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Abstract. Invoked to guide actions under irreversibility and uncertainty, the Precautionary
Principle states that decision-makers should act cautiously unless the consequences of acts
are known. We consider a setting where the stock of past actions, passed a tipping point
which remains unknown, increases the probability of a catastrophe. When past acts are
observable, decision-makers can reconstruct the whole evolution of stock and beliefs and
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suboptimal behaviour has minor consequences on welfare.
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1. INTRODUCTION

On the Precautionary Principle. The major environmental and health issues that
pertain to our modern risk society are most often due to our own production and con-
sumption.1 When dealing with such risks, decision-making is complicated by two fea-
tures that make the standard tools of cost-benefit analysis of limited value. The first
specificity is that consumption and production choices might entail irreversibility. The
most salient example is given by global warming. Pollutants have been accumulating in
the atmosphere from the beginning of the industrial era, leading to a steady increase in
temperature. All current or planned efforts against global warming consist in controlling
the growth rate of temperature, with little hope of reducing it. The second feature of
those problems is that the costs and benefits of any decision have to be assessed under
significant uncertainty. Although the consequences of acting might be detrimental to the
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environment, the extent to which it is so and the probability of harmful events remain
to a large extent unknown to decision-makers when acting.

To guide decision-making in such contexts, the so called Precautionary Principle has
been repeatedly invoked. The original idea is due to philosopher Hans Jonas. His Prin-
ciple of Foresight states that decision-makers should recognize the long-term irreversible
consequences of their current actions, and refrain from undertaking any such action if
there is no proof that it would not negatively affect future generations’ well-being.2

Since its inception, there has always been a lively debate, mainly led by philosophers
and political scientists, on whether the Precautionary Principle offers a convenient guide
for decision-making under uncertainty. On the one hand, the fact that it serves as a
background for some regulatory policies suggests that it should be judged on normative
grounds. On the other hand, that doubts always exist on the fact that its adoption might
actually do more harm, by hindering innovation and growth, than good, by protecting
human health or the environment points at the more positive view of this notion and
suggests that the Precautionary Principle might just describe suboptimal behavior.3

This paper proposes a simple model of dynamic decision-making under irreversibility
and uncertainty that aims at giving theoretical foundations for the Precautionary Princi-
ple and assesses its relevance in practice. Hereafter, an action (consumption/production)
taken at any point in time yields a flow payoff. The stock of past actions affects the ar-
rival rate of an environmental catastrophe. This catastrophe is a major disruptive event
with all opportunities for consumption/production disappearing afterwards.4 Passed a
tipping point, this arrival rate irreversibly jumps up.5 Only the distribution of possible
tipping points is known.6 Whether the tipping point has been passed or not is ignored
by the decision-maker (thereafter DM). Acting today changes how likely it is that the
tipping point will be passed in the near future and thus affects posterior beliefs in case
no catastrophe takes place. In this context, an optimal trajectory should a priori follow
a feedback rule that stipulates actions in terms of two state variables: the level of stock
and the decision-maker’s beliefs on whether the tipping point has been passed. As DM
becomes more pessimistic and believes that it is more likely that the tipping point has
been passed, choosing actions closer to the myopic optimum becomes more attractive.

2The Precautionary Principle was acknowledged by the United Nations in 1992, during the Rio Earth
Summit, and perhaps expressed less restrictively as: “Where there are threats of serious and irreversible
damage, lack of full scientific certainty shall not be used as a reason for postponing cost-effective measures
to prevent environmental degradation.” A similar principle was invoked in the French 2004 Charter on
Environment (Loi constitutionnelle n 2005-205 du 1 mars 2005 relative à la Charte de l’environnement)
that is now part of the French Constitution. Any risk, health or environmental regulation must thus
comply with the legal framework that the Precautionary Principle contributes to build.

3See Sunstein (2005), Gardiner (2006), Giddens (2011), O’Riordan (2013) for informal discussions and
Immordino (2003) for a survey of the relevant literature for economics.

4See Cropper (1976), Gjerde et al. (1999) and Clarke and Reed (1994) for a similar assumption.
5Tipping points models are frequently used in ecology and in climatology (Lenton et al., 2008). To

illustrate, a recent report by the World Bank argues that “As global warming approaches and exceeds
2-degrees Celsius, there is a risk of triggering nonlinear tipping elements. Examples include the disin-
tegration of the West Antarctic ice sheet leading to more rapid sea-level rise. The melting of the Arctic
permafrost ice also induces the release of carbon dioxide, methane and other greenhouse gases which
would considerably accelerate global warming.” See http://whrc.org/project/arctic-permafrost.

6Kriegler et al. (2009) offers a view of what experts might think of those distributions of tipping points.
Roe and Baker (2007) argues that whether past actions have already triggered a change of regimes might
remain unknown for a while.
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Stock-Markov Equilibria. This optimal path helps to understand how trajectories
are modified under more realistic assumptions on how a society addresses such dynamic
problems. In this respect, we view an ongoing society as a game where different selves
of DM may act at different points in time. In a Stock-Markov Equilibrium (thereafter
SME), those selves adopt a simple feedback rule only based on the level of the stock.
Each self can only commit to an action over an infinitesimal period of time (a so called
impulse deviation); anticipating that future selves abide to the same Stock-Markov feed-
back rule. Of course, the evolution of beliefs along the equilibrium path is not only
consistent with the feedback rule but also with the underlying information structure.

Observable Impulse Deviations. Suppose first that past impulse deviations are observable
by future selves. In any such SME, future selves will certainly believe that the tipping
point is more likely to have been passed following a past deviation that has increased
the stock they inherited; a Pessimistic Stigma. Thinking that the tipping point is more
likely to have been passed, yet no catastrophe has occured, future selves no longer adopt
a safe stance and actions jump towards the myopic optimum.

Implementation of the Optimum. An optimal trajectory can always be implemented as a
SME when impulse deviations are observable. Although an optimal feedback rule defines
actions in terms of stock and beliefs, those state variables evolve on a one-dimensional
manifold along the optimal trajectory. The optimal feedback rule thus induces a Stock-
Markov feedback rule on path. By construction, actions being the same with those two
rules, beliefs evolve similarly. Off path, future selves always reconstruct the evolution
of beliefs from the observed past impulse deviation of a predecessor and the conjecture
that, beyond such deviation, all selves abide to the equilibrium feedback rule.

Non-Observable Impulse Deviations. In contrast, consider the more realistic scenario
where impulse deviations cannot be detected by future selves. This scenario stands as
a metaphor for the case where the consequences of past actions cannot be inferred
in the future. An informational externality now arises across decision-makers. Future
selves can no longer infer that the tipping point is more likely to have been passed if
they have not been able to observe past impulse deviations that had increased stock
levels. The equilibrium feedback rule now entails a more prudent behavior. Actions are
always too low in comparison with what the optimal trajectory would request. Along
such a low-action trajectory, the tipping point is thought to be unlikely to have been
passed yet; which in turn justifies adopting a more prudent behavior. This scenario
gives foundations for the Precautionary Principle invoked by real-life decision-makers.
Numerical simulations nevertheless suggest that the lack of information on past behavior
does not entail a large welfare cost compared to the observable deviation scenario (less
than 5%); softening concerns about the use of the Precautionary Principle.

Organization. Section 2 reviews the literature. Section 3 presents the model and the
optimal solution. Section 5 contrasts how the latter can be implemented in a Stock-
Markov game with observable deviations, but not under non-observable deviations, giv-
ing way to the Precautionary Principle. Section 8 briefly recaps our results and discusses
possible extensions. Proofs are relegated into Appendices.
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2. LITERATURE REVIEW

Irreversibility and the Precautionary Principle. Arrow and Fisher (1974),
Henry (1974) and Freixas and Laffont (1984) were the first to show how a decision-maker
should take more preventive stances when the consequences of irreversible choices are
uncertain. This literature suggests that current abatements of greenhouse gaz emissions
should be greater when more information will be available in the future (Chichilnisky and
Heal, 1993; Beltratti, Chichilnisky and Heal, 1995; Kolstad, 1996 among others). Gollier,
Jullien and Treich (2000) have built on this insight to give some economic content to the
Precautionary Principle. They interpret the Precautionary Principle as the incentives
to reduce actions below the level that would otherwise be optimal without uncertainty,
when actions are taken before learning information. Asano (2010) has focused on the
comparison of optimal environmental policies without and with ambiguity, showing that
lack of confidence forces decision-makers to hasten policy adoption. In those models,
decisions are always optimal although constrained by informational requirements7 and
information is exogenous whereas in many contexts in environmental economics, actions
also determine information structures.8In contrast, we stress that beliefs on the state
of the system are endogenous, determined by the history of past actions and what is
known on their consequences. Relatedly, Salmi, Laiho and Murto (2019) study the trade-
off faced by a decision-maker who must choose between acting now, which means taking
a less informed decision but generating information that is useful in the sequel, and
acting later, when being more informed. Greater actions accelerate learning.

On Tipping Points and Catastrophes. Catastrophic outcomes due to stock pollu-
tants have been analyzed by Cropper (1976), Heal (1984) and Clarke and Reed (1994)
among others. In those models, the probability of a catastrophe (be it irreversible or tem-
porary) is increasing in the stock. Tsur and Zemel (1995) have investigated a problem
of optimal resource extraction when extraction affects the probability that the resource
becomes obsolete passed a certain threshold. When this threshold is unknown, the initial
state affects the optimal path and there is less resource exploitation than under certainty.
Sims and Finoff (2016) have studied how irreversibility in environmental damage and
irreversibility in sunk cost investment interact in a model with tipping point uncertainty.
Focusing on the optimal control of atmospheric pollution, Tsur and Zemel (1996) have
shown how uncertainty on a tipping point introduces a multiplicity of possible equilib-
ria. Tsur and Zemel (2021) have studied trajectories with state-dependent catastrophe
thresholds. Contrary to us, these authors have focused on the case where the mere
fact that the stock of pollutants has passed the tipping point is immediately learned
by the decision-maker.9 To capture the decision-maker’s ignorance, another state vari-
able reflecting his beliefs is introduced. This addition bears some resemblance to Crépin
and Nævdal (2020)’s analysis. For the sake of realism, these authors have also added
to state-dependent catastrophe models based on pollutants (or temperature) another
state variable, the stress of the system, that triggers changes of regime only when it
itself passes a threshold. Van der Ploeg (2014) has analyzed how uncertainty on tipping
points may modify the design of an optimal dynamic path for carbon taxes. Lemoine
and Traeger (2014) have investigated optimal policy in a context where decision-makers
learn over the location of the tipping point over time from observing how the system

7This feature is shared by other models in the field like Immordino (2000) and Gonzales (2008).
8See Freixas and Laffont (1984) and Miller and Lad (1984).
9On this, see also Nævdal (2006).
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responds. In the context of policies against global warming, they demonstrate that the
possibility of regime switching significantly increases the optimal carbon tax. A similar
empirical assessment has been obtained in Cai and Lontzek (2019). Finally, Liski and
Salanié (2020) have also studied a model with unknown tipping points and uncertainty
applied to climate change and pandemic crisis. These authors are particularly concerned
with conditions ensuring whether actions are monotonic over time.

3. MODEL

Preferences. A decision-maker, say DM , chooses actions over time. Time is continu-
ous. Let r > 0 be the discount rate. Let x = (x(τ))τ≥0 (resp. xt = (x(τ))τ≥t) denote an
action plan (resp. the continuation of a plan from date t on).

