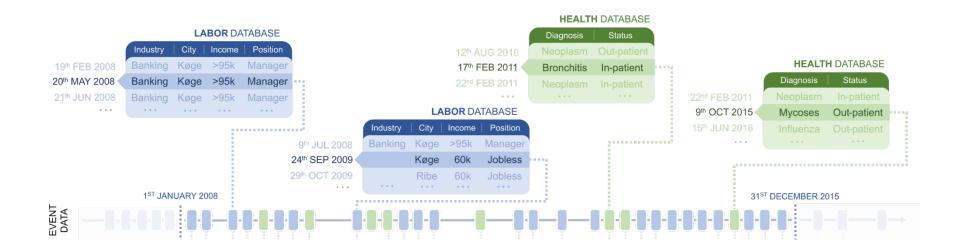
ANATOMY OF AN ICD-10 CODE

ICD-10 code for torus fracture of lower right end of right radius, initial encounter for closed fracture

Power of National Registry

The National Registry is a source of **fine-grained information** about **the progression of one life**.

Unique possibility to study life progression and life outcomes.



How do we analyze?

Representation Learning and NLP

Natural Language Processing

"[..] the application of computational techniques to the **analysis** and **synthesis** of natural language and speech."

- Oxford Languages

Natural Language Understanding

Natural Language Generation

Language Inference

Semantic Analysis

Language Modelling

Text Summarization

Text Classification

Information Extraction

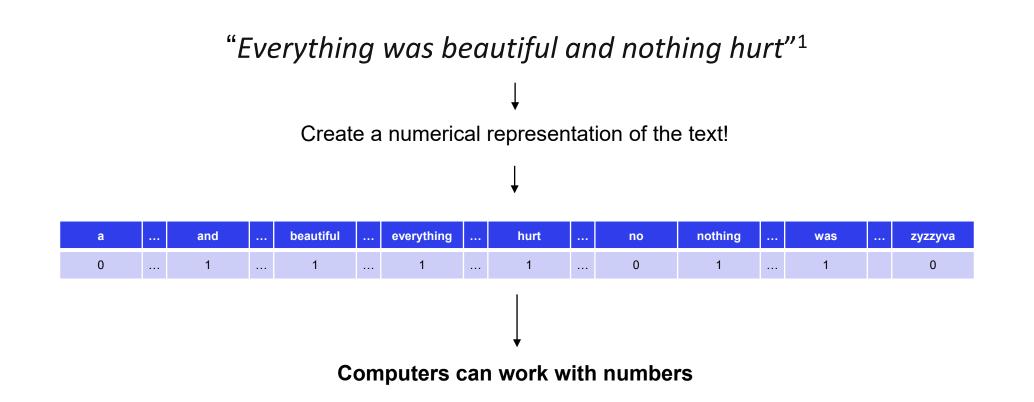
Text-to-speech

Computational Linguistic

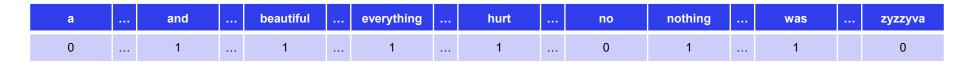
Dialogue Systems

"Everything was beautiful and nothing hurt"¹

**AI-Generated Image 1. Slaughterhouse-Five, Kurt Vonnegut (1969)



1. Slaughterhouse-Five, Kurt Vonnegut (1969)



If we reconstruct the sentence

"Beautiful was nothing and everything hurt"

"Everything beautiful hurt and was nothing"

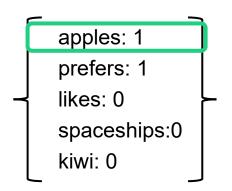
"Everything hurt nothing and was beautiful"

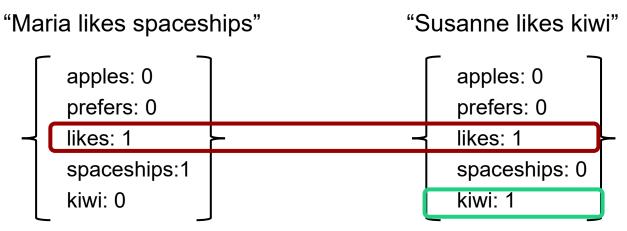
1. Slaughterhouse-Five, Kurt Vonnegut (1969)

It is even more obvious issues if we look here.

Let's match people based on their description

"Viktor prefers apples"





1. Slaughterhouse-Five, Kurt Vonnegut (1969)

Complexity of Language

Language is a super complex signal...

...and it inherits many issues associated with the longitudinal data.

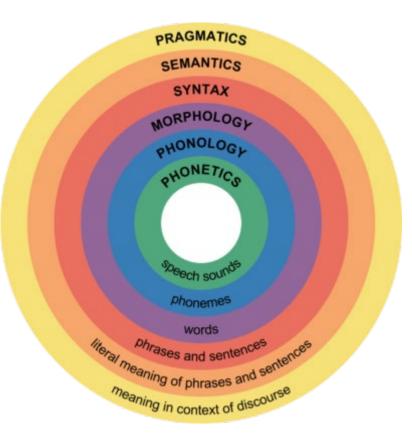
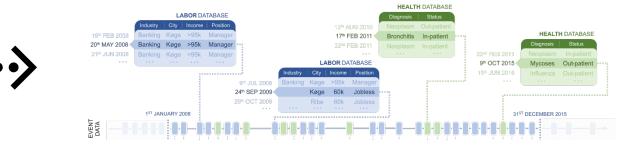


Image: Luchmee, D. (2019, July 25). *The Complex Skill of Language*. HappyNeuron. Retrieved March 5, 2024, from https://news.happyneuronpro.com/the-complex-skill-of-language/

Language and Life Sequences

"Everything was beautiful and nothing hurt"



These two cases have similar issues!

Word Representations *Captures aspects of words*

Large Language Models Handles structured sequences

Representation of Places

	longitude*	latitude*
Great Pyramid	31.08	29.58
Petra	30.19	35.26
Machu Picchu	13.09	35.26
Colosseum	12.29	41.53

These values capture spatial location,

and allow us to reason about the distances ("similarity").

* simplified

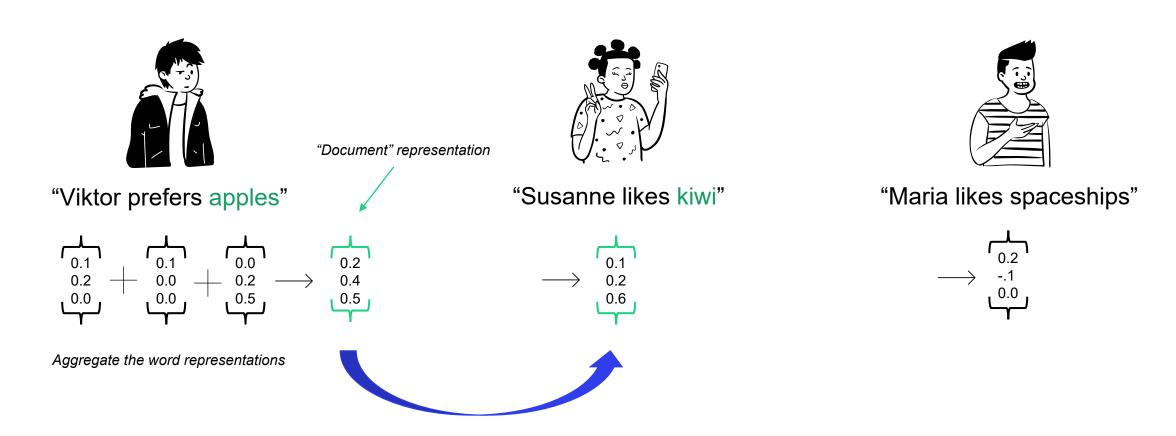
Word Representations

Solution in NLP: Take a step back and assign coordinates to words (capture meaning)

	liveliness	vehicle-(ness)	artificiality
spaceship	0.0	1.0	1.0
apple	0.3	0.0	0.2
kiwi	0.3	0.0	0.3
dog	1.0	0.3	0.1

Representation of Documents

Using these nuanced word embeddings, we can create document embeddings



Learning Embeddings

We can employ different methods to create the word embeddings:

- 1. Manually assign values to each dimension (based on questionaries)
- 2. Frequency-based: Count-Vectors, TF-IDF, N-grams
- 3. Prediction-based: SkipGram, CBOW, GLoVE, by-products of training ML algorithms (e.g. RNNs)

Embedding Spaces and Structure

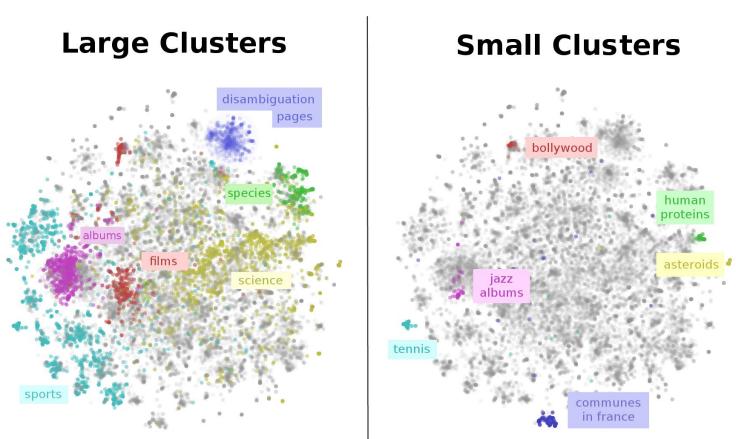
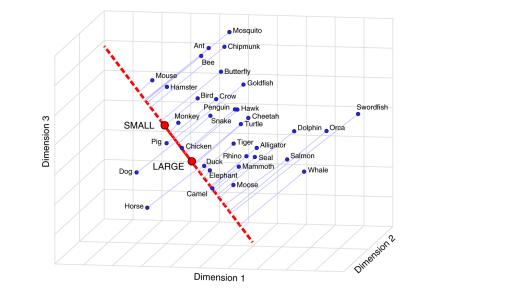
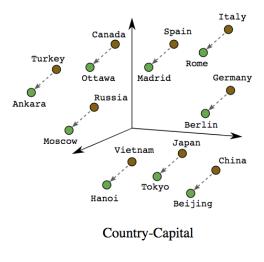


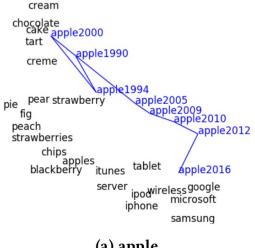
Fig 1: Two-dimensional projection of the word embeddings (word2vec)¹

1. Olah, C. (2015, January 16). *Visualizing Representations: Deep Learning and Human Beings*. Colah's Blog. Retrieved March 3, 2024, from <u>https://colah.github.io/posts/2015-01-Visualizing-Representations/</u>

Embedding Spaces and Structure







(a) apple

Fig.1: Schematic illustration of semantic projection¹

Fig.2: Embeddings can produce remarkable analogies²

Fig.3: Trajectories of brand names³

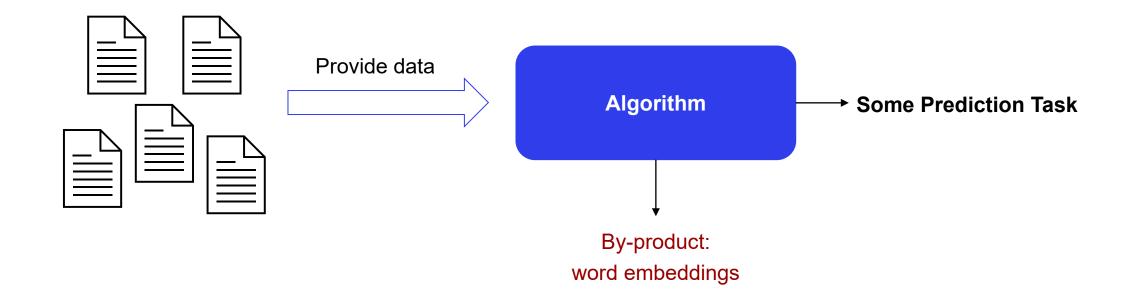
Temporal evolution of terms with word2vec

In the embedding space (GloVe), "animal"-related words projected onto the "small-large" direction

- 1. Grand, G., Blank, I.A., Pereira, F. et al. Semantic projection recovers rich human knowledge of multiple object features from word embeddings. Nat Hum Behav 6, 975–987 (2022). https://doi.org/10.1038/s41562-022-01316-8
- 2. Embeddings: Translating to a Lower-Dimensional Space. Google for Developers. Retrieved March 3, 2024, from https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space
- Yao, Z., Sun, Y., Ding, W., Rao, N., & Xiong, H. (2018, February). Dynamic word embeddings for evolving semantic discovery. In Proceedings of the eleventh acm international conference on web search and data mining (pp. 673-681). 3.

