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About Me
• Originally from Latvia
• MSc in Human-Centered AI (DTU)
• PhD in Computational Social Science (DTU)
• (Previously) Lecturer in Algorithmic Fairness, Accountability, and 

Ethics (ITU)

• Upcoming Postdoctoral Associate Researcher at the Khoury College of 
Computer Sciences (Northeastern University):
– Trustworthy Network Science
– Fair and Just Machine Learning
– Team Formation Problem
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Main contributions of the research:

1. Propose a framework (transformer-based) to analyze large-scale socioeconomic and health data

2. Demonstrate the power of dense representation 

3. Adapt explainability methods to understand predictions

Code Availability: SocialComplexityLab/life2vec (github.com)
carlomarxdk/life2vec-light (github.com)

19/03/2024 DataBeers Copenhagen 2024

https://github.com/SocialComplexityLab/life2vec
https://github.com/carlomarxdk/life2vec-light
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Agenda

Introduction

Part I: Data

Part II: Representation Learning and NLP

Part III: Forming Labour and Health Language

Part IV: Capturing the structure with the life2vec

Part V: life2vec as a foundation model

Conclusion
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Life Trajectories
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Born at Rungstedlund 

1885

Accepted to the Royal Danish 
Academy of Fine Arts’

1903
Leaves the 
Academy

1903

Publishes a tale 
“The Hermits”

1907

Engages to Bror Blixen

1912

Moves to Kenya

1914

Hospitalised at the National Hospital in 
Copenhagen

1915

Established a 
coffee farm in 

Kenya

1917

Divorces Bror Blixen

1925

Sells the coffee 
farm and 

permanently 
returns to 
Denmark

1931

Mother Dies

1939

Publishes “Winter’s 
Tales” in Denmark

1942

Awarded a grant by 
“H.K. Andersen 

Fund”

1955

Guest of 
Honour in 
New York

1959

Co-founder of the Danish 
Academy

1960

Dies

1962

“Shadows on 
the Grass” is 
published in 

Denmark.

1960

Life of Karen Blixen* (Danish author)

* simplified
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The Problem
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Issues associated with longitudinal data modelling: 
– Features have mixed formats (continuous and categorical). 
– Various data sources 
– Events have an “uneven” sampling rate.
– Missing values
– The number of records per person varies a lot

Classical models are not that good at handling it!
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The Problem
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Born at Rungstedlund 

1885

Accepted to the Royal Danish 
Academy of Fine Arts’

1903
Leaves the 
Academy

1903

Publishes a tale 
“The Hermits”

1907

Engages to Bror Blixen

1912

Moves to 
Kenya

1914

Hospitalised at the National Hospital in 
Copenhagen

1915

Established a 
coffee farm in 

Kenya

1917

Divorces Bror Blixen

1925

Sells the coffee 
farm and 

permanently 
returns to 
Denmark

1931

Mother Dies

1939

Publishes “Winter’s 
Tales” in Denmark

1942

Awarded a grant 
by “H.K. Andersen 

Fund”

1955

* simplified

Simplifying data
How many times admitted to a hospital?
Career changes?
Traveling abroad?

7

Probability of readmission 
to a hospital?Model 1

Model N

Income level within the next year?

Travelled within a year … Married Hospital Admission

1 … 1 2

Model 2
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Born at Rungstedlund 

1885

Accepted to the Royal Danish 
Academy of Fine Arts’

1903

Leaves the Academy

1903

Publishes a tale 
“The Hermits”

1907

Engages to Bror Blixen

1912

Moves to Kenya

1914

Hospitalised at the National Hospital in 
Copenhagen

1915

Established a coffee 
farm in Kenya

1917

Divorces Bror Blixen

1925

Sells the coffee farm 
and permanently 

returns to Denmark

1931

Mother Dies

1939

Publishes “Winter’s 
Tales” in Denmark

1942

Awarded a grant by 
“H.K. Andersen 

Fund”

1955

Guest of 
Honour in 
New York

1959

Co-founder of the Danish 
Academy

1960

Dies

1962

“Shadows on the 
Grass” is 

published in 
Denmark.