Action x(t) yields a flow payoff (net of the action cost) at date t worth u(x(t)). Al-
though, we most often keep a general formulation, some of our results (optimal feedback
rules and Hamilton-Bellman-Jacobi equations for value functions) are expressed in a
crisper way by taking a quadratic specification, namely

u(x(t)) ≡ ζx(t)− x2(t)

2

where ζ > 0 is the marginal benefits of action (the consumption side) and x2(t)
2 its

cost (the production side). The set of feasible actions is X = [0, 2ζ] so that flow payoff
remains non-negative under all circumstances below.10

Technology and Catastrophes. Actions put the environment at risk. A catastrophe
may arise; an event that follows a Poisson process with a (non-homogeneous) rate θ(t).
That rate depends on the stock X(t) =

∫ t
0 x(τ)dτ of past actions before date t. More

precisely, we postulate

(3.1) θ(t) = θ0 + ∆1{X(t)>X}

where X is a tipping point. Although it remains quite close to a homogeneous Poisson
process, and indeed it is so before and after the tipping point, this specification features
dependence on past actions. Indeed, when the stock of past actions X(t) passes X, the
rate jumps from θ0 to θ1 > θ0. Let ∆ = θ1 − θ0 > 0 measure this jump.

To capture its detrimental and irreversible impact, we assume that, if a catastrophe
arises at date t, the flow payoff is no longer realized from that date on. A justification
for this extreme assumption is that production may no longer be possible afterwards.11

A Useful Benchmark. We start with the simplest scenario where DM has no control
over the arrival rate of a catastrophe, i.e., the case of a homogeneous Poisson process

10For simplicity, we assume that there is no flow damage D(X(t)) due to the stock of past pollutant
but this possibility could be added to the model, although at the cost of unnecessary complications.

11A more general model would allow for an arbitrary number of catastrophes with possibly changes in
the production/consumption structure following each of those events. This additional complexity would
not add anything in terms of insights.
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and we assume that the tipping point is at X = 0, i.e., the tipping point is passed at
the start. DM ’s expected payoff can thus be written as:∫ +∞

0
e−λ1tu(x(t))dt

where λ1 = r+ θ1 stands for the effective discount rate that applies with the possibility
of a catastrophe. Since he cannot influence the arrival rate of the catastrophe, DM
maximizes his intertemporal payoff by always choosing the myopic action

xm(t) = ζ ∀t ≥ 0.

For future reference, the myopic payoff once the tipping point has been passed writes as

V∞ =
u(ζ)

λ1
.

Of course, the same myopic action and payoff are obtained in any continuation; once it
is known that the tipping point has been passed for sure.

4. BELIEFS, VALUE FUNCTION AND OPTIMAL TRAJECTORY

Suppose thus that DM does not know where the tipping point lies. Switching to the
myopic optimum once the tipping point has been passed is no longer possible since DM
remains ignorant on whether this event occurred or not.

4.1. Beliefs

Let denote by F the distribution of possible values for the tipping point and by f its
(positive) density function. This distribution has a finite support

[
0, X

]
(i.e., X < +∞)

and, for most of the paper, no mass point.

Consider a history of past actions xt with no catastrophe up to date t and a stock
reached at that date (starting from 0) given by X̂(t; 0) =

∫ t
0 x(s)ds. To evaluate DM ’s

continuation payoff, we compute his posterior beliefs f(X̃|t,xt)dX̃ that the tipping point

lies within the interval
[
X̃, X̃ + dX̃

]
given that past history xt at date t. This posterior

density f(X̃|t,xt) should take into account that, if the tipping point lies at X̃ ≤ X̂(t; 0),
the arrival rate has already jumped from θ0 to θ1 at an earlier date T (X̃; 0) ≤ t. If
instead the tipping point is at X̃ > X̂(t; 0), the arrival rate remains θ0. A key variable
to describe how the posterior density evolves is thus the probability of survival up to
date t when the path of past actions is xt, namely

(4.1) H(t,xt) =

∫ X̂(t;0)

0
f(X̃)e−θ0T (X̃;0)e−θ1(t−T (X̃;0))dX̃ +

∫ +∞

X̂(t;0)
f(X̃)e−θ0tdX̃.

After manipulations, we obtain:

(4.2) H(t,xt) = e−θ0t
(

1−∆e−∆t

∫ t

0
F (X̂(τ ; 0))e∆τdτ

)
.12

When the current stock X̂(τ ; 0) is close to 0, the likelihood of having passed the tipping
point is also close to 0. The survival probability is then nearly that obtained when the

12See the Proof of Lemma A.1 in the Appendix.



ACTING IN THE DARKNESS 7

arrival rate of a catastrophe is known to be θ0 for sure. As X̂(τ ; 0) increases towards X, it
becomes more likely that the tipping point has been passed and the survival probability
accordingly decreases. Of course, the shape of the distribution function F matters to
evaluate this probability. As F puts more mass around the origin, it is more likely that
the tipping point has been passed early on and the survival probability diminishes.

For future reference, let us define the regime survival ratio Ẑ(t,xt) as

(4.3) Ẑ(t,xt) = H(t,xt)eθ0t ∀t ≥ 0.

It is the ratio between the survival probability H(t,xt) at date t following a history xt

and the survival probability e−θ0t that would prevail had the tipping point never been
passed.13 This ratio actually reflects DM ’s beliefs on whether the tipping point has
been passed or not. The faster the trajectory moves towards X, the faster Ẑ(t,xt) =
1−∆e−∆t

∫ t
0 F (X̂(τ ; 0))e∆τdτ decreases. If the trajectory stays close to X = 0, Ẑ(t,xt)

decreases very slowly. In other words, a higher value of Ẑ(t,xt) can be viewed as reflecting
greater optimism for DM . DM still thinks that the tipping point is ahead.

Running Example. Suppose that F has Dirac masses q at 0 and 1− q at X. In other
words, DM is uncertain whether the tipping point is passed right away or whether it
will be later found at X. For any t > 0 and history xt that has not yet reached X, the
probability of survival is a convex combination of exponential discounting:

H(t,xt) = qe−θ1t + (1− q)e−θ0t.

From this, it follows that the regime survival ratio before reaching X becomes

Ẑ(t,xt) = 1− q + qe−∆t.

Note that Ẑ(t,xt) is decreasing in t; capturing the fact that DM becomes more pes-
simistic as approaching the highest possible value of the tipping point X.

4.2. Value Function

The value function V̂(t,xt) is, by definition, DM ’s continuation payoff starting from
date t onwards given the past history xt. This function is computed with the posterior
density function f(X̃|t,xt) that the tipping point lies ahead of the current stock X =
X̂(t; 0) reached at date t (i.e., for X̃ ≥ X̂(t; 0)) given that, following past history, no
catastrophe has yet occurred. For τ ≥ t, the stock (denoted with a slight abuse of
notations by X̂(τ ;X, t)) will evolve according to the stream of future actions xt =
(x(τ))τ≥t. Lemma 1 provides a compact representation for this value function.

Lemma 1 The value function V̂(t,xt) satisfies

(4.4) V̂(t,xt) ≡ sup
xt,X̂(τ ;X,t)=X+

∫ τ
t x(s)ds

∫ +∞

0
e
−
∫ τ
0

(
λ0−

dẐ
ds

(t+s,xt+s)

Ẑ(t+s,xt+s)

)
ds

u(x(t+ τ))dτ

where λ0 = r + θ0.

13Since the survival probability is bounded below by e−θ1t, the regime survival ratio itself lies within
(e−∆t, 1].
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The representation (4.4) of the value function suggests that the state of the system
is best described by adding to the stock X a second state variable, the regime survival
ratio Z that reflects beliefs. Two trajectories that have reached the same stock X with
the same beliefs Z at a given date should have the same continuation. Instead, two
trajectories that have reached the same stock but with different beliefs might be pursued
differently. If the regime switch is thought as having been likely (Z small), DM will
pursue with higher actions since he has less incentives to take a precautionary stance.

Representation of the Value Function. To complete the state of the system, we
must thus add to the law of motion for the stock, namely

(4.5) Ẋ(τ) = x(τ),

the law of motion for the regime survival ratio.14 Differentiating (4.3) and using (4.2)
yields

(4.6) Ż(τ) = ∆(1− F (X(τ))− Z(τ)).

Integrating (4.6) with the initial condition Z(0) = Z, we get the following expression
for the regime survival ratio Z(τ):

(4.7) Z(τ) = 1−∆e−∆τ

∫ τ

0
F (X(s))e∆sds︸ ︷︷ ︸

Memoryless Evolution

−(1− Z)e−∆τ︸ ︷︷ ︸
Pessimistic Stigma

.

This expression highlights how the evolution of beliefs actually superposes two effects.
Suppose thatDM keeps no memory of what happened in the past. He is naively believing
to start with Z = 1, only knowing about the current level of stock X and considering,
from that point on, the ensuing trajectory X(t) given by (4.5). The first term on the r.h.s.
of (4.7) captures how such a naive DM would evaluate the consequences of pursuing this
trajectory on future beliefs. Instead, whenever DM starts with some grain of pessimism
inherited from past history, (i.e., starting with Z < 1) this (negative) Pessimistic Stigma
is carried on in the future (although at a decreasing rate) and all the more so as Z is
lower; an effect that is captured by the second term on the r.h.s. of (4.7).

Finally, (4.6) also implies that, once a trajectory X(τ) has reached the upper bound
X at a date T , the regime survival ratio evolves from then on as15

(4.8) Z(τ) = Z(T )e−∆(τ−T ) ∀τ ≥ T .

Remark: For future reference, it is worth noticing that (4.6) together with the initial
condition Z(0) = Z imply that necessarily

(4.9) Z(τ) > 1− F (X(τ)) ∀τ ≥ 0

14Reed (1989) and Tsur and Zemel (1995) have developed dynamic optimization models which all
have in common to use the survival probability as a state variable. The difference in our setting comes
from the fact that this survival probability depends on where the trajectory lies in the distribution of
possible tipping points.

15Once the stock level is beyond the support of F , the probability to be in the low-risk regime is 0.
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and thus

(4.10) Ż(τ) < 0.

The first of those inequalities can be readily interpreted. Indeed, 1−F (X(τ)) is the prob-
ability that the tipping point lies above X(τ). Consider an alternative scenario where the
fact of having passed the tipping point would be always immediately known (which also
means that when not having crossed the tipping point yet, the rate of arrival of a catas-
trophe is known to be θ0). The probability of survival conditional on not having crossed
the tipping point yet at date τ along a path X(τ) would thus be (1 − F (X(τ)))e−θ0τ .
The regime survival ratio in that scenario would be 1− F (X(τ)). Henceforth, (4.9) can
be interpreted as saying that not knowing whether the tipping point has been passed,
decision-makers somehow remain more optimistic. The second inequality (4.10) simply
means that those decision-makers nevertheless become more pessimistic over time.

Using (4.4) and (4.8), we can now get a representation of the value function in terms
of the bi-dimensional state variable (X,Z). Let accordingly define the value function
Ve(X,Z) for X ≥ 0 and any Z ∈ (0, 1] as

(4.11) Ve(X,Z) = sup
A

∫ T

0
e
−
∫ τ
0

(
λ0− Ż(s)

Z(s)

)
ds
u(x(τ))dτ + e

−
∫ T
0

(
λ0− Ż(s)

Z(s)

)
dsV∞.

where the set of admissible trajectories is

A = {x, X(·), Z(·), T s.t. (4.5), (4.6), X(0) = X, X(T ) = X, Z(0) = Z}.16

Starting from an arbitrary pair (X,Z), DM looks for an optimal arc that reaches X
at some date T . From that date on, DM knows for sure that the tipping point has
been passed and chooses the myopic optimum. After having passed the tipping point at
date T , DM always chooses the myopic optimal action ζ and gets, from that date on, a
discounted continuation payoff worth V∞. In fact, the tipping point might have already
been passed a long time ago but DM could not know it for sure before reaching X.