General Purpose Embeddings

- But how to make sure that we have a **meaningful space**?
- The nature of the task influences the representations

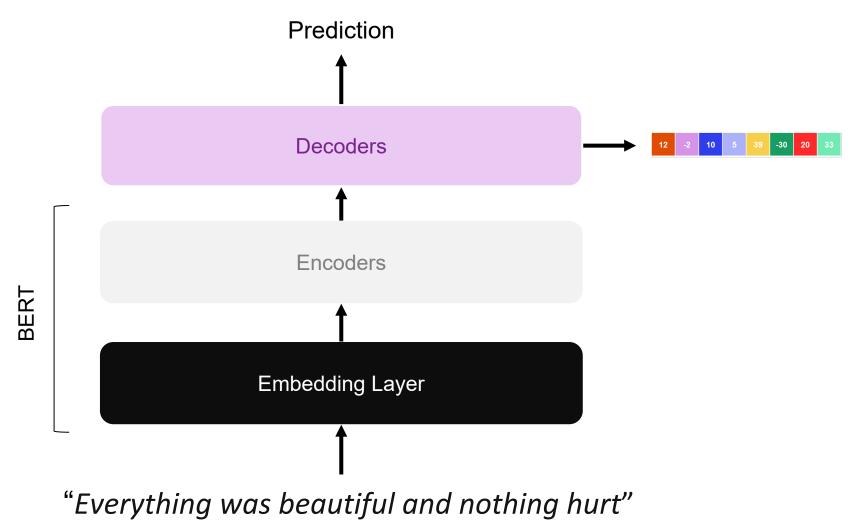


Transformer-based Models

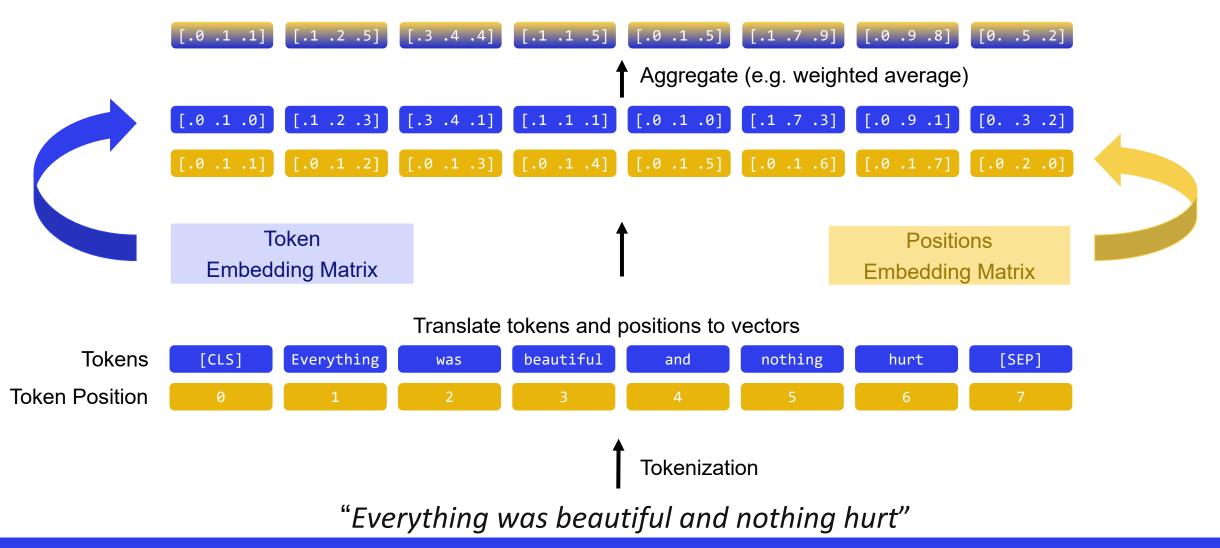
Powerful Sequence Models already exist: Large Language Models

Bidirectional Encoder Representations from Transformers (BERT) Create nuanced word embeddings and handle complex sequences General-purpose model, adaptable to new tasks

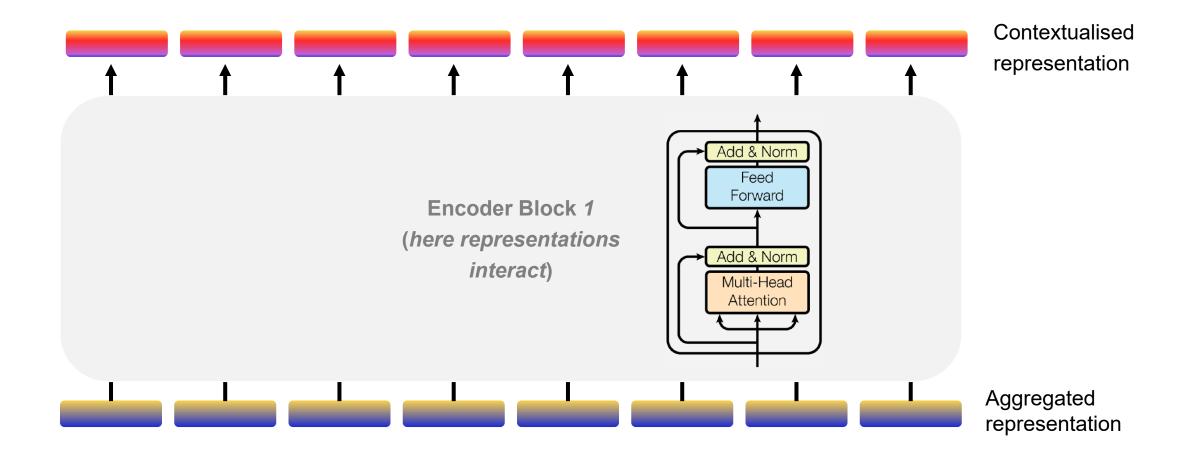
Transformer Architecture (BERT)

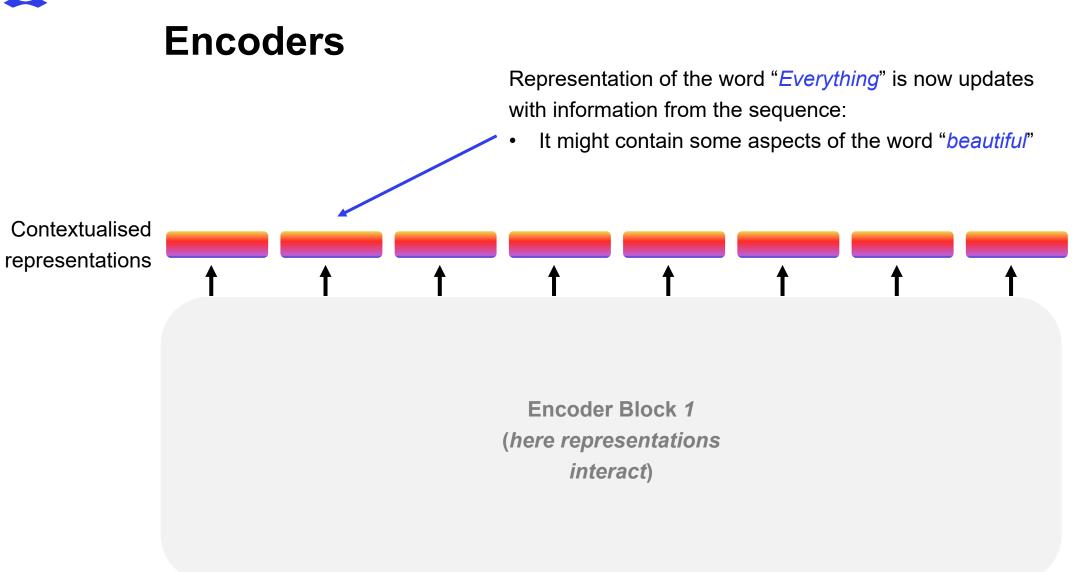


Embedding Layer



Encoders





BERT Encoders

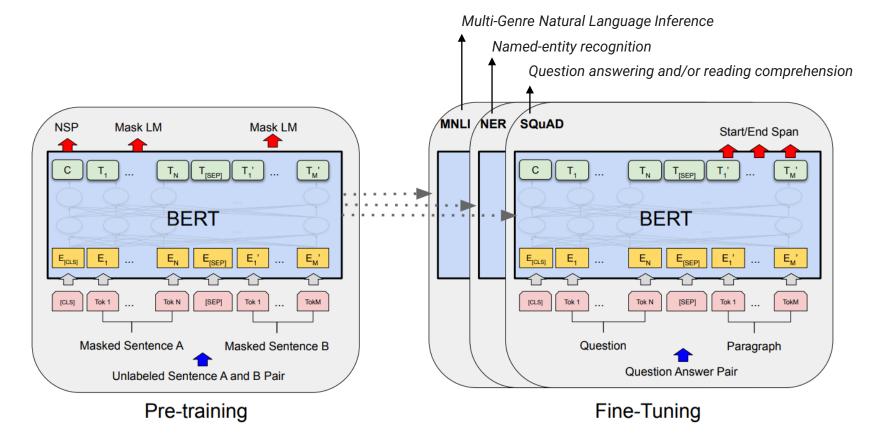
Contextualized token representations **contain rich and nuanced information** about the role of a token in a sequence.

What you can do with the output of decoders:

- Make predictions on the first token (CLS, more about that later)
- Using any ML model

								Contextualised
1	Ť	1	1	1	1	1	1	representation
			Encoder	Block N				
	-	-	-	-	-		-	
-	-	-			-	-		
-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	
			Encoder	Block 1				

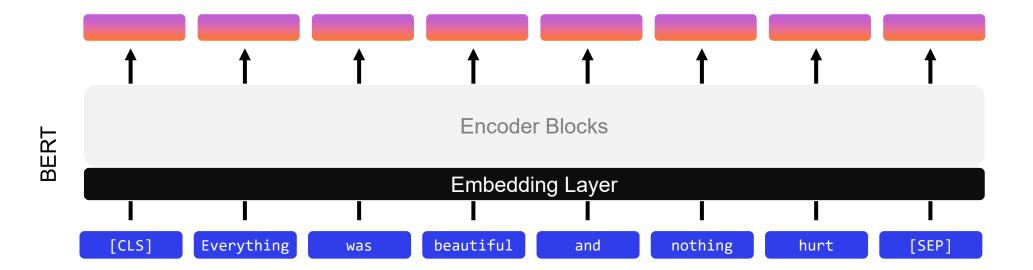
BERT: Training Stages



Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

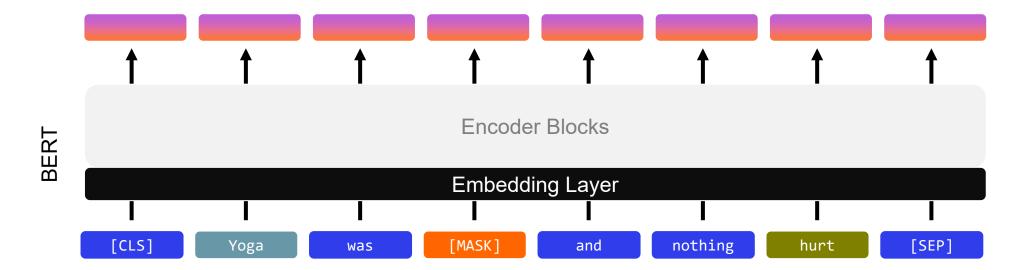
BERT: Pretraining

- Mask 15% of tokens (not including [PAD], [SEP], [CLS]):
 - 10% unchanged
 - 10% substituted with random tokens
 - 80% substituted with the [MASK] token