1960

12 -2 10 5 39 -30 20 33

General Purpose Model

Predict the human behaviour 
(on an individual level)

Study sociological phenomena
(on a global scale)

We want a single model that takes nuanced life trajectories

Compressed representation of life progression

Give comprehensive insight into the data
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life2vec

Our Work

Large Language Model

Text like encoding of data

We are not there yet,
…but we have done the first steps

Main Components:
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Life-Trajectories and 
Data

Part I
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Danish National Registry
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**AI-Generated Image

Personal raw data is
tied to the Social Security Number (CPR)
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Labour Data Health Data
Detailed reconstruction of labor

and health life trajectories

08/04/2024
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Labour Data
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We focus on:
 Income (if applicable):
 Residence
 Country of Origin / Citizenship
 Address in Denmark 

 Socio-economic status:
 Age and sex
 Employment status

Records of any reported and taxable income:
– Each record has around 70 features
– Hourly precision
– Timespan: 2008-2020
– Features have underlying structure

08/04/2024
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Labor Data: Hierarchies
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Example of codes describing the Industry Example of codes describing the Occupation

08/04/2024
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Health Data
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Records of visits to a health practitioner or 
hospital:

– Focus on 3 features
– Diagnoses encoded in the ICD10 System

Features we use:

• Diagnosis (Initial, no follow-ups)

• Patient type: inpatient, outpatient, and emergency

• Urgency: Urgent, Non-urgent

08/04/2024
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Health Data: ICD-10
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Examples of ICD10 codes:

Y93.D: Activities involved arts and handcrafts

W61.62XD: Struck by duck, subsequent 
encounter

H47.51: Disorders of visual pathways in (due to) 
inflammatory disorder

08/04/2024
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Power of National Registry

The National Registry is a source of fine-grained information about the progression of 
one life.

Unique possibility to study life progression and life outcomes.

Overview of the “Using Sequences of Life-events to Predict Human Lives”08/04/2024 17

How do we analyze?
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Representation 
Learning and NLP

Part II
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Natural Language Processing
“[..] the application of computational 
techniques to the analysis and synthesis of 
natural language and speech.”

- Oxford Languages
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Natural Language Understanding

Text Summarization

Natural Language Generation

Semantic Analysis

Information Extraction

Computational Linguistic

Language Modelling

Dialogue Systems 

Text-to-speech

Language Inference

Text Classification 

19
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Language and Machines

“Everything was beautiful and nothing hurt”1

Overview of the “Using Sequences of Life-events to Predict Human Lives”08/04/2024

1. Slaughterhouse-Five, Kurt Vonnegut (1969)

20

**AI-Generated Image
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Language and Machines

“Everything was beautiful and nothing hurt”1

Overview of the “Using Sequences of Life-events to Predict Human Lives”08/04/2024

1. Slaughterhouse-Five, Kurt Vonnegut (1969)

a … and … beautiful … everything … hurt … no nothing … was … zyzzyva

0 … 1 … 1 … 1 … 1 … 0 1 … 1 0

Create a numerical representation of the text!

21

Computers can work with numbers
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Language and Machines
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1. Slaughterhouse-Five, Kurt Vonnegut (1969)

a … and … beautiful … everything … hurt … no nothing … was … zyzzyva

0 … 1 … 1 … 1 … 1 … 0 1 … 1 0

“Beautiful was nothing and everything hurt”

“Everything beautiful hurt and was nothing”

“Everything hurt nothing and was beautiful” 

22

If we reconstruct the sentence
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Language and Machines
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1. Slaughterhouse-Five, Kurt Vonnegut (1969)

It is even more obvious issues if we look here.

Let’s match people based on their description

“Maria likes spaceships”“Viktor prefers apples” “Susanne likes kiwi”

23

apples: 1
prefers: 1
likes: 0
spaceships:0
kiwi: 0

apples: 0
prefers: 0
likes: 1
spaceships:1
kiwi: 0

apples: 0
prefers: 0
likes: 1
spaceships: 0
kiwi: 1
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Complexity of Language
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Language is a super complex signal…
…and it inherits many issues associated 
with the longitudinal data.

Image: Luchmee, D. (2019, July 25). The Complex Skill of Language. HappyNeuron. Retrieved 
March 5, 2024, from https://news.happyneuronpro.com/the-complex-skill-of-language/

24
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Language and Life Sequences

These two cases have similar issues!

Overview of the “Using Sequences of Life-events to Predict Human Lives”08/04/2024

Word Representations Large Language Models

25

“Everything was beautiful and nothing hurt”

The field of NLP has two great solutions!