The expression (4.11) showcases that, under uncertainty, the effective discount rate is
time-dependent, namely

λe(τ) ≡ λ0 −
Ż(τ)

Z(τ)
.

Using the regime survival ratio as a state variable keeps track of this time-dependency.
The choice of an action at any given date has no direct impact on how this implicit
discount rate evolves since the law of motion (4.6) for beliefs does not depend on current
action. Yet, because stock and beliefs evolve over time, this implicit discount rate keeps
on changing and DM must take this into account to assess how future payoffs should
be discounted. Specifically, DM is using λe(τ) ≈ λ0 to discount future payoffs earlier on
but, eventually, will switch to λe(τ) ≈ λ1. The hazard rate −Ż(τ)/Z(τ) measures how
information contained in the fact that no catastrophe has yet happened is incorporated
into this implicit discounting.

16We allow for the possibility that T = +∞. It turns out that the upper bound on its distribution is
always reached in finite time for the optimal trajectory.



10 L. GUILLOUET AND D. MARTIMORT

4.3. Optimal Trajectory

Next proposition presents some important properties of the value function Ve(X,Z)
and the corresponding feedback rule.

Proposition 1 The value function Ve(X,Z) satisfies: the Hamilton-Bellman-Jacobi
equation:

(4.12)
∂Ve

∂X
(X,Z) = −ζ +

√
2λe(X,Z)Ve(X,Z)− 2∆(1− F (X)− Z)

∂Ve
∂Z

(X,Z) a.e.

where

(4.13) λe(X,Z) = λ0 −
∆(1− F (X)− Z)

Z

together with the boundary conditions

(4.14) Ve(X,Z) = V∞ ∀X ≥ X, ∀Z ∈ (0, 1].

The optimal feedback rule is

(4.15) σe(X,Z) = ζ +
∂Ve

∂X
(X,Z).

Before commenting on Proposition 1, it is useful to investigate a special case.

When The Tipping Point Is Known. Suppose that the tipping point is known and
located at X > 0. Proposition 1 still applies provided one is ready to let F (X) = 0 for
X ∈ [0, X) with F having a mass point at X. Inserting into (4.7) and using the fact that
Z = 0 at τ = 0, immediately yields Z(τ) = 1 for all τ ≥ 0 in this scenario. Accordingly,
we are now ready to further characterize the value function and the optimal feedback
rule in this common knowledge scenario.

Proposition 2 The value function Ve(X, 1) satisfies the following Hamilton-Bellman-
Jacobi equation

(4.16)
∂Ve

∂X
(X, 1) = −ζ +

√
2λ0Ve(X, 1), ∀X < X.17

Ve(X, 1) is decreasing and strictly concave for X ∈ [0, X) with the boundary condition

(4.17) Ve(X, 1) = V∞ ∀X ≥ X.

The optimal feedback rule is

(4.18) σe(X, 1) = ζ +
∂Ve

∂X
(X, 1).

Moreover, σe(X, 1) is decreasing in X for X ∈ [0, X).

17At X = X, this derivative is in fact a left-derivative but we use the same notation for simplicity.
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Actions profile. The optimal action goes through two distinct phases. Before reaching the
tipping point, actions have a long-lasting impact since they may contribute to passing
the tipping point earlier on. Reducing those actions decreases the probability that a
catastrophe arises earlier. The quantity −∂Ve

∂X (X, 1) found on the r.-h.s. of (4.18) is in
fact the Lagrange multiplier for the irreversibility constraint

(4.19)

∫ T

0
x(τ)dτ = X −X.

As X increases towards X, this irreversibility constraint becomes more demanding, and
the value function decreases. Actions are below the myopic optimum to account for this
Irreversibility Effect.

The optimal action decreases over time before the tipping point. All actions taken
during this first phase contribute the same to the overall stock. Because of discounting,
DM prefers to choose higher actions earlier on and lower ones when approaching the
tipping point. Expressed in terms of the value function, this monotonicity means that
Ve(X, 1) is strictly concave over this first phase while it is flat once the tipping point
has been passed. By then, DM knows that his actions will no longer have any impact
on the arrival rate of a catastrophe and thus chooses the myopic optimum.

Tipping Point. Because actions are now lower than the myopic optimum over the first
phase, the tipping point is reached at a date18

(4.20) T
k

= T
m

+

(
1−

√
λ0

λ1

)
1− e−λ0T

k

λ0
> T

m
=
X

ζ

where T
m

is the time necessary to reach the tipping point when acting myopically.

Pushing a bit further in the future the date T
k

at which the tipping point is reached by
a small amount dT has costs and benefits. First, DM incurs a welfare loss for a longer
period of time since, over the first phase, actions are below the myopic optimum. Second,

increasing T
k

maintains the arrival rate of a catastrophe at its low level θ0 longer.

Positive Lower Bound on Actions. Because actions are decreasing before reaching the
tipping point, we necessarily have

(4.21) ζ

√
λ0

λ1
≤ σe(X, 1) ≤ ζ ∀X.

where the left-hand side above is the action at the end of the first phase.

Comments on Proposition 1. The comparison of the Hamilton-Bellman-Jacobi equa-
tions with and without uncertainty is instructive. The first difference between (4.16) and
(4.12) is related to how future payoffs are discounted. Under uncertainty, the effective
discount rate is now time-dependent. As a thought experiment, suppose that the evolu-
tion of the hazard rate −Ż(τ)/Z(τ) were exogenously given. The implicit discount rate
being low earlier on and higher later, the optimal solution would call for taking larger
actions earlier on. In our model, this dynamics is endogenous. Current actions modify
stock and beliefs and somewhat control the evolution of the hazard rate −Ż(τ)/Z(τ).

18See the Appendix for details.
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The second difference comes from a new term, not present under complete information,
−2∆(1−F (X)−Z)∂V

e

∂Z (X,Z) on the r.-h.s. of (4.12). Less optimistic stances, i.e., lower

values of Z are associated with lower continuation values (i.e., ∂V
e

∂Z (X,Z) < 0). Along the
optimal trajectory, this new term is negative.19 Being less optimistic and thinking that
the tipping point has already been passed, DM certainly chooses to increase actions.

Finally, the comparison of the feedback rule (4.15) with its complete information coun-
terpart (4.18) shows that the term ∂Ve

∂X (X,Z) can again be interpreted as an opportunity
cost of irreversibility. This cost now depends on beliefs. The consequences of such beliefs
on actions can be further illustrated in the framework of our example.

Running Example (Continued). Although Ve(X,Z) cannot be expressed in closed
form for q > 0, both the profile of optimal actions xe along the trajectory and the delay
T
e

till reaching the tipping point, can be solved explicitly.

Proposition 3 Suppose that F has Dirac masses q at 0 and 1− q at X. The optimal
trajectory starting from X = 0 and Z = 1 has the following features.

• The date T
e

at which X is reached solves

(4.22) T
e

= T
m

+

1−

√√√√λ0 − Ż(T
e
)

Z(T
e
)

λ1

∫ T
e

0

Z(T
e
)

Z(τ)
e−λ0(T

e−τ)dτ > T
m

where the regime survival ratio is

(4.23) Z(τ) = 1− q + qe−∆τ ∀τ ∈ [0, T
e
].

• The optimal action is decreasing over τ ∈ [0, T
e
) and equal to the myopic optimum

thereafter:

(4.24) xe(τ) =


ζ

1− e−λ0(T
e−τ)Z(T

e
)

Z(τ)

1−

√
λ0− Ż(T

e
)

Z(T
e
)

λ1

 < ζ for τ ∈ [0, T
e
),

ζ for τ ≥ T e.

The Irreversibility Effect is again at play as long as the highest possible values of
the tipping point has not been passed. Actions remain below the myopic optimum over
that first phase. Yet, actions are higher under uncertainty. This result is illustrated by
observing that the last action before passing X has now been raised towards the myopic
solution in comparison with the scenario where the tipping point isat X for sure:

(4.25) xe(T
e−

) = ζ

√√√√λ0 − Ż(T
e
)

Z(T
e
)

λ1
> ζ

√
λ0

λ1
.

Under uncertainty, the date at which the stock reaches X comes earlier on:

T
e
< T

k
.

Intuitively, there is now a chance that the tipping point has already been passed before,
so that optimal actions are closer to the myopic optimum. It can also be readily checked

that as q goes to 0 (resp. 1), T
e

converges towards T
k

(resp. T
m

).

19Indeed, we have −Ż(τ)/Z(τ) = −∆(1−F (X(τ))−Z(τ))
Z(τ)

> 0.
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5. STOCK-MARKOV EQUILIBRIUM WITH OBSERVABLE DEVIATIONS

The value function Ve(X,Z) is a mere technical device to use dynamic programming
techniques and compute a feedback rule σe(X,Z) that guides behavior along the optimal
trajectory. There are two ways of thinking about this device. First, this feedback rule
may be viewed as a machine that determines actions that a planner would take at each
point in time in response to the evolution of stock and beliefs. Second, and it is a direct
consequence of the Principle of Dynamic Programming, such feedback rule can be viewed
as a Perfect-Markov equilibrium strategy among various selves of this decision-maker.
In this non-cooperative scenario, selves acting at different points in time have only a
limited ability to commit to an action over an infinitesimal period of time. They adopt
Markov-strategies based on the state variable (X,Z). Because those selves are endowed
with the same objectives and the same information than what a long-lived planner would
have, their choice of the best action obviously replicates that of this planner.

Hereafter, we instead ask whether a more parsimonious decentralization of an optimal
trajectory is also reached as a Perfect-Markov equilibrium if those selves were to adopt
less complete Stock-Markov feedback rules that only depend on the stock X. Our moti-
vation for looking at such a restriction on equilibrium strategies is that, in practice, only
the stock of pollutants in the atmosphere can be easily verified and this stock might not
be a sufficient statistics to form correct beliefs on whether the tipping point has likely
been passed or not. Even though selves are still endowed with the same objectives, this
restriction on feasible strategies may bite and affect the implemented action plan. We
will show below that the extent to which it is so depends on whether impulse deviations
are observable or not (Section 6 below). First, instead of having a single decision-maker
choosing actions, the trajectory is viewed as the outcome of a game with different selves
acting at different points in time. Those selves choose actions that prevail only for an
infinitesimal period of time; a so called impulse deviation. Second, we consider that,
when acting, those selves might have only limited information on the consequences of
past acts (Section 6). At a Stock-Markov Equilibrium (thereafter SME), those selves
adopt a feedback rule based only on stock.

Those modeling assumptions certainly echo the framework in which the Precautionary
Principle is invoked. First, the concern that current actions may negatively impact
future generations is captured by having different decision-makers, each endowed with
the discounted flow of future payoffs, acting at different points in time. Second, the
fact that current selves have only limited information on the consequences of past acts
is a necessary ingredient to assess whether equilibrium actions might be more cautious
under those circumstances. When taken in tandem, those assumptions allow us to assess
whether an optimal trajectory can be decentralized as a non-cooperative equilibrium
among selves and if not, the nature of the distortion.