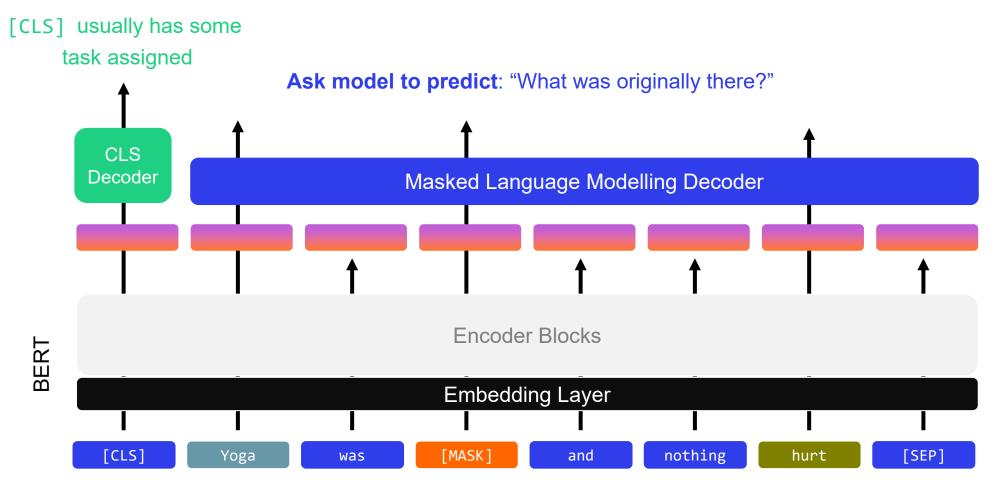


BERT: Pretraining

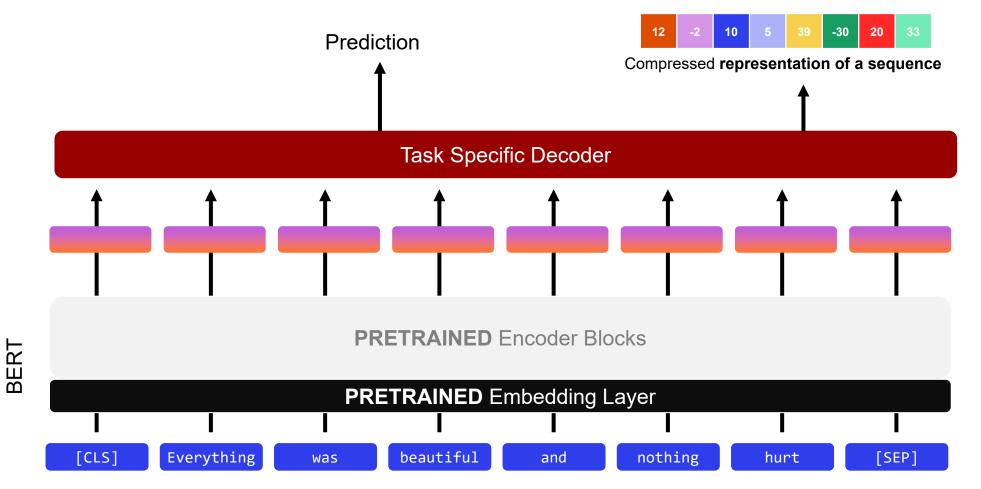
- Mask 15% of tokens (not including [PAD], [SEP], [CLS]):
 - 10% unchanged
 - 10% substituted with random tokens
 - 80% substituted with the [MASK] token



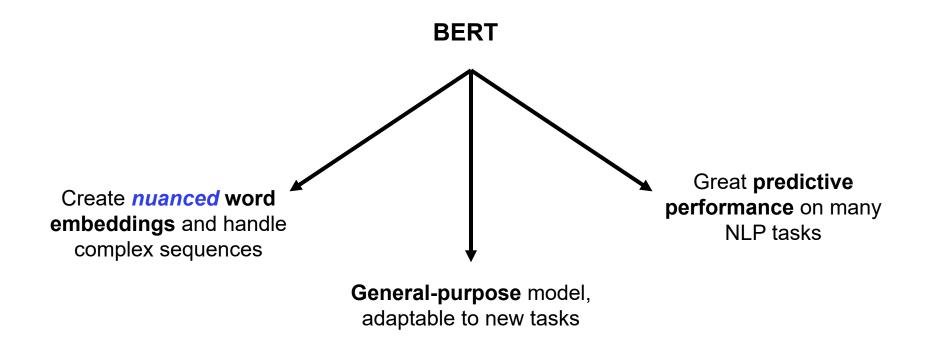
BERT: Pretraining



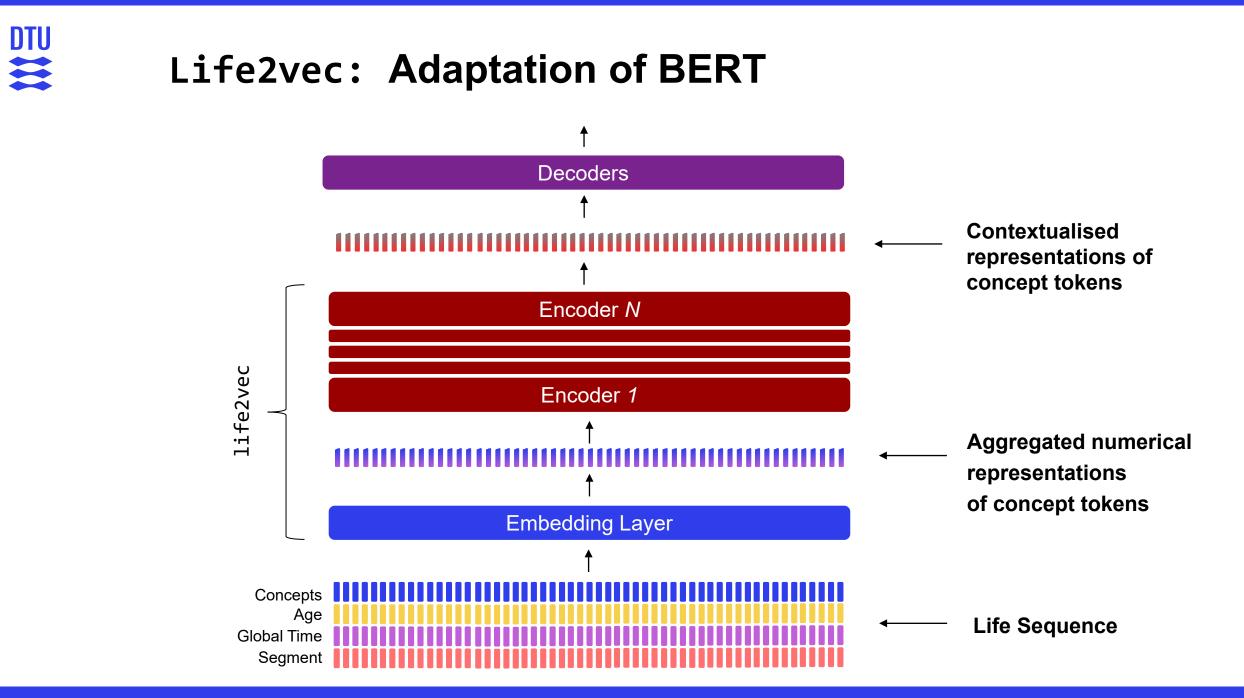
BERT: Finetuning



Transformer-based Models

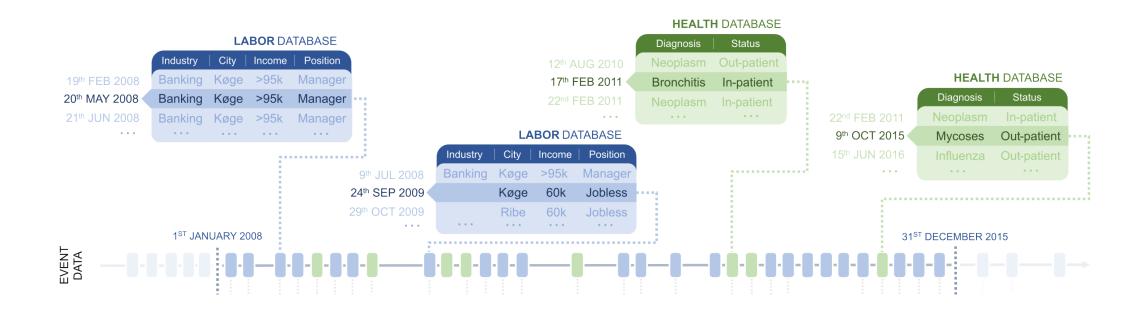


LIFE2VEC Adapts BERT for life-sequences



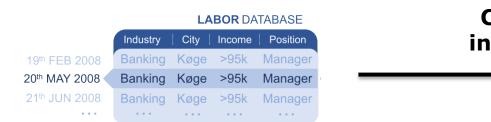
Creating Life-
Sequences

Unfolding the data



Tabular to Textual Representation?

Forming a Language

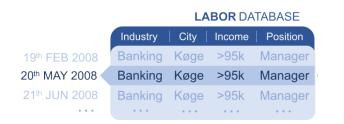


Convey the content in a spoken language

"In May 2008, Riley received >95k as a manager in Bank."

Language allows for super flexible and nuanced communication

Forming a Language



Convey the content in a spoken language

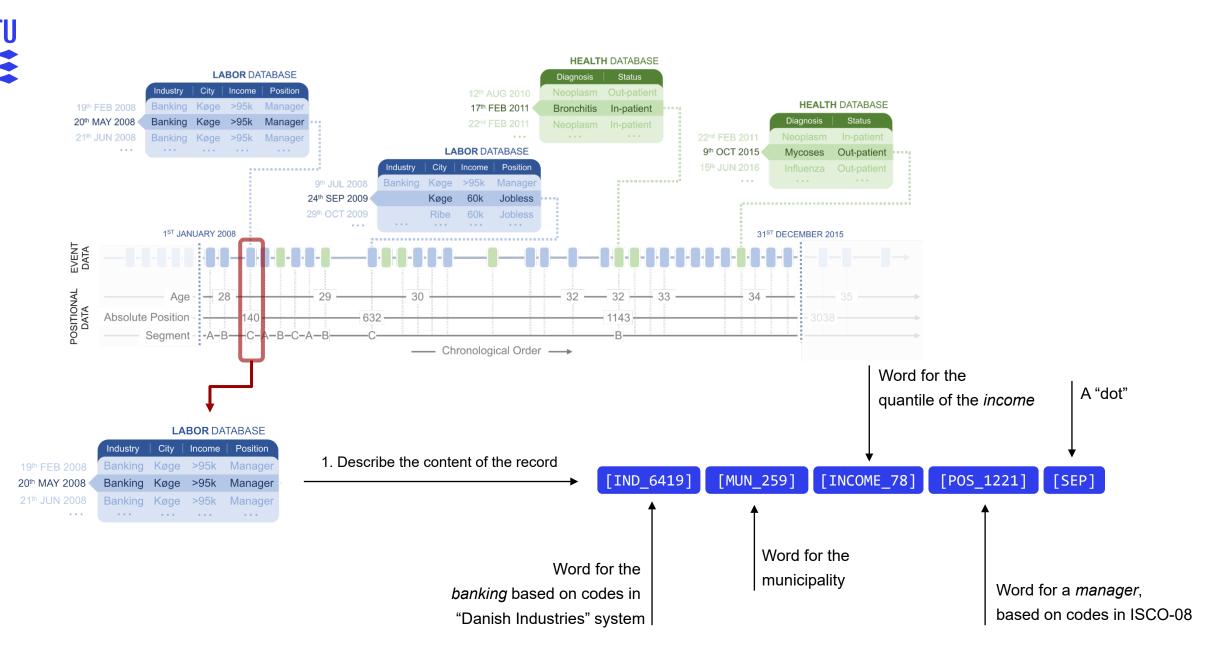
"In May 2008, Riley received >95k as a manager in Bank."