Captures aspects of words Handles structured sequences
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Representation of Places
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longitude* latitude*
Great Pyramid 31.08 29.58

Petra 30.19 35.26
Machu Picchu 13.09 35.26

Colosseum 12.29 41.53

* simplified

Pyramids

Petra

These values capture spatial location,
and allow us to reason about the distances (“similarity”).

26
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Word Representations

Overview of the “Using Sequences of Life-events to Predict Human Lives”08/04/2024

Solution in NLP: Take a step back and assign coordinates to words (capture meaning)

liveliness vehicle-(ness) artificiality
spaceship 0.0 1.0 1.0

apple 0.3 0.0 0.2
kiwi 0.3 0.0 0.3
dog 1.0 0.3 0.1

27
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Representation of Documents
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“Viktor prefers apples” “Susanne likes kiwi”

0.1
0.2
0.0

0.1
0.0
0.0

0.0
0.2
0.5

0.2
0.4
0.5

Aggregate the word representations

0.1
0.2
0.6

“Maria likes spaceships”

0.2
-.1
0.0

“Document” representation

Using these nuanced word embeddings, we can create document embeddings



Technical University of Denmark

Learning Embeddings
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We can employ different methods to create the word embeddings:

1. Manually assign values to each dimension (based on questionaries)

2. Frequency-based: Count-Vectors, TF-IDF, N-grams

3. Prediction-based: SkipGram, CBOW, GLoVE, by-products of training ML algorithms (e.g. RNNs)
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Embedding Spaces and Structure
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Fig 1: Two-dimensional projection of the word embeddings (word2vec)1

1. Olah, C. (2015, January 16). Visualizing Representations: Deep Learning and Human Beings. Colah's Blog. 
Retrieved March 3, 2024, from https://colah.github.io/posts/2015-01-Visualizing-Representations/

https://colah.github.io/posts/2015-01-Visualizing-Representations/
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Embedding Spaces and Structure
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Fig.1: Schematic illustration of semantic projection1

In the embedding space (GloVe), “animal”-related words 
projected onto the “small-large” direction

1. Grand, G., Blank, I.A., Pereira, F. et al. Semantic projection recovers rich human knowledge of multiple object features from word embeddings. Nat Hum Behav 6, 975–987 (2022). https://doi.org/10.1038/s41562-022-01316-8

2. Embeddings: Translating to a Lower-Dimensional Space. Google for Developers. Retrieved March 3, 2024, from https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space

3. Yao, Z., Sun, Y., Ding, W., Rao, N., & Xiong, H. (2018, February). Dynamic word embeddings for evolving semantic discovery. In Proceedings of the eleventh acm international conference on web search and data mining (pp. 673-681).

Fig.2: Embeddings can produce remarkable analogies2 Fig.3: Trajectories of brand names3

Temporal evolution of terms with word2vec

https://doi.org/10.1038/s41562-022-01316-8
https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space
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General Purpose Embeddings
• But how to make sure that we have a meaningful space?
• The nature of the task influences the representations

Overview of the “Using Sequences of Life-events to Predict Human Lives” 3208/04/2024

Algorithm
Provide data

Some Prediction Task

By-product: 
word embeddings
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Transformer-based Models
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Powerful Sequence Models already exist:
Large Language Models

08/04/2024

Create nuanced word 
embeddings and handle 

complex sequences

Great predictive 
performance on many 

NLP tasks

General-purpose model, 
adaptable to new tasks

Bidirectional Encoder Representations from Transformers (BERT)
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Transformer Architecture (BERT)
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Embedding Layer

Encoders

Decoders

“Everything was beautiful and nothing hurt”

Prediction

BE
R

T
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Embedding Layer
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“Everything was beautiful and nothing hurt”

Everything was beautiful and nothing hurt[CLS] [SEP]

1 2 3 4 5 60 7

Tokenization

Tokens

Token Position

Token 
Embedding Matrix

Positions 
Embedding Matrix

[.1 .2 .3] [.3 .4 .1] [.1 .1 .1] [.0 .1 .0] [.1 .7 .3] [.0 .9 .1][.0 .1 .0] [0. .3 .2]

Translate tokens and positions to vectors

[.0 .1 .2] [.0 .1 .3] [.0 .1 .4] [.0 .1 .5] [.0 .1 .6] [.0 .1 .7][.0 .1 .1] [.0 .2 .0]

Aggregate (e.g. weighted average)