5.1. Setting the Stage

We now consider a game in continuous time among selves of the decision-maker who
act at different points in time. At any point in time τ , the current self DMτ has limited
commitment ability. He can only choose an action x(τ) over an interval of infinitesimal
length of time [τ, τ + ε]. DMτ ’s objective is to maximize intertemporal welfare from that
date on given whatever information is available to him at date τ . In the first subsection,
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we suppose that DMτ can observe whatever actions may have been undertaken by all
his predecessors DMτ ′ for τ ′ < τ both on and off equilibrium path. Subsection 6 below
will entertain the opposite scenario where past actions remain unknown.

Stock-Markov equilibria are supported by Stock-Markov feedback rules. At any such
equilibrium, the self DMτ in charge at date τ sticks to the strategy σo(X) when the
stock has reached level X because he expects future selves to abide to that rule as well
following the subsequent evolution of the system.20

Along any such Stock-Markov trajectory, the stock Xo(τ ;X) evolves as

(5.1)
∂Xo

∂τ
(τ ;X) = σo(Xo(τ ;X)) with Xo(0;X) = X.

The various selves should also be able to reconstruct the regime survival ratio that
applies, along the equilibrium path, for each possible level of the stock and, by that
means, correctly infer how to discount future payoffs. Let denote by Zo(X) such function.
From (4.6), the regime survival ratio Z(τ ;X), that starts from value Zo(X) at date 0
and that is consistent with the Stock-Markov feedback rule σo(X) from that date on
evolves as

(5.2)
∂Z

∂τ
(τ ;X) = ∆(1− F (Xo(τ ;X))− Z(τ ;X)) with Z(0;X) = Zo(X).

Since conjectures on how the regime survival ratio evolves along the trajectory are
correct on the equilibrium path, we must also have

(5.3) Z(τ ;X) = Zo(Xo(τ ;X)) ∀τ ≥ 0, X ≥ 0.

Taken together, those conditions dictate how the regime survival ratio evolves with the
current stock along the trajectory. Differentiating (5.3) with respect to τ yields

(5.4) σo(X)Żo(X) = ∆(1− F (X)− Zo(X)) ∀X ≥ 0

with the initial condition

(5.5) Zo(0) = 1.

We may now define a Stock-Markov value function Vo(X), i.e., the intertemporal payoff
along such a Stock-Markov trajectory, as

(5.6) Vo(X) =

∫ +∞

0
e
−
∫ τ
0

(
λ0−σo(Xo(s;X))

Żo(Xo(s;X))
Zo(Xo(s;X))

)
ds
u(σo(Xo(τ ;X)))dτ.

This definition showcases how future payoffs are discounted at a rate

λ0 − σo(Xo(s;X))
Żo(Xo(s;X))

Zo(Xo(s;X))

that depends on the regime survival ratio along the Stock-Markov trajectory.

20Of course, a Stock-Markov feedback rule should specify that σo(X) = ζ for X ≥ X but, in order to
save on notations, this expression of the continuation will be kept implicit in what follows.
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For future reference, we define the intertemporal payoff once the tipping point has
been passed for sure but, being ignorant of that event, all future selves still rely on the
feedback rule σo(X) to choose actions, as

(5.7) ϕo(X) =

∫ +∞

0
e−λ1τu(σo(Xo(τ ;X)))dτ.

Impulse Deviations. To express the equilibrium requirement that sticking to the feed-
back rule σo(X) is optimal at any point along the trajectory, we follow an approach that
was developed in Karp and Lee (2003), Karp (2005, 2007), Ekeland, Karp and Sumaila
(2015), Ekeland and Lazrak (2006, 2008, 2010) and Auster, Che and Mierendorff (2023).
These authors have analyzed dynamic decision-making models with time-inconsistency
problems. To model non-cooperative action choices by various decision-makers (or selves
of the same decision-maker), the notion of perfect-Markov equilibrium was imported into
a continuous time setting. The idea is to look at the benefits of deviating from the feed-
back rule for periods of commitment which are of arbitrarily small length; deriving from
there conditions for the sub-optimality of such deviations and thus properties of the
equilibrium feedback rule.

To this end, consider a possible deviation that would consist for the current self in
committing to an action x for a period of length ε, reaching a stock level X +xε, before
subsequent selves jumping back to the feedback rule σo. For such an impulse deviation,
actions are thus

(5.8) y(x, ε, τ ;X) =

{
x if τ ∈ [0, ε],

σo(X̂(x, ε, τ ;X)) if τ > ε

while the whole stock trajectory is modified as

(5.9) X̂(x, ε, τ ;X) =

{
X + xτ if τ ∈ [0, ε],

X + xε+
∫ τ
ε σ

o(X̂(x, ε, s;X))ds if τ ≥ ε.

By adopting such impulse deviation, the regime survival ratio also changes as

(5.10) Ẑ(x, ε, τ ;X) = 1−∆e−∆τ

∫ τ

0
F (X̂(x, ε, s;X))e∆sds− (1− Zo(X))e−∆τ .

From this, we may define DM ’s deviation payoff V̂(x, ε;X) as

(5.11) V̂(x, ε;X) =

∫ +∞

0
e
−
∫ τ
0

(
λ0−

∂Ẑ
∂s

(x,ε,s;X)

Ẑ(x,ε,s;X)

)
ds

u(y(x, ε, τ ;X))dτ.

That all future selves are able to observe any impulse deviation that the current
decision-maker may entertain allows those selves to reconstruct the evolution of beliefs
as expressed in (5.10). When considering the consequences of any impulse deviation,
the current decision-maker should thus assess those consequences on his intertemporal
payoff by applying the implicit discounting that follows from the evolution of beliefs
so induced. This inference is clear in the expression of the continuation payoff on the
right-hand side of (5.11).
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Definition 1 A triplet (Vo(X), σo(X), Zo(X)) is a SME with observable impulse de-
viations if the following conditions hold.

1. Vo(X) as defined by (5.6) cannot be improved upon by any impulse deviation of
the form (5.8)-(5.9) for ε made arbitrarily small:

(5.12) Vo(X) = max
x∈X

lim
ε→0+

V̂(x, ε;X).

2. σo(X) is optimal for ε made arbitrarily small:

(5.13) σo(X) ∈ arg max
x∈X

lim
ε→0+

V̂(x, ε;X).

3. Zo(X) is consistent with the feedback rule σo(X) and satisfies (5.4)-(5.5).

Item 1. requires to approximate the deviation payoff V̂(x, ε;X) to the first order in
ε and look for the optimal action that maximizes such approximation; an optimal-
ity condition that is expressed in Item 2. Those two steps are familiar from applying
the Principle of Dynamic Programming in contexts with time-consistent plans. Item 3.
follows from the consistency condition (5.3) which states that the optimal evolution of
beliefs is dictated by the Stock-Markov feedback rule. This step is more novel. Of course,
the evolution of the survival ratio should be consistent with this feedback rule.

Properties of (Vo(X), σo(X)). Developing the equilibrium conditions in Definition 1
yields important properties.

Proposition 4 At any (continuously differentiable) SME, with observable impulse de-
viations, the Stock-Markov value function Vo(X) satisfies the following functional equa-
tion

(5.14) V̇o(X) = −ζ − Żo(X)

Zo(X)
Vo(X) +

√√√√2λ0Vo(X) +

(
Żo(X)

Zo(X)
ϕo(X)

)2

∀X ∈ [0, X)

together with the boundary condition

(5.15) Vo(X) = V∞ ∀X ≥ X.

The corresponding Stock-Markov feedback rule writes as

(5.16) σo(X) = ζ + V̇o(X) +
Żo(X)

Zo(X)
(Vo(X)− ϕo(X)).

The formula for the feedback rule in (5.16) bears some resemblance with its counter-
part (4.18) that was found under complete information. To understand the changes, it is
useful to come back on the expression of the Stock-Markov value function (5.6). Starting
from a current stock X with current beliefs Zo(X) on the equilibrium path, consider an
impulse deviation consisting in increasing by a marginal amount dx the current action
σo(X) over an interval of infinitesimal length ε. Since the current stock increases by
dX = εdx, such impulse deviation reduces the Stock-Markov value function by

(5.17) −V̇o(X)εdx.
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This impact can be decomposed into three different components. First, this impulse
deviation yields a marginal benefit on current payoff over the infinitesimal interval worth

(5.18) (ζ − σo(X))εdx.

Second, this impulse deviation also increases the implicit discount rate that applies to
future payoffs by

Żo(X)

Zo(X)
εdx < 0.

The corresponding impact on continuation payoff is thus a reduction in continuation
payoff worth

(5.19)
Żo(X)

Zo(X)
Vo(X)εdx < 0.

This effect decreases current action. Importantly, it is entirely due to the induced change
in stock. It takes as given the evolution of beliefs and would be also present if the rate
Żo(X)
Zo(X) at which the survival ratio evolves was taken as given. This will be the case in
Section 6 below here we investigate the scenario of non-observable impulse deviations.

Because here it is observable by future selves, an impulse deviation has nevertheless
also a long-lasting effect on beliefs as highlighted by formula (5.10). A marginal increase
in the stock worth εdx makes it more likely that the tipping point has been passed within
the infinitesimal interval where this impulse deviation applies. It brings an extra grain of
pessimism over the whole future trajectory. From (5.10), this deviation indeed impacts
the Pessimistic Stigma by a term which, at a date τ beyond the impulse deviation, is

Żo(X)e−∆τεdx < 0.

Passed the tipping point, payoffs would be discounted at rate λ1 if this event was ob-
served leading to an intertemporal gain worth ϕo(X). The benefit of believing that the
tipping point is more likely to have been passed following this impulse deviation is thus

(5.20) − Ż
o(X)

Zo(X)
ϕo(X)εdx > 0.

Since a more pessimistic decision-maker chooses higher actions, this last effect increases
current action.

Gathering (5.17), (5.18), (5.19) and (5.20) above finally yields Condition (5.16) which
characterizes the optimal feed-back rule.

Reciprocally, a triplet (Vo(X), σo(X), Zo(X)) that satisfies (5.14), (5.15), (5.16) and
the consistency requirements (5.4)-(5.5) forms a SME. This point is exploited in Propo-
sition 5 below to show that an optimal arc can be implemented as a SME.

Remark. Consider the alternative scenario where DM remains ignorant on where the
tipping point lies but, thanks to hard scientific evidence, immediately learns it upon
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passing it.21 DM thus knows that his payoffs should be discounted at rate λ0 as long
as he has not yet learned having passed the tipping point. The dynamics of the system
is thus fully summarized by the stock X that can be used as the sole state variable.
Observe also that the probability of not having yet switched regime is then 1 − F (X)
and that, once the tipping point has been passed, the myopic action is chosen which
yields a continuation payoff V∞. Denoting by Vu(X) the value function conditionally
on not having yet learned that the tipping point has been passed, we may adapt our
previous analysis to express this value function as

(5.21) Vu(X) =

∫ +∞

0
e
−
∫ τ
0

(
λ0+σu(Xu(s;X))

f(Xu(s;X))
1−F (Xu(s;X))

)
ds
u(σu(Xu(τ ;X)))dτ

and get the optimal feedback rule σu(X) as

(5.22) σu(X) = ζ + V̇u(X)− f(X)

1− F (X)
(Vu(X)− V∞).

This formula bears some obvious resemblance with (5.16). Upon learning that he has

passed the tipping point, an event whose hazard rate is f(X)
1−F (X) , DM knows for sure

that the continuation payoff drops from Vu(X) to V∞. In order to postpone this drop,
DM reduces current actions.