Language allows for super flexible and nuanced communication

Not all of the structure in the English language is of interest to us

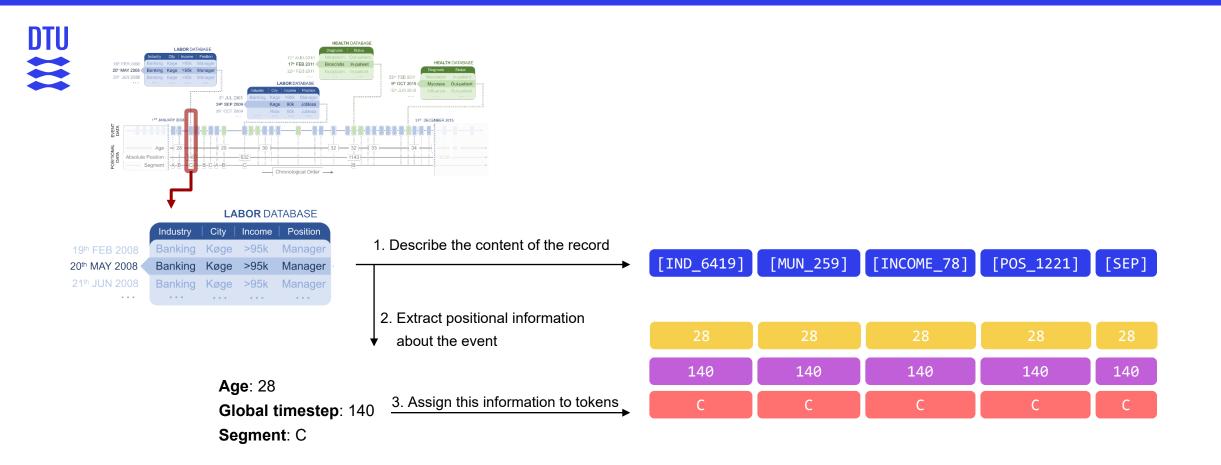
Forming a Language

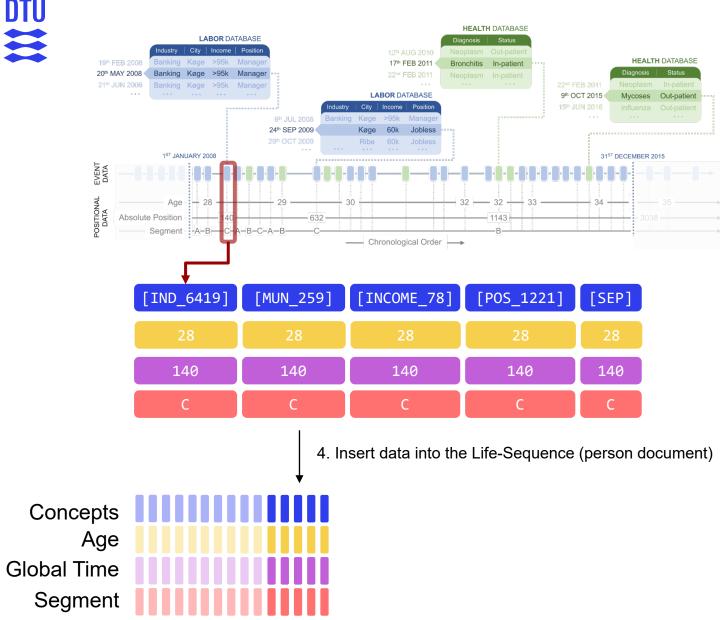
Vocabulary consists of all the possible categories that any of the variable can take

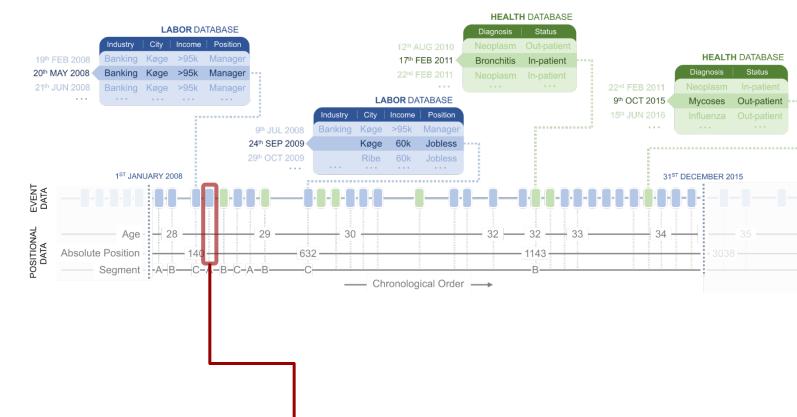


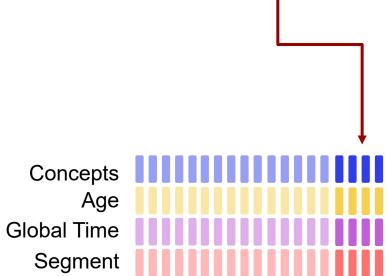
51

LABOR OXTARASE	HEALTH DATABASE			
LABOR DATABASE				
IndustryCityIncomePosition19th FEB 2008BankingKøge>95kManager20th MAY 2008BankingKøge>95kManager	1. Describe the content of the record	[IND_6419] [MUN_259] [INCOME_78	[POS_1221]	[SEP]
21 th JUN 2008 Banking Køge >95k Manager				
	2. Extract positional informationabout the event			
	Age: 28 ← Global timestep: 140 ← Segment: C ←	 age at the time of the event number of days since 1st Jan 2008 additional sentence identifier 		