[.1 .2 .5] [.3 .4 .4] [.1 .1 .5] [.0 .1 .5] [.1 .7 .9] [.0 .9 .8][.0 .1 .1] [0. .5 .2]
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Encoders
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Aggregated 
representation

Encoder Block 1
(here representations

interact)

Contextualised
representation

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).
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Encoders
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Encoder Block 1
(here representations

interact)

Contextualised
representations

Representation of the word “Everything” is now updates 
with information from the sequence:
• It might contain some aspects of the word “beautiful”
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BERT Encoders
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Encoder Block 1

Contextualised
representation

Encoder Block N

Contextualized token representations contain rich and nuanced information 
about the role of a token in a sequence. 

What you can do with the output of decoders:
– Make predictions on the first token (CLS, more about that later)
– Using any ML model
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BERT: Training Stages
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Multi-Genre Natural Language Inference

Named-entity recognition

Question answering and/or reading comprehension

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

08/04/2024
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BERT: Pretraining
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Encoder Blocks

Embedding Layer

Everything was beautiful and nothing hurt[CLS] [SEP]

• Mask 15% of tokens (not including [PAD],[SEP],[CLS]):
– 10% unchanged
– 10% substituted with random tokens
– 80% substituted with the [MASK] token

BE
R

T

08/04/2024
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BERT: Pretraining
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Encoder Blocks

Embedding Layer

Yoga was [MASK] and nothing hurt[CLS] [SEP]

• Mask 15% of tokens (not including [PAD],[SEP],[CLS]):
– 10% unchanged
– 10% substituted with random tokens
– 80% substituted with the [MASK] token

BE
R

T

08/04/2024
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BERT: Pretraining
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Encoder Blocks

Embedding Layer

Yoga was [MASK] and nothing hurt[CLS] [SEP]

Masked Language Modelling Decoder

Ask model to predict: “What was originally there?”

CLS 
Decoder

[CLS] usually has some 
task assigned

BE
R

T

08/04/2024
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BERT: Finetuning
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PRETRAINED Encoder Blocks

PRETRAINED Embedding Layer

Everything was beautiful and nothing hurt[CLS] [SEP]

Task Specific Decoder

BE
R

T
Prediction 12 -2 10 5 39 -30 20 33

Compressed representation of a sequence

08/04/2024
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Transformer-based Models
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LIFE2VEC 
Adapts BERT for life-sequences

BERT

Create nuanced word 
embeddings and handle 

complex sequences

Great predictive 
performance on many 

NLP tasks

General-purpose model, 
adaptable to new tasks
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Life2vec: Adaptation of BERT
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Concepts
Age

Global Time
Segment

Embedding Layer

Encoder 1

Encoder N

Life Sequence

Aggregated numerical 
representations
of concept tokens

Contextualised 
representations of 
concept tokens

Decoders

li
fe
2v
ec
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Creating Life-
Sequences

Part III
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Unfolding the data
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* slightly simplified overview

Tabular to Textual Representation?
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Forming a Language
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“In May 2008, Riley received 
>95k as a manager in Bank.” 

Convey the content  
in a spoken language

Language allows for super flexible and nuanced communication
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Forming a Language
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“In May 2008, Riley received
>95k as a manager in Bank.” 

Not all of the structure in the English 
language is of interest to us 

Convey the content  
in a spoken language

Language allows for super flexible and nuanced communication
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Forming a Language
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Convey the content  in an 
artificial symbolic language

Vocabulary consists of all the possible categories that any of the variable can take 

[IND_6419] [MUN_259] [INCOME_78] [POS_1221] [SEP]
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[IND_6419] [MUN_259] [INCOME_78] [POS_1221] [SEP]
1. Describe the content of the record

* slightly simplified overview

Word for a manager,
based on codes in ISCO-08

Word for the 
quantile of the income

Word for the 
banking based on codes in 
“Danish Industries” system

Word for the 
municipality

A “dot”
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[IND_6419] [MUN_259] [INCOME_78] [POS_1221] [SEP]
1. Describe the content of the record

* slightly simplified overview

2. Extract positional information
about the event

Age: 28
Global timestep: 140
Segment: C

age at the time of the event
number of days since 1st Jan 2008
additional sentence identifier
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[IND_6419] [MUN_259] [INCOME_78] [POS_1221] [SEP]
1. Describe the content of the record