Implementation of the Optimal Trajectory. The evolution of beliefs along a
SME is determined by the feedback rule on path. If DM expects future selves to stick to
a Stock-Markov rule that implements the optimal action profile, he also expects beliefs to
be modified as expected at the optimum. Hence, when considering the possible benefits
of an observable impulse deviation, there is nothing that distinguishes the current self
when he is playing the SME defined in Proposition 5 from a long-lived planner who
would be considering the impact of a marginal change of action on the future stream of
payoffs. Because impulse deviations are observable, future selves will modify beliefs as
thus planner would also do and will accordingly choose the same actions profile.

Proposition 5 Suppose that impulse deviations are observable, an optimal path can
be implemented as a SME,22 (Vo(X), σo(X), Zo(X)), such that

(5.23) Vo(X) = Ve(X,Zo(X)) and σo(X) = σe(X,Zo(X)) ∀X

with Zo(X) being consistent with the feedback rule σo(X) and satisfying (5.4)-(5.5).

Running Example (Continued). Consider the trajectory starting from X = 0 and

21This scenario is analyzed in Tsur and Zemel (1996, 2021) among others and is isomorphic to Loury
(1978)’s analysis of how to exploit a resource with unknown reserve. In that model, when DM has
reached the limits of the resource stock, he immediately knows it and stops consuming from then on.

22The difficulty in directly proving existence of a SME comes from the fact that the differential
equation (5.14) for Vo(X) depends on DM ’s payoff ϕo(X) in case the tipping point has been passed
which itself depends on the Stock-Markov feedback rule computed over the whole future trajectory. Local
existence results are of little help given that non-local property. Proposition 5 overcomes this difficulty,
in proving the existence of a SME indirectly from the existence of an optimal path.
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Z = 1. From the expression of the optimal action (4.24), the stock evolves as

(5.24) Xe(τ) =


ζ

τ −
1−

√
λ0− Ż(T

e
)

Z(T
e
)

λ1

∫ τ
0
Z(T

e
)

Z(s) e
−λ0(T

e−s)ds

 for τ ∈ [0, T
e
),

X + ζ(τ − T e) for τ ≥ T e.

Together with (4.23), this expression allows us to recover an almost closed form for

Xo(Z) (the inverse function of Zo(X)) for Z ∈ [1− q + qe−∆T
e

, 1] as

(5.25)

Xo(Z) = ζ

− 1

∆
ln

(
1 +

Z − 1

q

)
−

1−

√√√√λ0 − Ż(T
e
)

Z(T
e
)

λ1

∫ − 1
∆
ln
(

1+Z−1
q

)
0

Z(T
e
)

Z(s)
e−λ0(T

e−s)ds

 .

It can be readily verified that

Ẋo(Z(T
e
)) =

ζe∆T
e

q∆

√√√√λ0 − Ż(T
e
)

Z(T
e
)

λ1
.

We thus get limq→1 Ẋ
o(Z(T

e
)) = 0 or, equivalently, limq→1 Ż

o(X
−

) = −∞. Intuitively,
when q is close to one, the function Zo(X) also remains close to one for most values

of X, only decreasing very quickly towards 1 − q + qe−∆T
m

when X comes close to
X. Finally, the optimal action at X

−
, namely σo(X

−
) = xe(T

e
) (which is expressed in

(4.25)) indeed converges towards the lowest bound ζ
√

λ0
λ1

as q goes to zero.

6. STOCK-MARKOV EQUILIBRIA WITH NON-OBSERVABLE DEVIATIONS

We now consider a scenario where the self DMτ in charge over a period of infinitesimal
length around date τ does not observe any impulse deviations that his predecessorsDMτ ′

for τ ′ < τ may have entertained. Only the current level of the stock X = X(τ) remains
observable for DMτ . In practice, the consequences of an action at a given point in time
may only be detected after a lag. Hereafter, we will take the polar view that the lag for
detecting any impulse deviation is infinite. One possible justification is that scientific
knowledge might not be sufficiently advanced to assess those consequences right away.
An alternative explanation is that the selves might have bounded rationality and limited
ability to process information. Accordingly, we need to slightly modify the notion of SME
to account for the non-observability of impulse deviations.

6.1. Setting the Stage

In any such SME, all selves conjecture that the feedback rule σno(X) is adopted.
Accordingly, they all believe that the regime survival ratio evolves according to

(6.1) σno(X)Żno(X) = ∆(1− F (X)− Zno(X)) ∀X ≥ 023

with the initial condition

(6.2) Zno(0) = 1.
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Because necessarily σno(X) = ζ for X > X, (6.1) immediately imply

(6.3) Zno(X) = Zno(X)e
−∆
ζ

(X−X) ∀X > X.

For any stock X ≤ X, we may now define the Stock-Markov value function with non-
observable deviations Vno(X) along such SME as:

(6.4) Vno(X) =

∫ +∞

0
e
−
∫ τ
0

(
λ0−σno(Xno(s;X))

Żno(Xno(s;X))
Zno(Xno(s;X))

)
ds
u(σno(Xno(τ ;X)))dτ.

6.2. Impulse Deviations

An impulse deviation again entails a modification of the action profile as specified in
(5.8) and an ensuing evolution of the stock as in (5.9). Because impulse deviations are
now not observable, a deviation by DMτ has no impact on the degree of pessimism that
his followers DMτ ′ , for τ ′ > τ adopt. They still believe that the regime survival ratio
evolves on path as specified in (6.1) and (6.2). Of course, an impulse deviation made
earlier on modifies the current stock and affects where the regime survival ratio lies
along this trajectory. This point is made clear in the following expression of the payoff
for such a deviation:

(6.5) V̂no(x, ε;X) =

∫ +∞

0
e
−
∫ τ
0

(
λ0− ∂X̂∂s (x,ε,s;X)

Żno(X̂(x,ε,s;X)

Zno(X̂(x,ε,s;X)
)
)
ds
u(y(x, ε, τ ;X))dτ.

From there, we deduce the following definition.

Definition 2 A triplet (Vno(X), σno(X), Zno(X)) is a SME with non-observable de-
viations if the following conditions hold.

1. Vno(X) as defined by (6.4) cannot be improved upon by any impulse deviation of
the form (5.8)-(5.9) for ε made arbitrarily small:

(6.6) Vno(X) = max
x∈X

lim
ε→0+

V̂no(x, ε;X).

2. σno(X) is optimal for ε made arbitrarily small:

(6.7) σo(X) ∈ arg max
x∈X

lim
ε→0+

V̂no(x, ε;X).

3. Zno(X) is consistent with the feedback rule σno(X) and satisfies (6.1)-(6.2).

This definition looks very much alike Definition 1. Both definitions require first, that
impulse deviations should not improve payoffs locally (Item 1.) and second, that the
evolution of the regime survival ratio should be consistent with the feedback rule (Item
3.). The key difference between Definitions 1 and 2 comes from the fact that deviation
payoffs are written differently. With observable deviations, continuation payoffs following
an impulse deviation are modified to account for how the regime survival ratio carries
over changes in the Pessimistic Stigma. With non-observable deviations, subsequent
decision-makers are more naive. The sole impact of an impulse deviation on continuation
payoff is to change the level of stock and thus the implicit discount rate that applies to
how they compute future payoffs. Decision-makers take the evolution of beliefs as fixed
when considering a deviation.
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Remarks. Two implicit assumptions are made. First, each self only knows the current
level of stock when acting. Suppose instead, that he would have known for how long the
project has been run, or at which point in time he is acting. Conjecturing that previous
selves have abided to the Stock-Markov feedback rule that prevails at equilibrium and
comparing with the current stock he is observing would allow this self to detect that (at
least) one deviation has taken place earlier on, even if he might not be able to infer at
which date it was. Assuming that only the current stock is observed avoids such inference
and accordingly simplifies the analysis. This assumption is akin to suppose that selves
are naive and have limited memory. They can just keep track of the level of stock but
cannot figure out the precise actions path that induces such stock. Alternatively, it could
be that the initial level of stock remains unknown so that correct inferences on whether
a deviation took place are not feasible either.

Second, because impulse deviations are non-observable, all selves believe that the
regime survival ratio still evolves as on path, i.e., as in (6.1). Instead, when deviating at
date τ , DMτ knows that the correct evolution of beliefs is given by (5.10). This differ-
ence a priori implies that, beyond the commitment period whose length is infinitesimal,
the discounted intertemporal streams of utilities evaluated with DMτ ’s beliefs and that
of his future selves DMτ ′ for τ ′ > τ differ. To fix this issue, focus on the main conse-
quences of non-observability in the simpler scenario and again simplify the analysis, we
assume that DMτ cares about the intertemporal payoff of his subsequent selves; thus
considering their own beliefs when evaluating his future payoffs. From this, we may thus
define DM ’s deviation payoff V̂(x, ε;X) as in (6.5).

6.3. Equilibrium Properties

Next proposition echoes our findings in Proposition 4 but now considering a scenario
with non-observable deviations.

Proposition 6 At any (continuously differentiable) SME with non-observable impulse
deviations, the Stock-Markov value function Vno(X) satisfies the following Hamilton-
Bellman-Jacobi equation

(6.8) V̇no(X) = −ζ − Żno(X)

Zno(X)
Vno(X) +

√
2λ0Vno(X) ∀X ∈ [0, X)

together with the boundary condition

(6.9) Vno(X) = V∞ ∀X ≥ X.

The Stock-Markov feedback rule is

(6.10) σno(X) = ζ + V̇no(X) +
Żno(X)

Zno(X)
Vno(X) ∀X ∈ [0, X).

The feedback rule with non-observable deviations (6.10) is much like its counterpart
(5.16) found when those deviations are observable. Yet, the term (5.20) is missing. To
explain this omission, consider again increasing by a small amount dx the current action
σno(X) over an interval of infinitesimal length ε, starting from a current stock X with
current beliefs Zno(X). If this impulse deviation is non-observable, future selves, when
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choosing their own actions, only consider its impact on the observable stock which has
increased by εdx. The comparison with observable deviations is thus straightforward.

First, this non-observable impulse deviation still impacts current payoff because the
feedback rule σno(X) requires a change in action at this new level of stock. This term is
again given by (5.17). Second, this impulse deviation also increases the implicit discount
rate; a term which is still captured by (5.18). Yet, with a non-observable deviation, the
regime survival ratio Zno(X) is taken as given over the whole trajectory. Had such a
deviation been observable, DMτ instead would have known that increasing current ac-
tion also means that future beliefs carry on some Pessimistic Stigma and this pessimism
makes it more attractive for future selves, DMτ ′ for τ ′ > τ who think that the tipping
point may have been passed, to further increase actions later on. With a non-observable
deviation, this motive for raising actions disappears and actions remain low.

At equilibrium, the feedback rule now calls for excessively low actions in comparison
with the optimal trajectory. Indeed, in any SME with observable deviations, we have

σo(X) > ζ + V̇o(X) +
Żo(X)

Zo(X)
Vo(X).

With low actions early on, the conjectured evolution of beliefs remains quite optimistic.
Each self thinks that the tipping point remains unlikely to have been already passed
when he acts and, in response, adopts a prudent behavior. This prudent behavior is of
course excessive in comparison with the optimal trajectory. Yet, it is self-fulfilling.

Running Example (Continued). The trajectory under a SME with non-observable
impulse deviations can again be computed in (almost) closed form.

Proposition 7 Suppose that F has Dirac masses q at 0 and 1−q at X. The trajectory
under a SME with non-observable impulse deviations starting from X = 0 and Z = 1
has the following features.