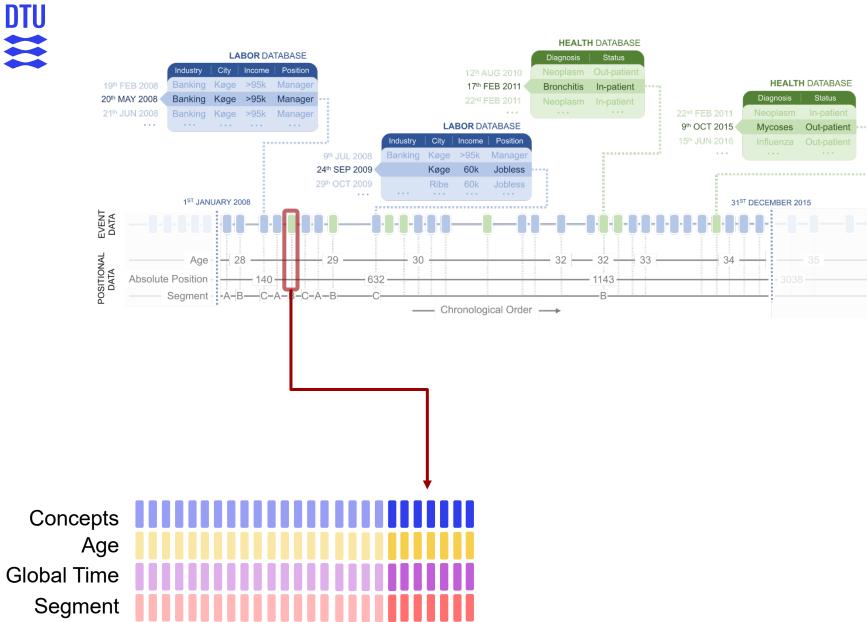


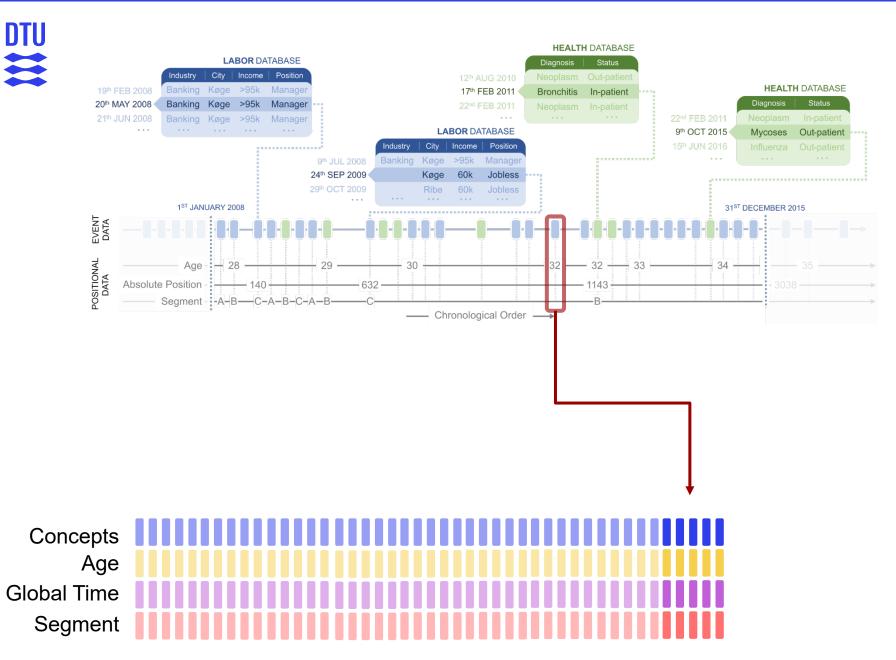


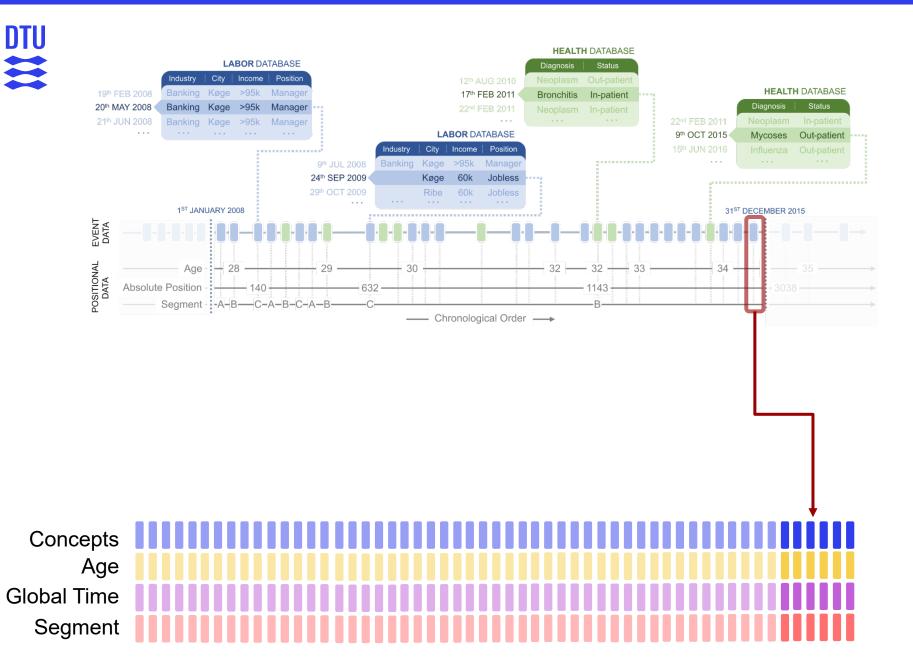


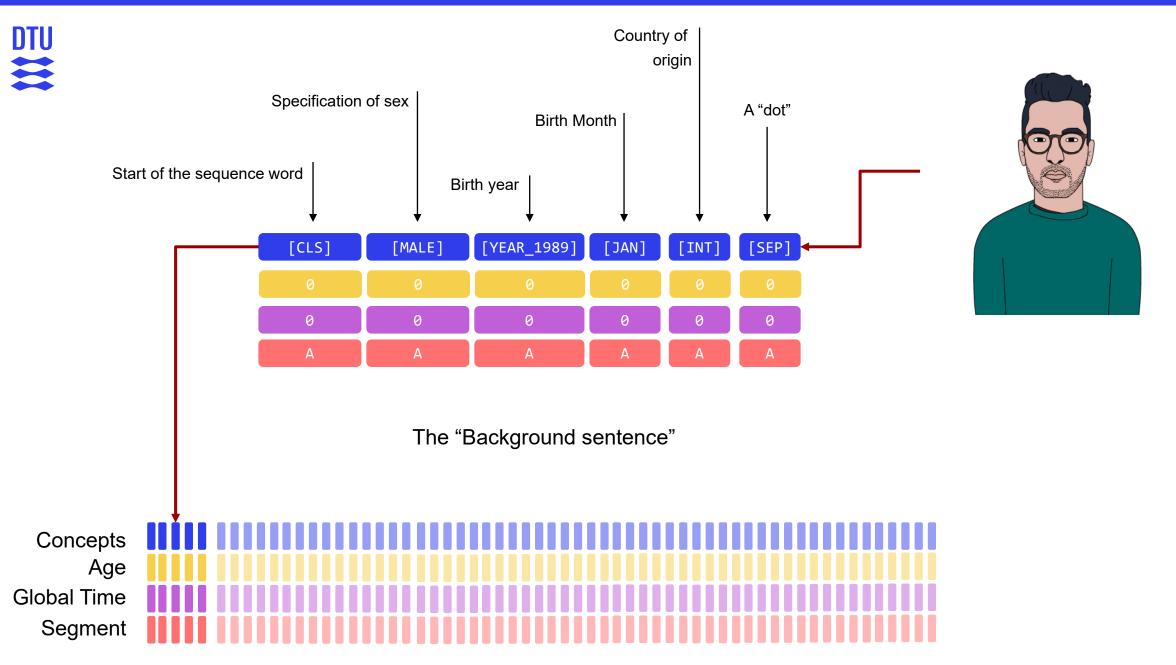


DTU

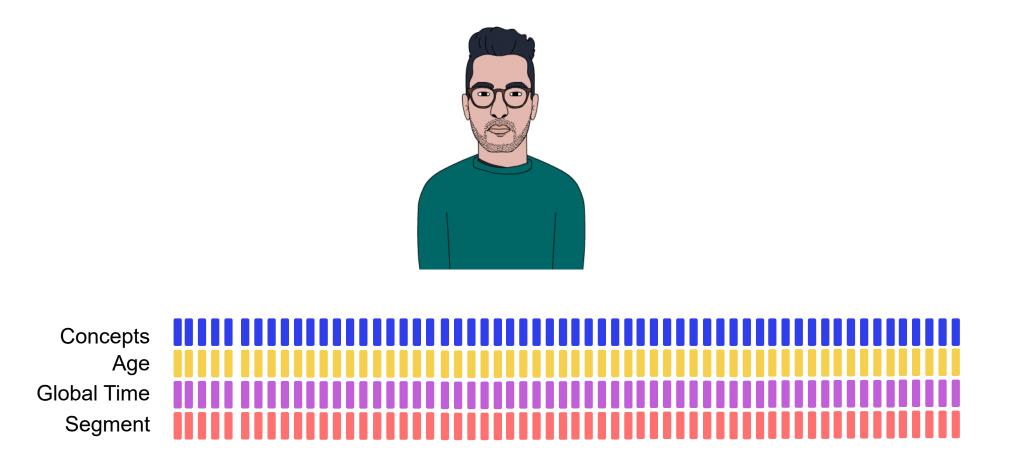








Individual Life-Sequence



Input to the life2vec model

Vocabulary

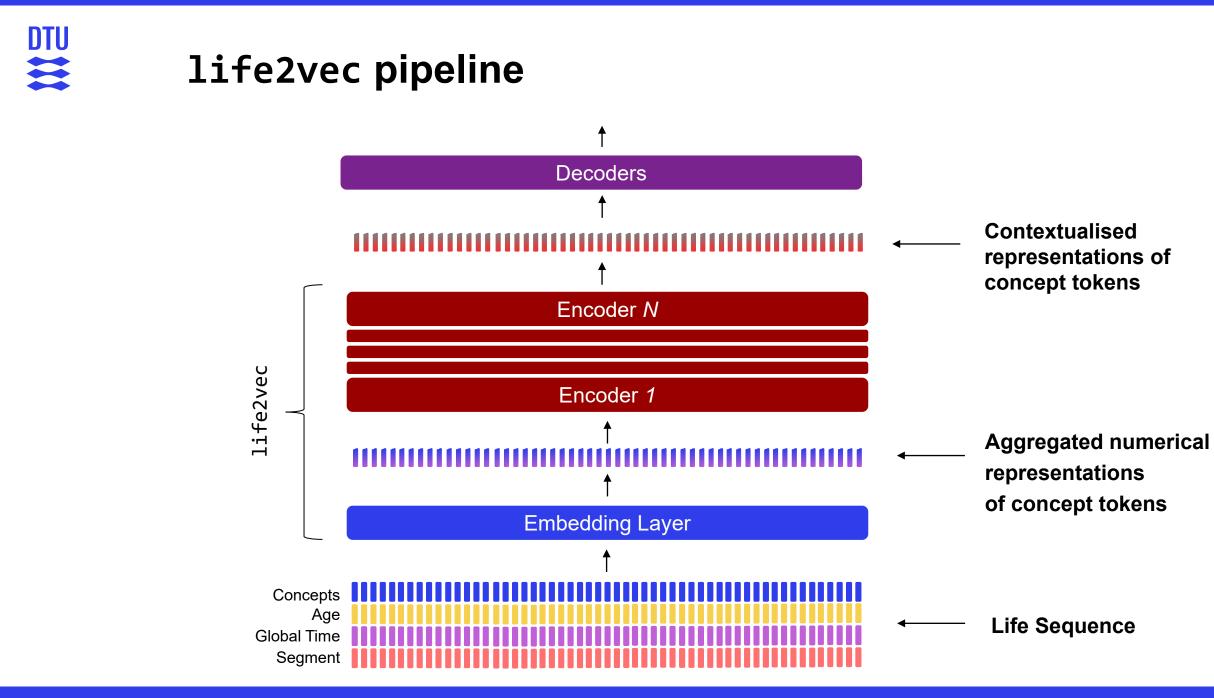
Туре	Variables	# Categories	Encoding	
	Sex	2 binary	Male, Female	
Background Information	Birth Month	12	Jan-Feb	
	Birth Year	45	1946-1991	
	Country of Origin	2 binary	National or International	
	Municipality of Residence	97	Danish municipality codes	
	Tax Bracket	6	DST definitions	
	Income Level	100	Quantile-based	
Labour	Labour Force Status	35	DST definitions	
	Labour Force Status (Modification)	58	DST definitions	
Records	Labour-Force-Interval	10	Quantile based	
	Industry Area (Company)	290	DB07	
	Job type	359	ISCO-08	
	Enterprise Type (Company)	15	ESA-2010	
Health	Diagnosis	704	ICD-10	
Records	Urgency	3	Urgent, Non-Urgent, Emergency	
Records	Patient Type	2	In-, out- patient	
Special Special		10	[PAD] [UNK]	

Part IV

the structure

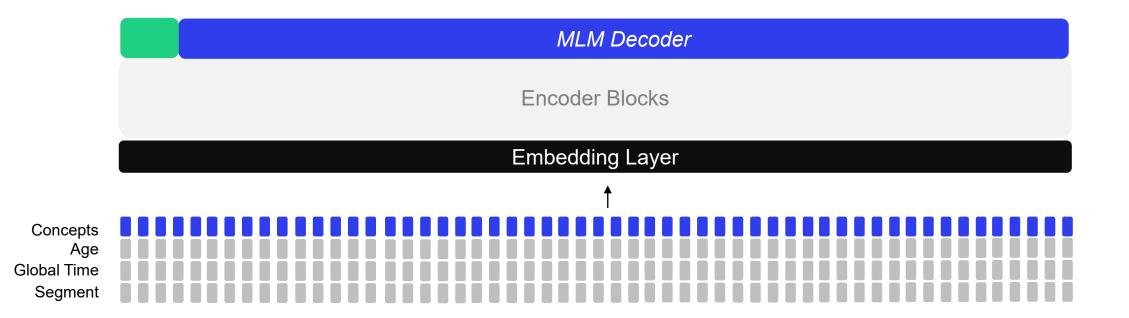
life2vec: capturing

62

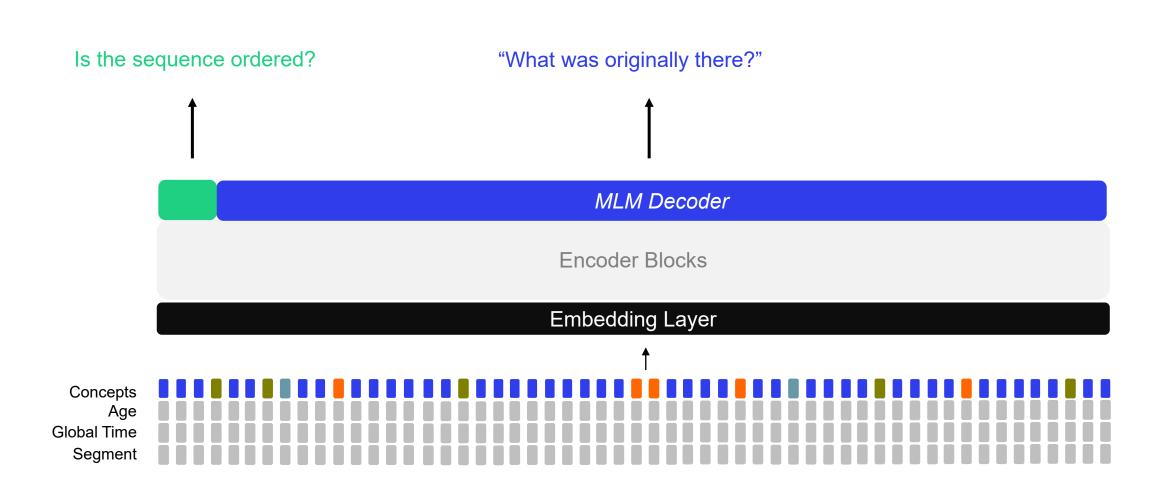


life2vec: pre-training

- Mask 30% of tokens (not including [PAD], [SEP], [CLS]):
 - 10% unchanged
 - 10% substituted with random tokens
 - 80% substituted with the [MASK] token

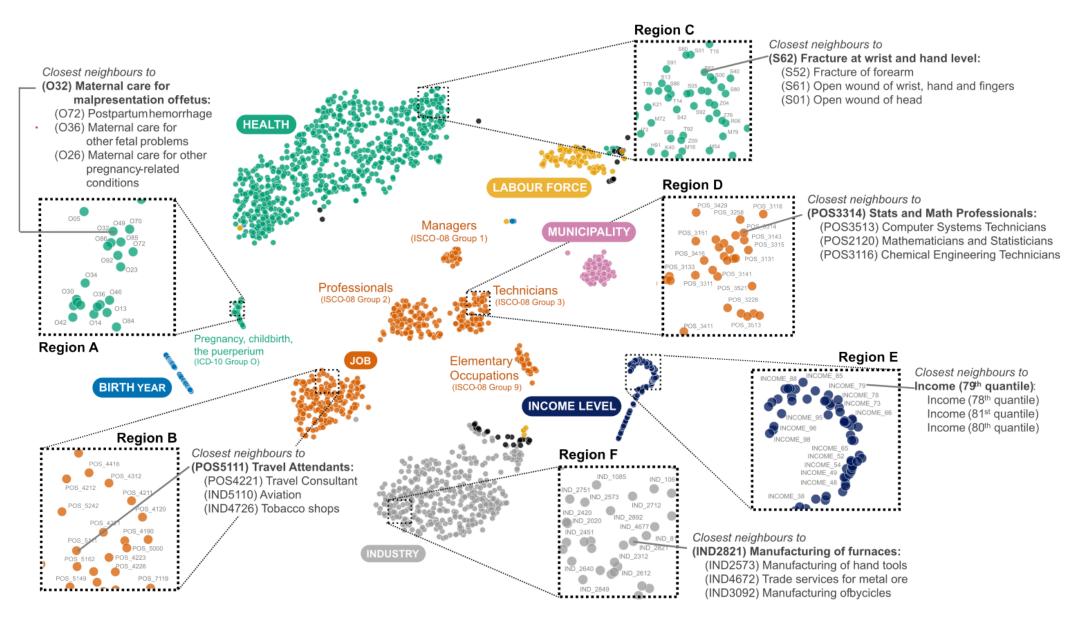


life2vec: pre-training



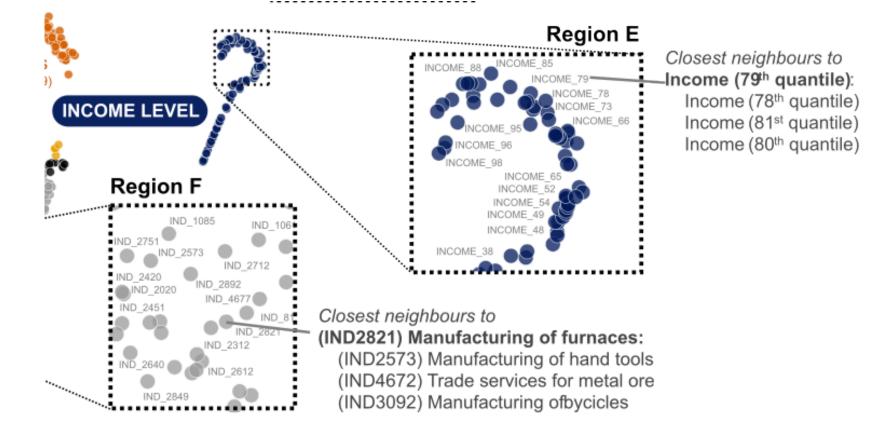
What did our model learn on pretraining?