* slightly simplified overview

2. Extract positional information
about the event

Age: 28
Global timestep: 140
Segment: C

3. Assign this information to tokens

28 28 28 28 28

140 140 140 140 140

C C C C C
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[IND_6419] [MUN_259] [INCOME_78] [POS_1221] [SEP]

* slightly simplified overview

28 28 28 28 28

140 140 140 140 140

C C C C C

4. Insert data into the Life-Sequence (person document)

Concepts
Age

Global Time
Segment
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* slightly simplified overview

Concepts
Age

Global Time
Segment
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* slightly simplified overview

Concepts
Age

Global Time
Segment
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* slightly simplified overview

Concepts
Age

Global Time
Segment
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* slightly simplified overview

Concepts
Age

Global Time
Segment
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* slightly simplified overview

Concepts
Age

Global Time
Segment

[CLS] [MALE] [YEAR_1989] [JAN] [SEP]

0 0 0 0 0

0 0 0 0 0

A A A A A

[INT]

0

0

A

The “Background sentence”

Start of the sequence word

Specification of sex

Birth year

Birth Month

Country of 
origin

A “dot”
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* slightly simplified overview

Concepts
Age

Global Time
Segment

Individual Life-Sequence

Input to the life2vec model
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Vocabulary



Technical University of Denmark

life2vec: capturing 
the structure

Part IV
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life2vec pipeline
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Concepts
Age

Global Time
Segment

Embedding Layer

Encoder 1

Encoder N

Life Sequence

Aggregated numerical 
representations
of concept tokens

Contextualised 
representations of 
concept tokens

Decoders

li
fe
2v
ec
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life2vec: pre-training

Concepts
Age

Segment
Global Time

• Mask 30% of tokens (not including [PAD],[SEP],[CLS]):
– 10% unchanged
– 10% substituted with random tokens
– 80% substituted with the [MASK] token

Encoder Blocks

Embedding Layer

MLM Decoder
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life2vec: pre-training

Concepts
Age

Segment
Global Time

Encoder Blocks

Embedding Layer

MLM Decoder

“What was originally there?”Is the sequence ordered?
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What did our model learn
on pretraining?
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Space of Concept Tokens (with PaCMAP)

Savcisens, G., Eliassi-Rad, T., Hansen, L. K., Mortensen, L. H., Lilleholt, L., Rogers, A., ... & Lehmann, S. (2023). Using sequences of life-events to predict human lives. Nature Computational Science, 1-14.

08/04/2024
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Space of concept tokens (with PaCMAP)

08/04/2024
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Space of concept tokens (with PaCMAP)

08/04/2024
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Space of concept tokens (with PaCMAP)

Visually structure corresponds to the structure of the variables

08/04/2024
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Space of Concept Tokens (with PaCMAP)

Savcisens, G., Eliassi-Rad, T., Hansen, L. K., Mortensen, L. H., Lilleholt, L., Rogers, A., ... & Lehmann, S. (2023). Using sequences of life-events to predict human lives. Nature Computational Science, 1-14.

[INCOME 1]

[INCOME 98]
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Projection to “Income” Direction
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[INCOME 1]
Concept of the 1st quantile

[INCOME 99]
Concept of the 99th quantile

[LF_514] 

Student
[LF_312]

Unemployed

[LF_110]

Self-employed

[LF_315]

Childcare leave 
from unemployment

[LF_131]

Employed with a 
managerial role

[LF_134]

Basic Wage 
earners

[POS_1120]

Senior Management

[POS_2139]

IT – Highest Level

[POS_5131]

Servant

[POS_3423]

Fitness Instructor

0.0 1.0
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.48 .49

.55

.62 .65
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LF – Labor Force Status
POS – Prof. Position



Technical University of Denmark

Projection to “Year” Direction
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[YEAR 1946]
Concept of the 1946th

birth year

[YEAR 1991]
Concept of the 1991st

birth year

[T40]

Poisoning by narcotics

0.0

[LF_514] 

Student

.72

1.0

[LF_134]

Basic Wage 
earners

[LF_611]

Maternity/paternity 
leave from 
unemployment

.94.90.89

[LF_313]

Upskilling

[LF_412] 

Early 
Retirement

0.46

LF – Labor Force Status

[M81]

Age-related osteoporosis without 
current pathological fracture

0.58 .78

Direction of the “Birth Year”
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[LF_511]