• The date T
no
> T

k
at which X is reached solves

(6.11)

T
m

=

√
λ0

λ1

(∫ T
no

0

√
Z(Tno)

Z(τ)
e−λ0(T

no−τ)dτ

)
+λ0

∫ T
no

0

(∫ T
no

τ

√
Z(s)

Z(τ)
eλ0(τ−s)ds

)
dτ

where Z(τ) is given by

(6.12) Z(τ) = 1− q + qe−∆τ ∀τ ∈ [0, T
no

].

• The action xno(τ) satisfies

(6.13)

xno(τ) =

ζ eλ0τ√
Z(τ)

(√
Z(Tno)e−λ0T

no
√

λ0
λ1

+ λ0

∫ Tno
τ

√
Z(s)e−λ0sds

)
< ζ for τ ∈ [0, T

no
),

ζ for τ ≥ Tno.
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To illustrate the tendency for choosing low actions when impulse deviations are non-
observable, observe that the last action before jumping to the myopic optimum is always
lower than with observable deviations:

xno(T
no

) =

√
λ0

λ1
< xo(T

e
) = xe(T

e
) =

√
λ0

λ1
+

q∆e−∆T
e

1− q + qe−∆T
e .

7. NUMERICAL SIMULATIONS

The debate on the relevance of the Precautionary Principle would really matter if the
trajectories with and without observability of deviations were significantly different in
terms of welfare levels. In this respect, the numerical simulations we are now presenting
suggest that imperfect information on the consequences of past behavior might not entail
a significant welfare cost. This result softens concerns about the use of the Precautionary
Principle in practice. The two trajectories with and without observability mainly differ
at early dates but are very close afterwards; and this result holds under a broad range
of scenarios.

Scenario 0. To fix ideas, suppose that the highest possible value of the tipping point
is known to be located at X = 100 while the myopic action is xm = ζ = 1. The interest
rate is r = 0.01. We also assume that before the tipping point the rate of arrival of a
catastrophe is very small, namely θ0 = 0.001, while it jumps to θ1 = 0.1 afterwards.24

The tipping point is reached at date T
k

= 150.257, which is significantly higher than in
the myopic scenario that, thanks to our normalization, corresponds to T

m
= 100. Next

figure represents the action profile xk(τ) = σe(Xk(τ), 1) where Xk(τ) =
∫ τ

0 x
k(τ̃)dτ̃ . The

intuition is that decreasing the action pushes back the switch to the higher risk scenario,
but it comes at a utility cost. Because of discounting, the decision-maker decreases the
action over time before reaching the tipping point. Similar patterns are found under
uncertainty on the tipping point.

Scenario 1. Suppose that there is an equal probability to pass the tipping point at
zero and at X, i.e., q = 1

2 . Under uncertainty, we expect to find different dates at which
the upper bound X is now reached depending on whether deviations are observable or

not. In fact, we compute T
0

= 149.026 and, as expected, a higher value T
no

= 153.535.

24This latter value is actually consistent with those chosen by Besley and Dixit (2019) in a related
context, although those authors posit that the arrival rate is a smooth and nonlinear function while we
adopt a step function.
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Yet, the difference is less than 3 %. This minor difference comes from the fact that the
two action profiles xo(τ) and xno(τ) are themselves close to each other. Interestingly,
the action path is non-monotonous for the non-observable case. The intuition is that at
the beginning, decision-makers are rather pessimistic and decide to enjoy flow payoffs
by increasing actions. Conditional on no catastrophe having yet happened, after a while
it becomes more likely that the tipping was not in fact at 0, and so that actions are
again reduced to push back the switch.

Although quite similar after a while, actions in the two scenarios mostly differ at the
start. In the non-observable scenario, decision-makers start with a very low action and
then increase actions over a first phase as they become more pessimistic and believe that
the tipping point is more likely to have been passed. In a second phase, decision-makers
adopt actions which are close to those in the observable scenario. The regime survival
ratios in both scenarios become very flat after a while and the existing pessimistic
stigma that pertains to the observable-deviation scenario has not enough magnitude to
significantly distinguish trajectories in the two scenarios. In other words, for most of the
trajectory, there is little impact of observing past deviations on actual choices.

Turning now to the regime survival ratios, we first observe that, since actions are higher
when deviations are observable, the stock with observable deviations Xo(τ) accumulates
over time faster than the stock Xno(τ) with non-observable deviations. Let denote by
τ−1,o(X) and τ−1,no(X) the corresponding inverse functions. Using (4.23) and (6.12)
allows us to recover the expressions of the regime survival ratios in terms of X and
to check that Zno(X) = Z(τ−1,no(X)) ≤ Z(τ−1,o(X)) = Zo(X) as confirmed on next
figure. Notice that in this scenario and the following ones, the asymptote is at 0.5 because
after enough time DMs are sure that the tipping point was not at 0, but at X.

Scenario 2: Increase in the rate of arrival of a catastrophe. Keeping all
other parameters as in Scenario 1, consider increasing the rate of arrival of a catas-
trophe up to θ1 = 0.2. This change increases delays before reaching the maximal value
of the tipping point but does not change the fact that trajectories with observable and
non-observable deviations are very close. The switching times now differ by less than

1.5%, at T
0

= 157.147 and T
no

= 159.494 and the action profiles xo(τ) and xno(τ) are
described as follows.
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The main effect of increasing the rate of arrival of a catastrophe is to make regime
survival ratios decrease faster as shown below.

Scenario 3: Zero discounting. Consider now the case of zero discounting (i.e., r = 0)
as advocated by Stern (2007) and suppose again that θ1 = 0.1. In this scenario, the
sole source of discounting comes from the probability of a catastrophe that suppresses
future payoffs. Because this event is unlikely before having crossed the tipping point,

low actions are now chosen in a first phase that lasts longer. Indeed, we find T
0

=
380.429 and T

no
= 395.302. Yet, the difference between the scenarios with and without

observable deviations is mild; those delays now differing by less than 4%. With almost
no-discounting, the future matters a lot and the Irreversibility Effect is quite significant.
As a result, both xo(τ) and xno(τ) remain low for a long time while still being close.

With almost no-discounting, the regime survival ratios decrease slowly as shown below.

Scenario 4: High discounting. In his critique of the Stern Review, Weitzman (2007)
advocated a much higher discount rate, namely r = 0.05. The first consequence of high
discounting is to shorten the delays before reaching X. We find that the switching times,
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namely T
0

= 108.114 and T
no

= 110.596, differ by less than 2.3%. The second conse-
quence is that both actions xo(τ) and xno(τ) although still nearby are now closer to the
myopic solution for a long time. Indeed, a high discount rate makes behaving myopically
more attractive; leaving distortions needed to satisfy the irreversibility constraint only
for the very last periods before reaching X.

With high discounting, the regime survival ratios in both scenarios are now almost
the same.

8. CONCLUDING REMARKS

We have considered a dynamic decision-making problem with irreversibility and un-
certainty. Increasing current actions makes it more likely to pass a tipping point and
thus increases the likelihood of an environmental catastrophe but the location of such
tipping point remains unknown through the process. The optimal trajectory follows a
feedback rule that depends not only on the stock of past actions but also on beliefs on
whether the tipping point has been passed or not. This trajectory can be implemented
as a decentralized equilibrium where decision-makers, acting at different points in time
and sharing the same objectives, have limited commitment power and adopt a Stock-
Markov feedback rule that only depends on stock. This implementation requires that
impulse deviations are observable by followers. Indeed, upon observing such deviations,
future decision-makers are able to reconstruct the evolution of beliefs and act as what a
planner would do at the optimal trajectory. Instead, when impulse deviations are non-
observable, the equilibrium feedback rule entails more prudent actions. When actions
have been kept low in the past, decision-makers remain quite optimistic on the fact that
the tipping point has not been passed yet. In response, they also refrain from taking
large actions to avoid any irreversible move.

This framework has allowed us to discuss the relevance of the Precautionary Principle
that states that one should not act when the consequences of those acts remain unknown.
Numerical simulations nevertheless suggest that a trajectory so constrained remains
close to the optimum under broad circumstances. The lack of information across decision-
makers might thus not be so damageable to society, softening concerns regarding the
use of the Precautionary Principle.
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APPENDIX A: VALUE FUNCTION AND FEEDBACK RULE

Beliefs

We start by presenting the evolution of the posterior density function f(X̃|t,xt). For future
reference, notice that, as times passes, a stock process X̂(t; 0) of the form

(A.1) X̂(t; 0) =

∫ t

0

x(s)ds.

goes through various possible values X̃ of the tipping point. We may thus also describe this
process by the time T (X̃; 0) at which this stock reaches a level X̃.25

Lemma A.1 The posterior density function f(X̃|t,xt) conditional on not having a catastrophe
up to date t following history xt satisfies:

(A.2) f(X̃|t,xt) =

{
e−θ0t

H(t,xt)f(X̃) if X̂(t; 0) ≤ X̃
e−θ0te−∆(t−T (X̃;0))

H(t,xt) f(X̃) otherwise.

Proof of Lemma A.1: We first compute the probability of survival H(t,xt) as (4.1). The
first term on the r.-h.s. of (4.1) stems for the probability that the tipping point is below X̂(t; 0),

25If X̂(t; 0) is smooth, increasing and differentiable in t with no flat part, T (X̃; 0) is itself increasing
and smooth and differentiable with a finite derivative.
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and the rate of survival then jumps up to θ1 at a date T (X̃; 0) before date t. The second term
is the probability that the tipping point is above X̂(t; 0) and the rate of arrival of a catastrophe
is still θ0. Denote these terms respectively by P1t and P2t. We immediately compute

(A.3) P2t = (1− F (X̂(t; 0)))e−θ0t.

Changing variables and letting X̂(τ ; 0) = X̃ with ∂X̂
∂τ (τ ; 0)dτ = dX̃, we rewrite

P1t =

∫ X̂(t;0)

0

f(X̃)e−θ0T (X̃;0)e−θ1(t−T (X̃;0))dX̃ =

∫ t

0

f(X̂(τ ; 0))
∂X̂

∂τ
(τ ; 0)e−θ0τe−θ1(t−τ)dτ.

Integrating by parts yields

(A.4) P1t = e−θ0t
([
F (X̂(τ ; 0))e∆(τ−t)

]t
0
−∆

∫ t

0

F (X̂(τ ; 0))e∆(τ−t)dτ

)
.

Inserting (A.3) and (A.4) into (4.1) finally yields the expression of the probability of survival up
to date t in (4.2). From this expression, we compute the conditional density

f(X̃|t,xt) =

{
e−θ0t

H(t,xt)f(X̃) if X̂(t; 0) ≤ X̃
e−θ0T (X̃;0)e−θ1(t−T (X̃;0))

H(t,xt) f(X̃) otherwise.

Simplifying yields (A.2). Q.E.D.

Value Function

Proofs of Lemma 1: Following history xt, the stock X̂(τ ;X, t) evolves as

(A.5) X̂(τ ;X, t) = X +

∫ τ

t

x(s)ds.

with a stream of future actions xt = (x(τ))τ≥t. Let T (X̃;X, t) accordingly denote the inverse

function defined for X̃ ≥ X. The value function V̂(t,xt) can be written as

(A.6) V̂(t,xt) ≡ sup
xt,X(·) s.t. (A.5)

∫ X

0

(∫ +∞

t

e−r(τ−t)e−θ1(τ−t)u(x(τ))dτ

)
f(X̃|t,xt)dX̃

+

∫ +∞

X

(∫ T (X̃;X,t)

t

e−r(τ−t)e−θ0(τ−t)u(x(τ))dτ

+e−θ0(T (X̃;X,t)−t)
∫ +∞

T (X̃;X,t)

e−r(τ−t)e−θ1(τ−T (X̃;X,t))u(x(τ))dτ

)
f(X̃|t,xt)dX̃.