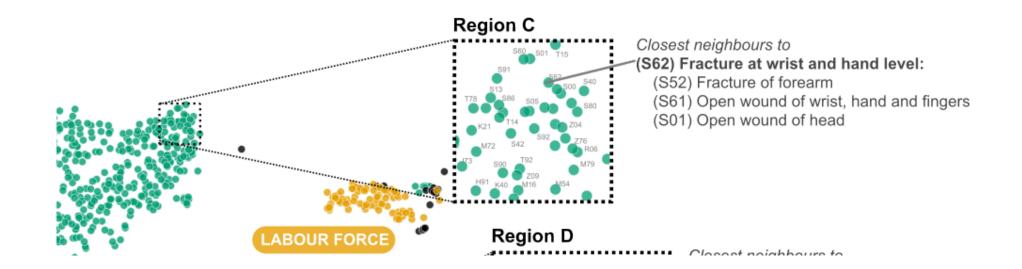
Space of Concept Tokens (with PaCMAP)

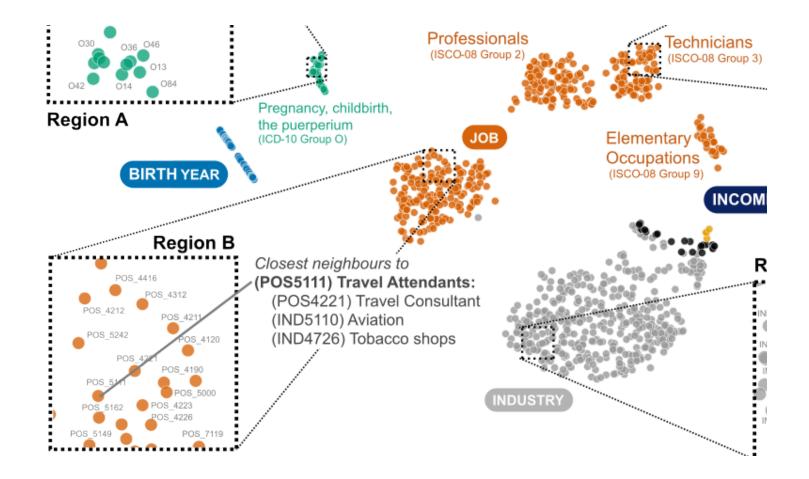


Savcisens, G., Eliassi-Rad, T., Hansen, L. K., Mortensen, L. H., Lilleholt, L., Rogers, A., ... & Lehmann, S. (2023). Using sequences of life-events to predict human lives. *Nature Computational Science*, 1-14.

Space of concept tokens (with PaCMAP)

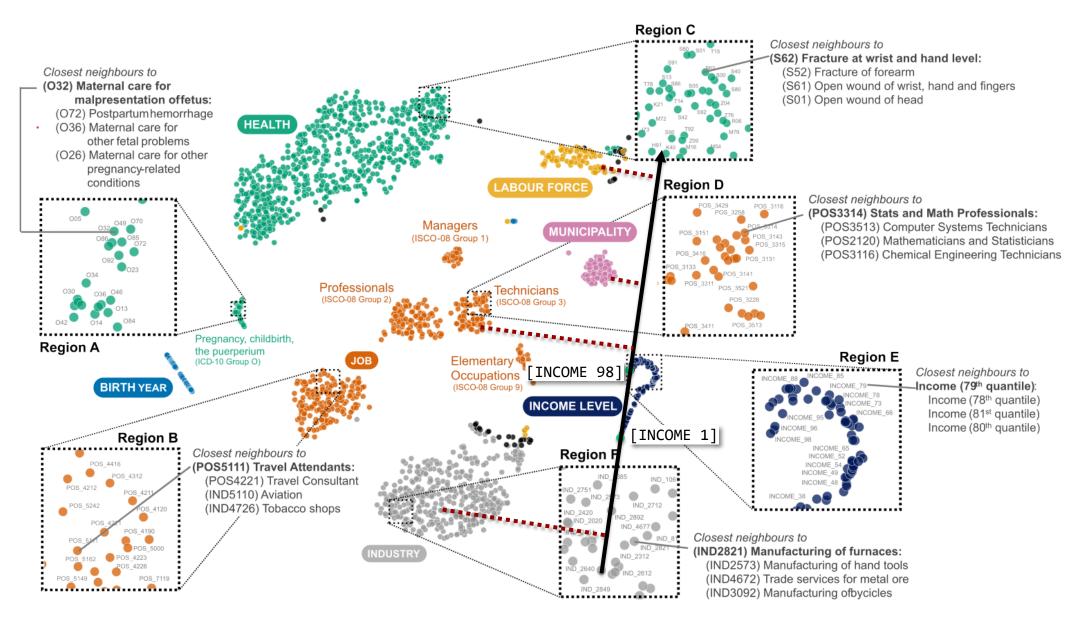






Visually structure corresponds to the structure of the variables

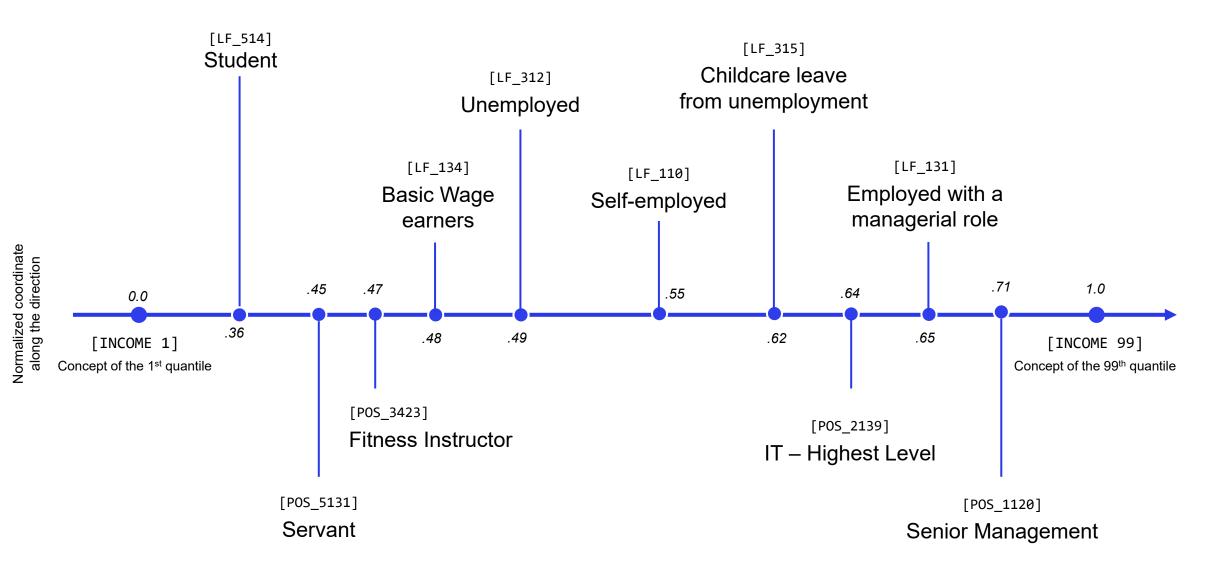
Space of Concept Tokens (with PaCMAP)



Savcisens, G., Eliassi-Rad, T., Hansen, L. K., Mortensen, L. H., Lilleholt, L., Rogers, A., ... & Lehmann, S. (2023). Using sequences of life-events to predict human lives. *Nature Computational Science*, 1-14.

LF – Labor Force Status POS – Prof. Position

Projection to "Income" Direction



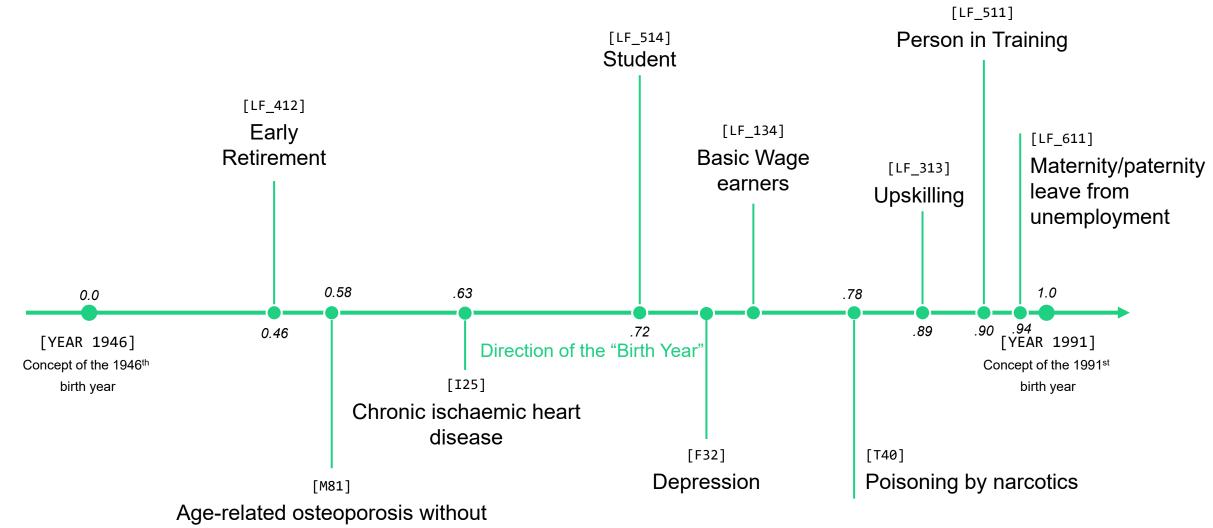
DTU

Ħ

DTU

=

Normalized coordinate along the direction



current pathological fracture

Projection to "Occupation" Direction

The opposite job of a chef and head cook is a physicist.

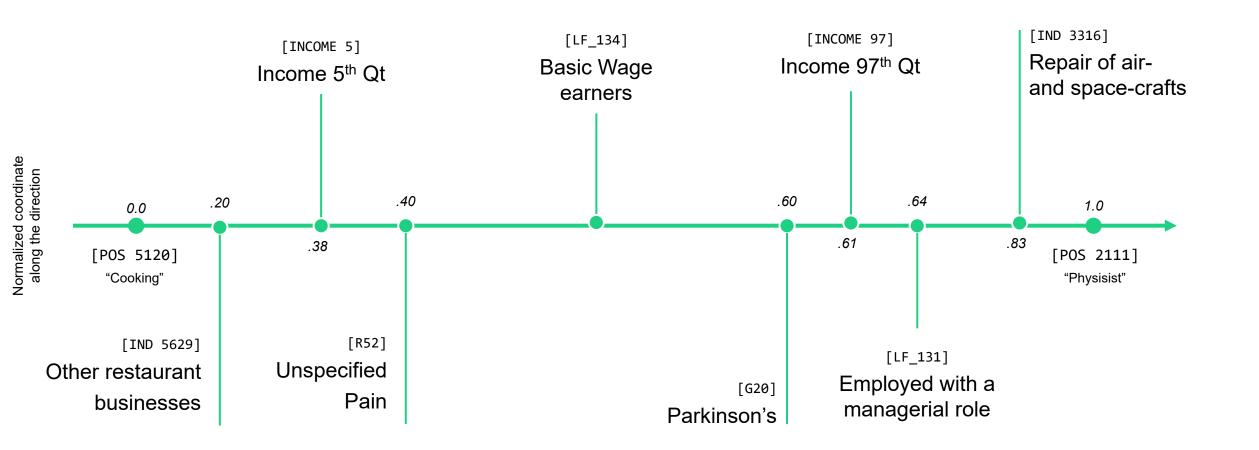
Chefs and Head Cooks use these skills the most

Physicists use these skills the most

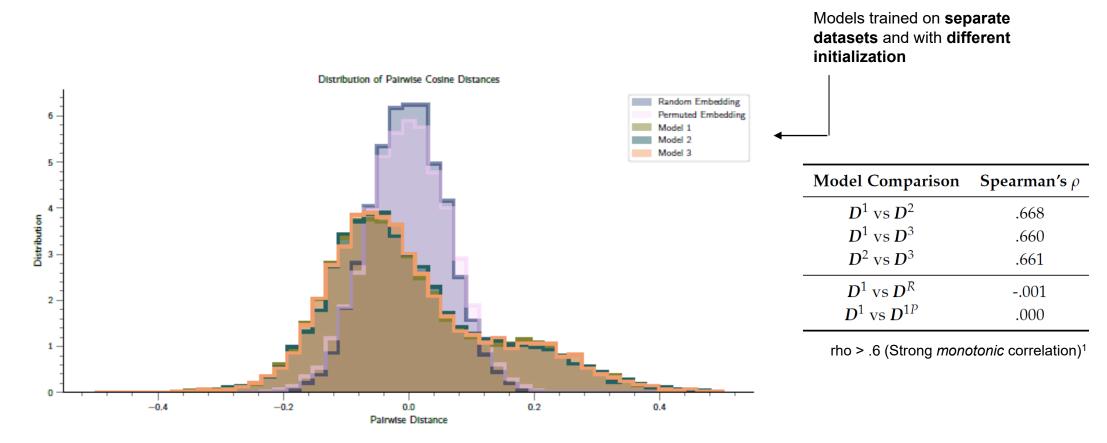
1 Management of material resources	1 Physics
2 Management of financial resources	2 Mathematical reasoning
3 Management of personnel resources	3 Number facility
4 Coordination	4 Ability to organize groups in different ways
5 Negotiation	5 Information ordering
6 Monitoring	6 Mathematics
7 Time management	7 Oral comprehension
8 Persuasion	8 Mathematics
9 Social perceptiveness	9 Originality
10 Learning strategies	10 Speech clarity

(n.d.). What Is Your Opposite Job? The New York Times. Retrieved March 11, 2024, from https://www.nytimes.com/interactive/2017/08/08/upshot/what-is-your-opposite-job.html

Projection to "Occupation" Direction



Concept Space Robustness: Permutation Test



1. Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: appropriate use and interpretation. *Anesthesia & analgesia*, *126*(5), 1763-1768.