Person in Training
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Projection to “Occupation” Direction
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(n.d.). What Is Your Opposite Job? The New York Times. Retrieved March 11, 2024, from 
https://www.nytimes.com/interactive/2017/08/08/upshot/what-is-your-opposite-job.html

https://www.nytimes.com/interactive/2017/08/08/upshot/what-is-your-opposite-job.html
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Projection to “Occupation” Direction

Overview of the “Using Sequences of Life-events to Predict Human Lives” 7508/04/2024

[POS 5120]
“Cooking”

[POS 2111]
“Physisist”

0.0 1.0

[LF_134]

Basic Wage 
earners

[INCOME 5] 
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[INCOME 97] 

Income 97th Qt

.61

[LF_131]

Employed with a 
managerial role

.64

[G20]

Parkinson’s

.60

[R52]

Unspecified
Pain

.40

[IND 5629]

Other restaurant
businesses

.20

[IND 3316] 

Repair of air-
and space-crafts

.83
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Concept Space Robustness: Permutation Test
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Models trained on separate 
datasets and with different 
initialization

1. Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: appropriate use and 
interpretation. Anesthesia & analgesia, 126(5), 1763-1768.

rho > .6 (Strong monotonic correlation)1
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What does it tell us?
• Life2vec as proof of concept

– Algorithms understand the textual representation of life-sequences
– Transformers can capture structure in such a language

Study the dynamic within the data source
– Health and labor modelled in one space
– Can use embedding space to analyse relationships between categories

Overview of the “Using Sequences of Life-events to Predict Human Lives” 7708/04/2024
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life2vec as a 
foundation model

Part V

Overview of the “Using Sequences of Life-events to Predict Human Lives” 7808/04/2024



Technical University of Denmark

Foundation Models
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“Train one model on a huge amount of data and adapt it to many 
applications. We call such a model a foundation model.” 1

1. Developing and understanding responsible foundation models. Stanford CRFM. (n.d.). 
https://crfm.stanford.edu/ 

2. Wornow, M., Xu, Y., Thapa, R., Patel, B., Steinberg, E., Fleming, S., ... & Shah, N. H. (2023). The 
shaky foundations of large language models and foundation models for electronic health 
records. npj Digital Medicine, 6(1), 135.

“[…] rather than developing a bespoke model for each specific use case 
(as was done traditionally), a single FM can instead be reused across a 
broad range of downstream tasks with minimal adaptation or 
retraining needed per task.”2

79
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life2vec: finetuning

Concepts
Age

Segment
Global Time

PRETRAINED Encoder Blocks

PRETRAINED Embedding Layer

Contextualised 
representations

Task Specific Decoder

Prediction 12 -2 10 5 39 -30 20 33

Compressed representation of a sequence
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Life-Summaries
• We want high predictive power and explainability
• We condition life2vec on three tasks:

– Early Mortality Prediction
– Emigration Prediction
– Self-reported personality assessment

Overview of the “Using Sequences of Life-events to Predict Human Lives” 8108/04/2024
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Early Mortality Prediction
– Task: “Is a person going to be deceased within the next 4 years after 31st

December 2015?”
• Split people into ones who are marked as dead, and all others
• Some people do not have “a label”.

– This is a Positive Unlabelled (PU)-Learning Problem

Overview of the “Using Sequences of Life-events to Predict Human Lives” 82

Why PU Learning? (Mortality Example)

Alive DeceasedNot 
known

Using the PU approach, we can assume that negatives and unlabeled samples are all part of the unlabeled set:
• Allows using few assumptions to get reliable results 

Unlabelled Deceased (Positive)

Wang, C., Pu, J., Xu, Z. and Zhang, J., 2021, July. Asymmetric Loss for Positive-Unlabeled Learning. 
In 2021 IEEE International Conference on Multimedia and Expo (ICME) (pp. 1-6). IEEE.

08/04/2024
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Early Mortality Prediction

Use textual representation
of the data

08/04/2024
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True Labels

Positive Negative

Positive TP FP

Negative FN TN
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Early Mortality Prediction: Auditing

08/04/2024

(c)
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Early Mortality Prediction: Data Use

Retrain the model on different variations of the dataset

Partial Labor: no industry, sector, position and labour force

08/04/2024
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We can look at the low dimensional
space of life-summaries.

2D Projection

08/04/2024
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In the Concept space, we can find somewhat 
explainable directions!
• Here, we do not – we need to find them!