Taking into account the expression of the conditional density given in (A.2), we rewrite the
expression of V̂(t,xt) in (A.6 ) as

(A.7)

eθ0tH(t,xt)V̂(t,xt) ≡ sup
xt,X(·) s.t. (A.5)

∫ X

0

(∫ +∞

t

e−r(τ−t)e−θ1(τ−t)u(x(τ))dτ

)
e−∆(t−T (X̃;0))f(X̃)dX̃

+

∫ +∞

X

(∫ T (X̃;X,t)

t

e−r(τ−t)e−θ0(τ−t)u(x(τ))dτ

+e−θ0(T (X̃;X,t)−t)
∫ +∞

T (X̃;X,t)

e−r(τ−t)e−θ1(τ−T (X̃;X,t))u(x(τ))dτ

)
f(X̃)dX̃.
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Let

I1 =

∫ X

0

(∫ +∞

t

e−r(τ−t)e−θ1(τ−t)u(x(τ))dτ

)
e−∆(t−T (X̃;0))f(X̃)dX̃

which rewrites as

(A.8) I1 =

(∫ +∞

t

e−λ1(τ−t)u(x(τ))dτ

)(∫ X

0

e−∆(t−T (X̃;0))f(X̃)dX̃

)
.

Changing variables and letting X̂(τ ; 0) = X̃ for τ ≤ t with ∂X̂
∂τ (τ ; 0)dτ = dX̃, we also rewrite∫ X

0

e−∆(t−T (X̃;0))f(X̃)dX̃ =

∫ t

0

e−∆(t−τ)f(X̂(τ ; 0))
∂X̂

∂τ
(τ ; 0)dτ.

Integrating by parts, yields∫ X

0

e−∆(t−T (X̃;0))f(X̃)dX̃ = e−∆t

([
F (X̂(τ ; 0))e∆τ

]t
0
−∆

∫ t

0

F (X̂(τ ; 0))e∆τdτ

)

= F (X)−∆e−∆t

∫ t

0

F (X̂(τ ; 0))e∆τdτ

where the last equality follows from X̂(t; 0) = X. Inserting into (A.8) yields

(A.9) I1 =

(∫ +∞

t

e−λ1(τ−t)u(x(τ))dτ

)(
F (X)−∆e−∆t

∫ t

0

F (X(s; 0))e∆sds

)
.

We now compute

I2 =

∫ +∞

X

(∫ T (X̃;X,t)

t

e−r(τ−t)e−θ0(τ−t)u(x(τ))dτ

+e−θ0(T (X̃;X,t)−t)
∫ +∞

T (X̃;X,t)

e−r(τ−t)e−θ1(τ−T (X̃;X,t))u(x(τ))dτ

)
f(X̃)dX̃.

Changing variables and letting X̂(τ ;X, t) = X̃ for τ ≥ t with ∂X̂
∂τ (τ ;X, t)dτ = dX̃ and X̂(t;X, t) =

X , we also rewrite

I2 =

∫ +∞

t

(∫ τ

t

e−λ0(s−t)u(x(s))ds+e∆(τ−t)
∫ +∞

τ

e−λ1(s−t)u(x(s))ds

)
f(X̂(τ ;X, t))

∂X̂

∂τ
(τ ;X, t)dτ.

Integrating by parts yields

(A.10) I2 =

[
F (X̂(τ ;X, t))

(∫ τ

t

e−λ0(s−t)u(x(s))ds+ e∆(τ−t)
∫ +∞

τ

e−λ1(s−t)u(x(s))ds

)]+∞

t

−∆

∫ +∞

t

F (X̂(τ ;X, t))e∆(τ−t)
∫ +∞

τ

e−λ1(s−t)u(x(s))ds

)
dτ.

Using that limτ→+∞ F (X̂(τ ;X, t)) = 1 if limτ→+∞ X̂(τ ;X, t) = +∞ (which holds when the
minimal action is positive at any point of time as we will see below), we get

(A.11) I2 =

∫ +∞

t

e−λ0(s−t)u(x(s))ds− F (X)

∫ +∞

t

e−λ1(s−t)u(x(s))ds
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−∆

∫ +∞

t

F (X̂(τ ;X, t))e∆(τ−t)

(∫ +∞

τ

e−λ1(s−t)u(x(s))ds

)
dτ.

Integrating by parts, we obtain∫ +∞

t

F (X̂(τ ;X, t))e∆τ

(∫ +∞

τ

e−λ1(s−t)u(x(s))ds

)
dτ

=

[(∫ τ

t

F (X̂(s;X, t))e∆sds

)(∫ +∞

τ

e−λ1(s−t)u(x(s))ds

)]+∞

t

+

∫ +∞

τ

e−λ1(τ−t)

(∫ τ

t

F (X̂(s;X, t))e∆sds

)
u(x(τ))dτ

=

∫ +∞

τ

e−λ1(τ−t)

(∫ τ

t

F (X̂(s;X, t))e∆sds

)
u(x(τ))dτ.

Inserting into (A.11), we thus obtain

(A.12) I2 =

∫ +∞

t

e−λ0(s−t)u(x(s))ds− F (X)

∫ +∞

t

e−λ1(s−t)u(x(s))ds

−∆e−∆t

∫ +∞

t

e−λ1(τ−t)

(∫ τ

t

F (X̂(s;X, t))e∆sds

)
u(x(τ))dτ.

Summing up (A.9) and (A.12) and taking into account that X̂(s;X, t) for s ≥ t is the continuation
of the trajectory X̂(s; 0), i.e., X̂(s;X, t) ≡ X̂(s; 0, 0) = X̂(s; 0) (where the last equality slightly
abuses notation) for s ≥ t, yields

I =

∫ +∞

t

e−λ0(τ−t)u(x(τ))dτ −∆e−∆t

∫ +∞

t

e−λ1(τ−t)

(∫ τ

0

F (X̂(s; 0))e∆sds

)
u(x(τ))dτ

and thus

I =

∫ +∞

t

e−λ0(τ−t)

(
1−∆e−∆τ

∫ τ

0

F (X̂(s; 0))e∆sds

)
u(x(τ))dτ.

Changing variables and setting τ ′ = τ − t yields

(A.13) I =

∫ +∞

0

e−λ0τ
′

(
1−∆e−∆(τ ′+t)

∫ τ ′+t

0

F (X̂(s; 0))e∆sds

)
u(x(τ ′ + t))dτ ′.

Generalizing (4.2) to paths that go till date t+ τ , we observe that the probability of survival up
to date t + τ can be expressed in terms of the action plan xt+τ followed up to that date (that
plan includes all past actions taken up to date t, namely xt, and the actions planned from date
t on xt+τt ) as

(A.14) H(t+ τ,xt+τ ) = e−θ0(t+τ)

(
1−∆e−∆(t+τ)

∫ t+τ

0

F (X̂(s; 0))e∆sds

)
.

Inserting into (A.13) and changing the name of dummy variables yields

(A.15) I = eθ0t
∫ +∞

0

e−rτH(t+ τ,xt+τ )u(x(τ + t))dτ.
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Inserting into (A.7) yields

eθ0tH(t,xt)V̂(t,xt) ≡ sup
xt,X̂(·)

∫ +∞

0

e−λ0τeθ0(t+τ)H(t+ τ,xt+τ )u(x(t+ τ))dτ

s.t. X̂(t+ τ ; 0) = X +

∫ τ

0

x(t+ s)ds and X =

∫ τ

0

x(s)ds.

which can be written as

(A.16) Ẑ(t,xt)V̂(t,xt) ≡ sup
xt,X̂(τ ;X,t)=X+

∫ τ
t
x(s)ds

∫ +∞

0

e−λ0τ Ẑ(t+ τ,xt+τ )u(x(t+ τ))dτ.

and, finally, (4.4) with the definition of Ẑ(t+ τ,xt+τ ) in (4.3). Q.E.D.

Next proposition provides some properties of the value function Ve(X,Z). At a higher stock,
Ve(X,Z) is necessarily lower since the irreversibility constraints become more stringent as X
comes closer to X.

Proposition A.1 There exists a solution to the optimization problem (4.11). ZVe(X,Z) is
non-increasing in X, convex in Z, Lipschitz-continuous and thus a.e. differentiable.

Proof of Proposition A.1: We first define We(X,Z) as

We(X,Z) = ZVe(X,Z).

Inserting (4.7) into the r.-h.s. of (4.11), we thus rewrite

(A.17) We(X,Z) = max
x,X(·),T s.t. (4.5),X(0) = X, X(T ) = X

(Z − 1)

(∫ T

0

e−λ0τe−∆τu(x(τ))dτ

+λ1V∞
∫ ∞
T

e−λ0τe−∆τdτ

)
+

∫ T

0

e−λ0τ

(
1−∆e−∆τ

∫ τ

0

F (X(s))e∆sds

)
u(x(τ))dτ

+

∫ +∞

T

e−λ0τ

(
1−∆e−∆τ

∫ τ

0

F (X(s))e∆sds

)
λ1V∞dτ.

Existence. Existence of a solution to the optimization problem (A.17) follows from applying
Filipov-Cesari Theorem with free final time (see Seierstad and Sydsaeter, 1987, Theorem 12, p.
145). To check that all conditions for this theorem are satisfied, first observe that X is closed
and bounded, while X is bounded above by X and Z is also bounded (Z ∈ [0, 1]). Denote

N(X,Z,X , τ) = {e−λ0τZu(x) + γ ≤ 0, x,∆(1− F (X)− Z); γ ≤ 0, x ∈ X}.

Let us check thatN(X,Z,X , τ) is convex for each (X,Z, τ). Take a pair (x1, x2) ∈ N(X,Z,X , τ)×
N(X,Z,X , τ), i.e., there exist γi ≤ 0 such that e−λ0τZu(xi)+γi ≤ 0. Consider now λx1+(1−λ)x2

for λ ∈ [0, 1] and observe that

e−λ0τZu(λx1+(1−λ)x2) ≤ e−λ0τZ(u(λx1+(1−λ)x2)−λu(x1)−(1−λ)u(x2))−λγ1−(1−λ)γ2.

Define γ = λγ1 + (1− λ)γ2 + e−λ0τZ(λu(x1) + (1− λ)u(x2)− u(λx1 + (1− λ)x2)) and observe
that γ ≤ 0 since u is concave and γi ≤ 0. Moreover, we have

e−λ0τZu(λx1 + (1− λ)x2) + γ ≤ 0.

Hence, N(X,Z,X , τ) is convex as requested. From Filipov-Cesari Theorem, an optimal arc thus
exists. Let denote by (Xe(τ ;X,Z), Ze(τ ;X,Z), xe(τ ;X,Z), T

e
(τ ;X,Z)) such an arc.
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Properties. Fixing an action path x and taking X ′ ≥ X, the corresponding stocks satisfy
X(s;X) ≤ X(s;X ′). The r.-h.s. of (A.17) is thus lower at X ′ for any action path. Taking
the max-operator proves thatWe(X,Z) is non-increasing in X. From (A.17), it also follows that
We(X,Z) is convex as a maximum of linear functions of Z.