What does it tell us?

- Life2vec as proof of concept
 - Algorithms understand the textual representation of life-sequences
 - Transformers can capture structure in such a language

Study the dynamic within the data source

- Health and labor modelled in one space
- Can use embedding space to analyse relationships between categories

Part V

life2vec as a

foundation model

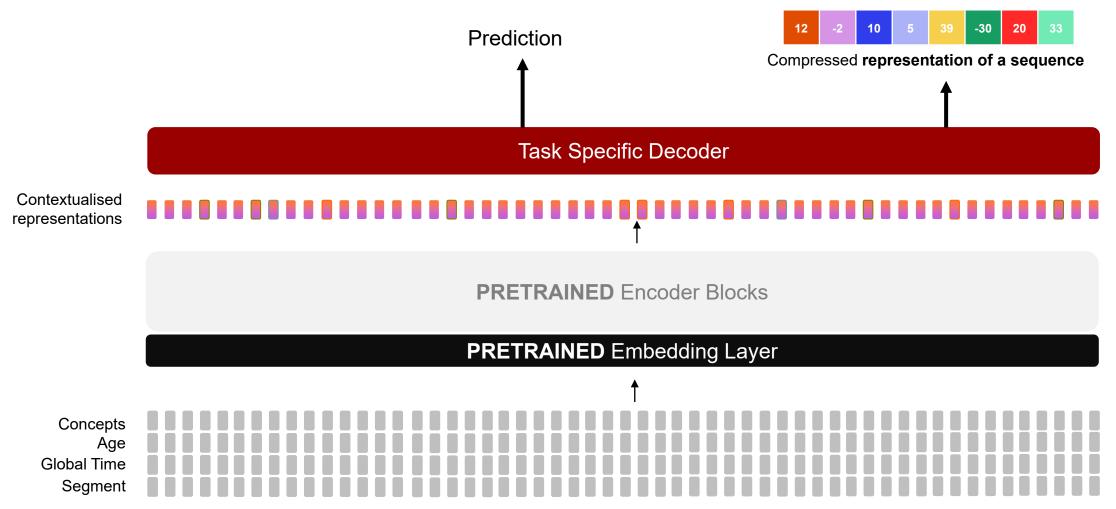
Foundation Models

"Train one model on a huge amount of data and **adapt it to many applications**. We call such a model a foundation model." ¹

"[...] rather than developing a bespoke model for each specific use case (as was done traditionally), a single FM can instead be **reused across a broad range of downstream tasks** with minimal adaptation or retraining needed per task."²

- 1. Developing and understanding responsible foundation models. Stanford CRFM. (n.d.). https://crfm.stanford.edu/
- Wornow, M., Xu, Y., Thapa, R., Patel, B., Steinberg, E., Fleming, S., ... & Shah, N. H. (2023). The shaky foundations of large language models and foundation models for electronic health records. *npj Digital Medicine*, 6(1), 135.

life2vec: finetuning



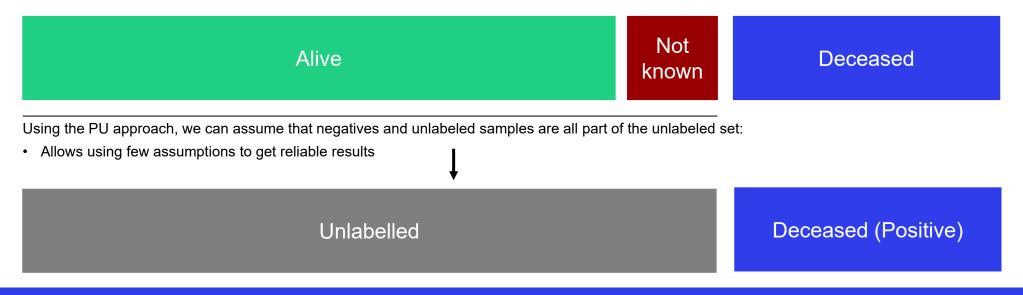
Life-Summaries

- We want high predictive power and explainability
- We condition life2vec on three tasks:
 - Early Mortality Prediction
 - Emigration Prediction
 - Self-reported personality assessment

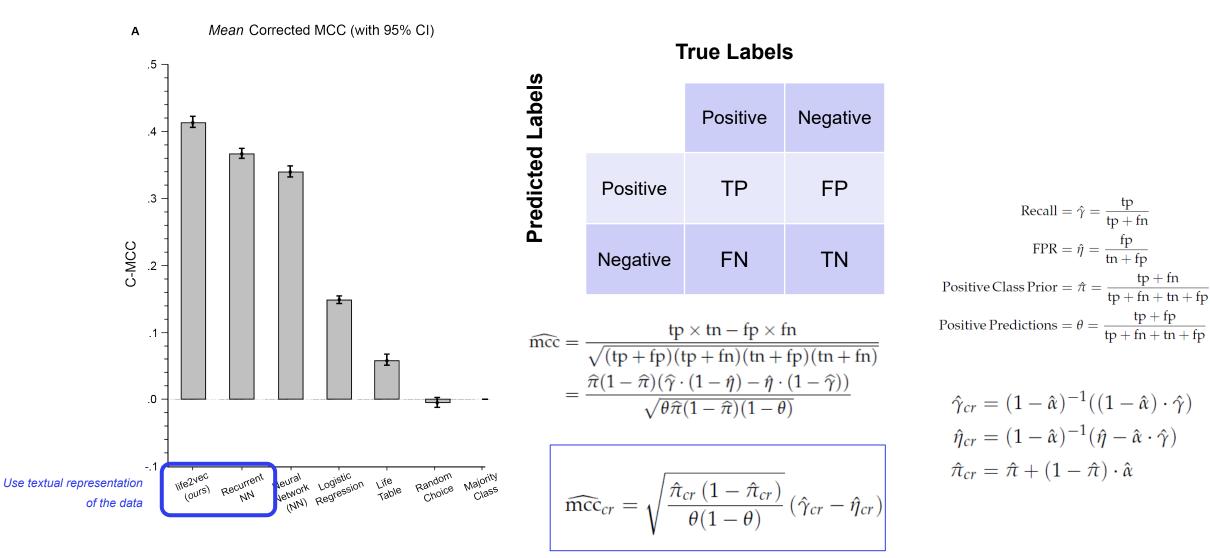
Early Mortality Prediction

- Task: "Is a person going to be deceased within the next 4 years after 31st December 2015?"
 - Split people into ones who are marked as dead, and all others
 - Some people do not have "a label".
 - This is a Positive Unlabelled (PU)-Learning Problem

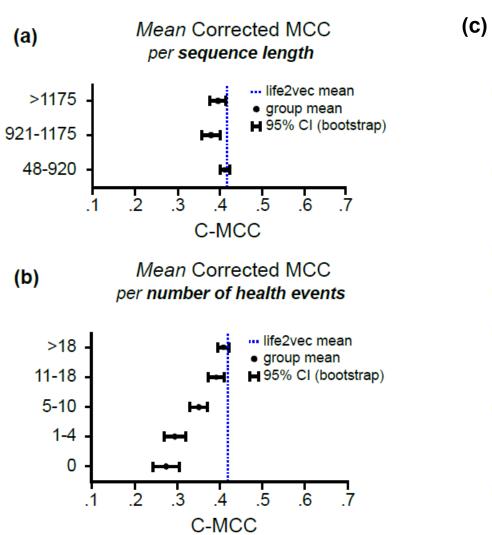
Why PU Learning? (Mortality Example)

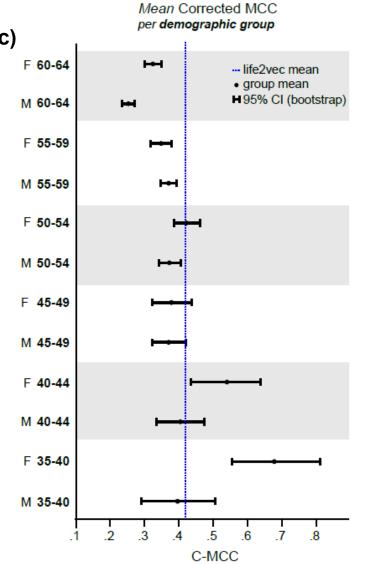


Early Mortality Prediction



Early Mortality Prediction: Auditing





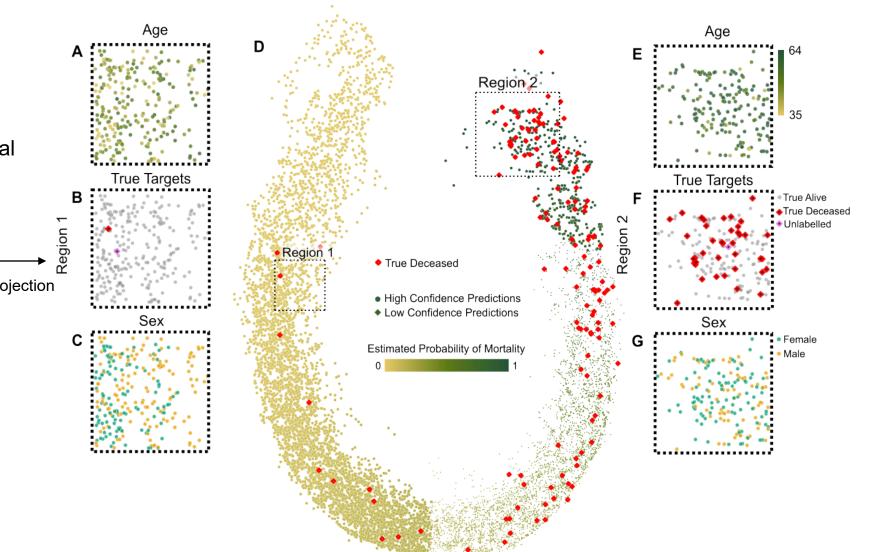
Early Mortality Prediction: Data Use

Retrain the model on different variations of the dataset

Data	C-MCC, 95%- C I	AUL	Vocab Size
Full Labor & Health	0.413 [0.410, 0.422]	0.845	2043
Partial Labor & Health	0.375 [0.367, 0.384]	0.837	1034
Only Full Labor	0.319 [0.312, 0.327]	0.809	1290
Only Partial Labor	0.278 [0.271, 0.285]	0.782	281

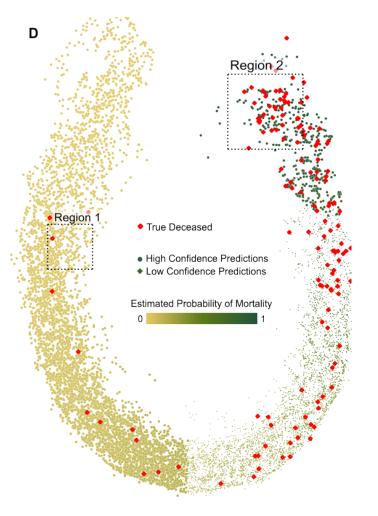
Partial Labor: no industry, sector, position and labour force

We can look at the low dimensional space of life-summaries.



Kim, Been, et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." *International conference on machine learning*. PMLR, 2018.

Explainability with TCAV (Mortality Prediction):



In the Concept space, we can find *somewhat* explainable directions!

• Here, we do not – we need to find them!