TCAV allows to find these directions
• Interpretation of the directions of the 

person-summary space
• Sensitivity of the model towards these 

directions
• Global Interpretability

Explainability with TCAV (Mortality Prediction):

Kim, Been, et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation 
vectors (tcav)." International conference on machine learning. PMLR, 2018.

08/04/2024
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Overview of the TCAV method

Overview of the “Using Sequences of Life-events to Predict Human Lives” 89

# of visits to a park# of visits to a park

Sp
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ng

s 
on

 m
ea

t p
ro

du
ct

s

decision boundary of the algorithm

Let’s imagine an algorithm that predicts 
whether a person has a dog
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Overview of the TCAV method
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# of visits to a park# of visits to a park
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t p
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s

decision boundary of the algorithm

Let’s imagine you have extra information

Lives in a rental
Owns an apartment
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Overview of the TCAV method
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# of visits to a park# of visits to a park
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decision boundary of the algorithm

Let’s imagine you have extra information

Lives in a rental
Owns an apartment

Direction of a concept
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Overview of the TCAV method
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# of visits to a park

Interpretation: If we move in a certain 
direction (the one that is associated 
with a concept), how strongly would it 
influence the output of our model (on 
average)

# of visits to a park

Sp
en

di
ng

s 
on

 m
ea

t p
ro

du
ct

s

decision boundary of the algorithm

Randomly sampled point

Direction of a concept
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Overview of the TCAV method
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Interpretation: If we move in a certain 
direction (the one that is associated 
with a concept), how strong would it 
influence the output of our model (on 
average).

Concept 
Direction
(if we move around it, our 
predictions would change) Random Direction

(if we move around here, our 
predictions won’t change 
much)

08/04/2024
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• Interpretation of the directions of the 
person-summary space

• Sensitivity of the model towards these 
directions

• Global Interpretability

Explainability with TCAV (Mortality Prediction):

TCAV Score per “Direction”

08/04/2024
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Projection to TCAV Directions
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life2vec and Personality Traits

Image source: Wikipedia
Inventory Descriptions: The HEXACO Personality Inventory - Revised

• We focus on Extroversion Facets:

• Sociability (tendency to enjoy social interactions)

• Liveliness (one's typical enthusiasm and energy)

• Self-esteem (tendency to have positive self-regard)

• Boldness (comfort within a variety of social situations)

Example: 
1. In social situations, I'm usually the one who makes the first move

08/04/2024 Overview of the “Using Sequences of Life-events to Predict Human Lives” 96

https://en.wikipedia.org/wiki/HEXACO_model_of_personality_structure
https://www.hexaco.org/scaledescriptions
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Extraversion Nuance Prediction
– Task: “What kind of replies does the person give to the 10 questions evaluating 

their Extraversion? ”
• Multiclass prediction
• Ordinal Classification task (i.e. labels have ordered)
• Highly Imbalanced Data
• We do not have much data 

Overview of the “Using Sequences of Life-events to Predict Human Lives” 9708/04/2024

Statement: 
In social situations, I'm usually the one who makes the first move

Strongly agreeStrongly disagree Neutral
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Personality Data

08/04/2024 Overview of the “Using Sequences of Life-events to Predict Human Lives” 98

Quadratic Kappa Score

Accounts for the distance 
from predicted to target classes
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Personality Data

Questions:

6. Most people are more upbeat and dynamic 
than I generally am (liveliness)

7. The first thing that I always do in a new place 
is to make friends (social I)

08/04/2024 Overview of the “Using Sequences of Life-events to Predict Human Lives” 99
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Personality Summaries 
(PaCMAP projection)

We can look at the low-dimensional
space of life-summaries.
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What does it tell us?
Performance:
• You can use pretrained life2vec for downstream tasks
• Provides somewhat interpretable predictions
• Interpretations align with the literature

Person-summaries:
• Meaningful space
• Can be used to study various phenomena

Overview of the “Using Sequences of Life-events to Predict Human Lives” 10108/04/2024



Technical University of Denmark

Conclusion

Overview of the “Using Sequences of Life-events to Predict Human Lives” 10208/04/2024



Technical University of Denmark

Conclusion

Life2vec as proof of concept

Overview of the “Using Sequences of Life-events to Predict Human Lives” 10308/04/2024

Study of the space of life events Foundation model

Possibility to analyze raw life trajectories
Explainability component
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Thank you for 
attention!
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