TCAV allows to find these directions

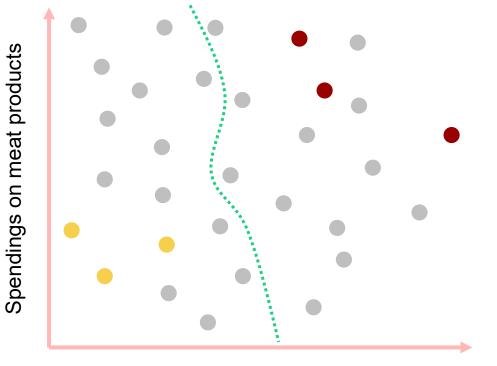
- Interpretation of the directions of the person-summary space
- Sensitivity of the model towards these directions
- Global Interpretability



Let's imagine an algorithm that predicts whether a person has a dog

..... decision boundary of the algorithm

of visits to a park

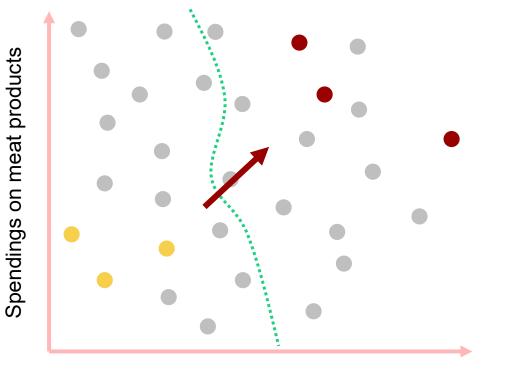


of visits to a park

Let's imagine you have extra information

..... decision boundary of the algorithm

- Lives in a rental
- Owns an apartment

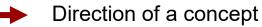


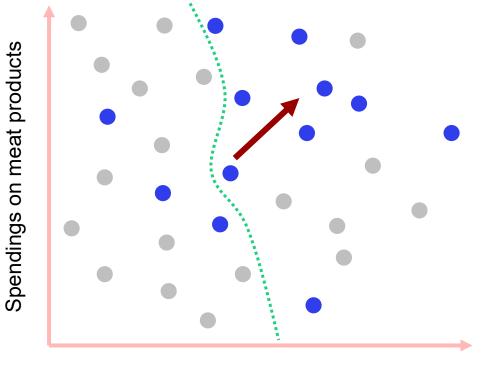
of visits to a park

Let's imagine you have extra information

decision boundary of the algorithm

- Lives in a rental
- Owns an apartment

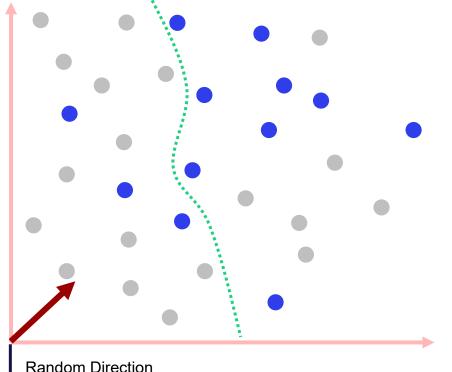




of visits to a park

Interpretation: If we move in a certain direction (the one that is associated with a concept), how strongly would it influence the output of our model (on average)

- decision boundary of the algorithm
 - Randomly sampled point
 - Direction of a concept



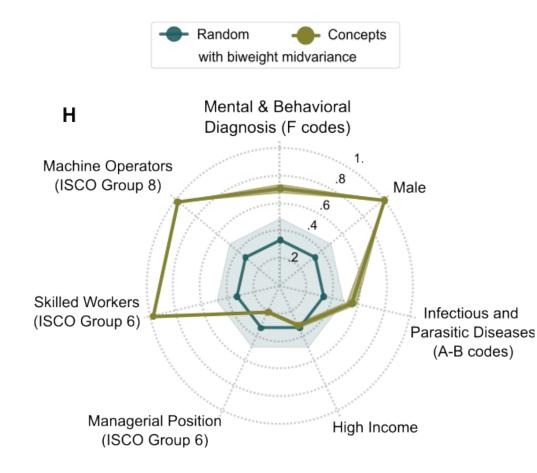
Concept Direction (if we move around it, our predictions would change)

Random Direction

(if we move around here, our predictions won't change much)

Interpretation: If we move in a certain direction (the one that is associated with a concept), how strong would it influence the output of our model (on average).

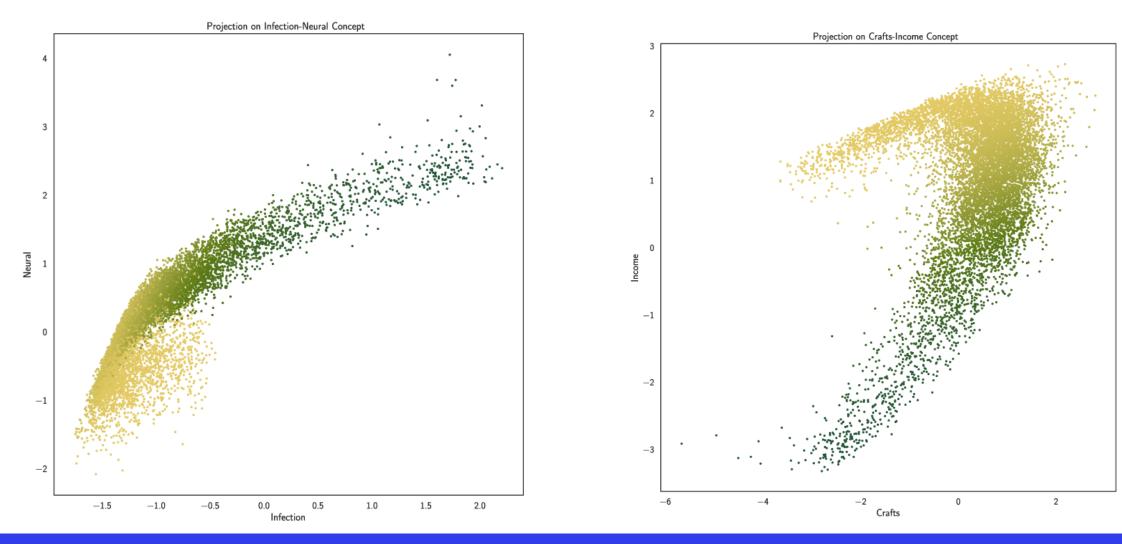
Explainability with TCAV (Mortality Prediction):



TCAV Score per "Direction"

- Interpretation of the directions of the person-summary space
- Sensitivity of the model towards these directions
- Global Interpretability

Projection to TCAV Directions



Iife2vec and Personality Traits

- We focus on Extroversion Facets:
 - Sociability (tendency to enjoy social interactions)
 - Liveliness (one's typical enthusiasm and energy)
 - **Self-esteem** (tendency to have positive self-regard)
 - **Boldness** (comfort within a variety of social situations)

1. In social situations, I'm usually the one who makes the first move

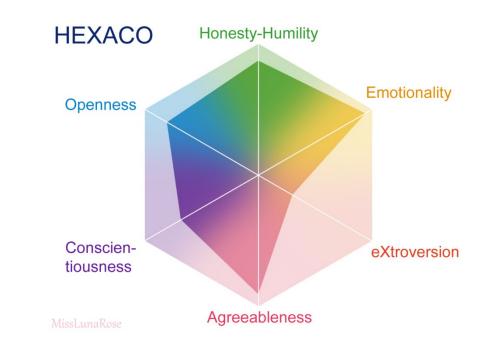


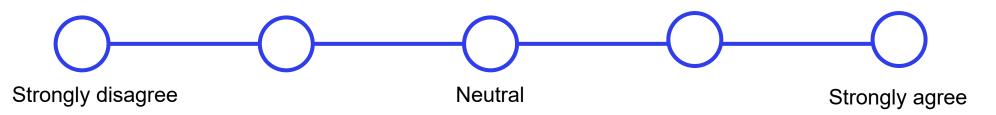
Image source: <u>Wikipedia</u> Inventory Descriptions: The HEXACO Personality Inventory - Revised

Extraversion Nuance Prediction

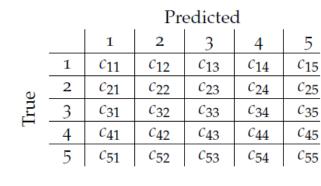
- Task: "What kind of replies does the person give to the 10 questions evaluating their Extraversion? "
 - Multiclass prediction
 - Ordinal Classification task (i.e. labels have ordered)
 - Highly Imbalanced Data
 - We do not have much data

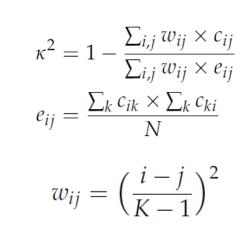
Statement:

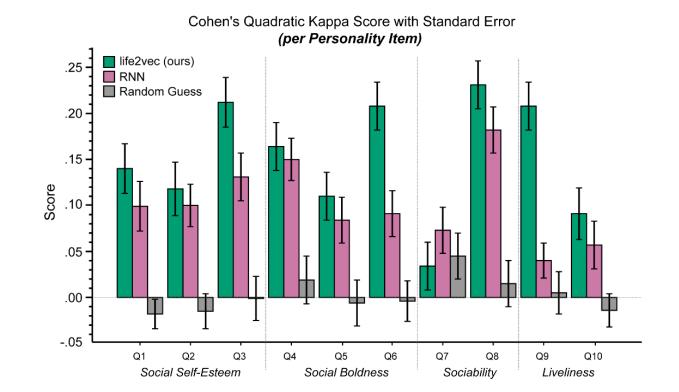
In social situations, I'm usually the one who makes the first move



Quadratic Kappa Score







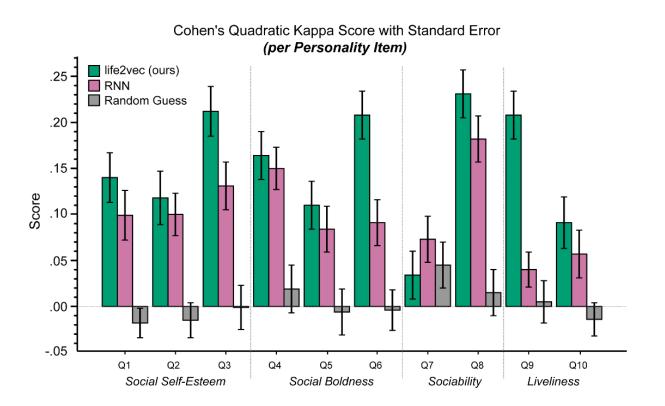
Accounts for the distance from predicted to target classes

08/04/2024 Technical University of Denmark

Questions:

6. Most people are more upbeat and dynamic than I generally am (liveliness)

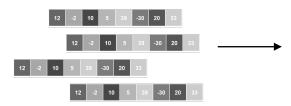
7. The first thing that I always do in a new place is to make friends (social I)



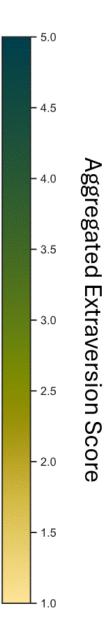
DTUPersonality Summaries(PaCMAP projection)score < 0.01</td>

score < 0.01 QT and score> 0.99 QT

We can look at the low-dimensional space of life-summaries.







What does it tell us?

Performance:

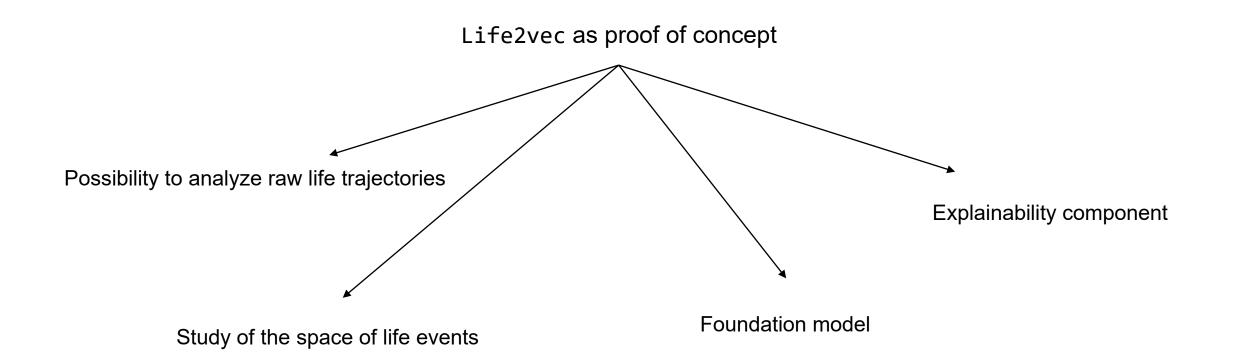
- You can use pretrained life2vec for downstream tasks
- Provides somewhat interpretable predictions
- Interpretations align with the literature

Person-summaries:

- Meaningful space
- Can be used to study various phenomena

Conclusion

Conclusion



Thank you for attention!