Consider an alternative pair (X ′, Z ′). Because an arc which is optimal for (X ′, Z ′), say
(Xe(τ ;X ′, Z ′), Ze(τ ;X ′, Z ′), xe(τ ;X ′, Z ′), T

e
(X ′, Z ′)), is weakly suboptimal for (X,Z), the fol-

lowing inequality holds:

We(X,Z) ≥ (Z−1)

(∫ T
e
(X′,Z′)

0

e−λ0τe−∆τu(xe(τ ;X ′, Z ′)dτ+λ1V∞
∫ ∞
T
e
(X′,Z′)

e−λ0τe−∆τdτ

)

+

∫ T
e
(X′,Z′)

0

e−λ0τ

(
1−∆e−∆τ

∫ τ

0

F

(
X +

∫ s

0

xe(s′;X ′, Z ′)ds′
)
e∆sds

)
u(xe(τ ;X ′, Z ′))dτ

+

∫ +∞

T
e
(X′,Z′)

e−λ0τ

(
1−∆e−∆τ

∫ τ

0

F

(
X +

∫ s

0

xe(s′;X ′, Z ′)ds′
)
e∆sds

)
λ1V∞dτ.

We express the r.-h.s. in terms of We(X ′, Z ′) to get:

(A.18)

We(X,Z)−We(X ′, Z ′) ≥ (Z−Z ′)

(∫ T
e
(X′,Z′)

0

e−λ1τu(xe(τ ;X ′, Z ′))dτ+λ1V∞
∫ ∞
T
e
(X′,Z′)

e−λ1τdτ

)
+

∆

(∫ T
e
(X′,Z′)

0

e−λ0τ

(∫ τ

0

(
F

(
X ′ +

∫ s

0

xe(s′;X ′, Z ′)ds′
)

−F
(
X +

∫ s

0

xe(s′;X ′, Z ′)ds′
))

e∆sds

)
u(xe(τ ;X ′, Z ′))dτ

)

+∆

(∫ ∞
T
e
(X′,Z′)

e−λ0τ

(∫ τ

0

(
F

(
X ′ +

∫ s

0

xe(s′;X ′, Z ′)ds′
)

−F
(
X +

∫ s

0

xe(s′;X ′, Z ′)ds′
))

e∆sds

)
λ1V∞dτ

)
.

Permuting the roles of (X,Z) and (X ′, Z ′), we deduce a similar inequality. Putting together
those conditions implies

|We(X,Z)−We(X,Z)| ≤ V∞(‖f‖∞|X ′ −X|+ |Z ′ − Z|).

From which, we deduce that there exists k = 2V∞max{‖f‖∞, 1} such that

|We(X,Z)−We(X,Z)| ≤ k||(X ′, Z ′)− (X,Z)||)

where || · || is the Euclidian norm. We(X,Z) is Lipschitz continuous and thus a.e. differentiable.
Q.E.D.

For future reference, we now defineDM ’s payoff along an optimal arc (Xe(τ ;X,Z), Ze(τ ;X,Z))
for the stock and the regime survival ratio starting from arbitrary initial conditions (X,Z) in
case the regime switch has already occurred as

(A.19) ϕe(X,Z) =

∫ T
e
(X,Z)

0

e−λ1τu(σe(Xe(τ ;X,Z), Ze(τ ;X,Z)))dτ + e−λ1T
e
(X,Z)V∞

where T
e
(X,Z) is the date at which the highest possible value of the tipping point is reached,

namely Xe(T
e
(X,Z);X,Z) = X. Payoffs are discounted at a rate λ1 once the tipping point has
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been passed. When X ≥ X, DM knows for sure that it has been the case and adopts the myopic
action with payoff V∞. Beliefs then evolve according to (4.8). Because ϕe(X,Z) is computed
when discounting payoffs at rate λ1, while Ve(X) is computed when discounting at a lower rate
λ0 over a first phase, we necessarily have Ve(X,Z) ≥ ϕe(X,Z). Although DM ignores having
passed the tipping point, he knows that, if that happened, continuation payoffs are lower.

Proof of Proposition 1: Characterization. We start by characterizating We(X,Z) by
means of an Hamilton-Bellman-Jacobi equation.

Proposition A.2 At any point of differentiability, We(X,Z) that solves (A.17) satisfies the
following Hamilton-Bellman-Jacobi partial differential equation:

(A.20)

λ0We(X,Z) = λ1V∞Z+ζ
∂We

∂X
(X,Z)+

1

2Z

(
∂We

∂X
(X,Z)

)2

+∆(1−F (X)−Z)
∂We

∂Z
(X,Z).

The feedback rule is given by

(A.21) σe(X,Z) = ζ +
1

Z

∂We

∂X
(X,Z).

Moreover, we have

(A.22)
∂We

∂Z
(X,Z) = ϕe(X,Z).

Proof of Proposition A.2: For the sake of completeness and for future references, we re-
mind below the well-known derivation of the Hamilton-Bellman-Jacobi equation satisfied by
We(X,Z). Consider Z ∈ [0, 1]. Using the Dynamic Programming Principle, We(X,Z) satisfies

(A.23) We(X,Z) = sup
A

∫ ε

0

e−λ0tZ(t)u(x(t))dt+ e−λ0εWe(X(ε;X,Z), Z(ε;X,Z)).

Consider now ε small enough and denote by x a fixed action over the interval [0, ε]. From (4.6)
and (4.5), we get

X(ε;X,Z) = X + εx+ o(ε), Z(ε;X,Z) = Z + ε∆(1− F (X)− Z) + o(ε)

where limε→0 o(ε)/ε = 0.
When We(X,Z) is continuously differentiable, we can take a first-order Taylor expansion in

ε of the maximand in (A.23) to write it as

We(X,Z)+ε

(
Zu(x) + x

∂We

∂X
(X,Z) + ∆(1− F (X)− Z)

∂We

∂Z
(X,Z)− λ0We(X,Z)

)
+o(ε).

Inserting into (A.23) yields the following Hamilton-Bellman-Jacobi equation:

(A.24) λ0We(X,Z) = sup
x∈X

{
Zu(x) + x

∂We

∂X
(X,Z) + ∆(1− F (X)− Z)

∂We

∂Z
(X,Z)

}
.

Feedback Rule. The maximand on the r.-h.s. of (A.24) is strictly concave. It immediately
follows that the feedback rule σe(X,Z) is given by (A.21) when interior. Simplifying (A.24) by
using the feedback rule (A.21) finally yields (A.20).
Partial Differential Equation. Rewriting the optimality conditions in terms of Ve(X,Z),
(A.20) becomes

λ0Ve(X,Z) = λ1V∞+ ζ
∂Ve

∂X
(X,Z) +

1

2

(
∂Ve

∂X
(X,Z)

)2

+
∆(1− F (X)− Z)

Z

∂We

∂Z
(X,Z).
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Solving this second-degree equation and keeping the solution that gives a positive feedback rule
yields

(A.25)
∂Ve

∂X
(X,Z) = −ζ +

√
2λ0Ve(X,Z)− 2

∆(1− F (X)− Z)

Z

∂We

∂Z
(X,Z).

Denote the optimal solution to (A.17) by (xe(τ ;X,Z), Xe(τ ;X,Z), Ze(τ ;X,Z), T
e
(X,Z)) . From

(A.17), we can write

(A.26)

We(X,Z) =

∫ T
e
(X,Z)

0

e−λ0τZe(τ ;X,Z)u(xe(τ ;X,Z))dτ+Ze(T
e
(X,Z);X,Z)e−λ0T

e
(X,Z)V∞.

Integrating (4.6), we obtain

(A.27) Z̃e(τ ;X,Z) = (Z − 1)e−∆τ + 1−∆e−∆τ

∫ τ

0

F (Xe(s;X,Z))e∆sds ∀τ ≥ 0, X, Z ≥ 0

Applying the Envelope Theorem to (A.17) thus yields

(A.28)
∂We

∂Z
(X,Z) = ϕe(X,Z)

or

Z
∂Ve

∂Z
(X,Z) + Ve(X,Z) = ϕe(X,Z)

where ϕe(X,Z) is defined as in (A.19). Inserting into (A.25) and simplifying yields

∂Ve

∂X
(X,Z) = −ζ +

√
2λ0Ve(X,Z)− 2

∆(1− F (X)− Z)

Z
ϕe(X,Z)

which can be written as (4.12).
Q.E.D.

Q.E.D.

Bounds. For future references, it is useful to provide simple bounds on Ve(X,Z).

Proposition A.3

(A.29) ZV∞ ≤ ZVe(X,Z) ≤
(
F (X) + (1− F (X))

λ1

λ0

)
V∞ ∀X ≥ 0,∀Z ∈ (0, 1].

Proof of Proposition A.3: Observe that (4.6) and F (X) ≤ F (Xe(τ ;X,Z))) ≤ 1 imply

0 ≤ d

dτ

(
Ze(τ ;X,Z)e∆τ

)
≤ ∆(1− F (X))e∆τ .

Integrating between 0 and τ yields

0 ≤ Ze−∆τ ≤ Ze(τ ;X,Z) ≤ Ze−∆τ + (1− F (X))
(
1− e−∆τ

)
.

From this and the fact that 0 ≤ Z ≤ 1, it follows that

(A.30) 0 ≤ Ze−∆τ ≤ Ze(τ ;X,Z) ≤ F (X)e−∆τ + 1− F (X) ≤ 1.

Henceforth, the whole trajectory Ze(τ ;X,Z) always remains in the stable domain [0, 1].
From the third inequality in (A.30), taking maximum on the r.-h.s. of (A.17), the r.-h.s.

inequality of (A.29) follows. From the first inequality in (A.30), we immediately get the l.-h.s.
inequality of (A.29). Q.E.D.
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Optimal Path

The intertemporal date 0-payoff Ve(0, 1) is achieved by adopting the action profile σe(Xe(τ ; 0, 1)
for all τ ≥ 0 starting from the initial conditions X = 0 and Z = 1. Next Proposition provides
necessary conditions for an optimal arc.

Proposition A.4 An optimal action path xe(t) satisfies the following necessary condition:26

(A.31) xe(τ) = ζ − ∆eλ0τ

Ze(τ)

∫ T
e

τ

f(Xe(s))e∆s

(∫ T
e

s

e−λ1s
′
u(xe(s′))ds′

)
ds

where, along the optimal trajectory, the survival ratio writes as

Ze(t) = 1−∆e−∆t

∫ t

0

F (Xe(τ))e∆τdτ.

X is reached at a date T
e
< T

m
with

(A.32) X = ζT
e −

∫ T
e

0

∆eλ0τ

Ze(τ)

(∫ T
e

τ

f(Xe(s))e∆s

(∫ T
e

s

e−λ1s
′
u(xe(s′))ds′

)
ds

)
dτ.

Proof of Proposition A.4 : From (4.4), DM ’s intertemporal payoff writes as

(A.33) Ve(0, 1) ≡ sup
A

∫ T

0

e−λ0τZ(τ)u(x(τ))dτ +

∫ +∞

T

e−λ0τZ(τ)λ1V∞dτ.

Existence. It immediately follows that there exists a solution to problem (A.33 ) from the
argument for existence in the Proof of Proposition 1.
Maximum Principle. Observe that, for τ ≥ T , (4.6) implies

(A.34) Z(τ) = Z(T )e−∆(τ−T )

and thus the scrap value on the r.-h.s. of the maximand in (A.33) writes as

(A.35)

∫ +∞

T

e−λ0τZ(τ)λ1V∞dτ = Z(T )e−λ0TV∞.

We now define the Hamiltonian for this optimization problem as

(A.36) He(X,Z, x, τ, µ, ν) = e−λ0τZu(x) + µx+ ν∆(1− F (X)− Z)

where µ and ν are respectively the costate variables for (A.1) and (4.6). The Maximum Principle
with free final time and scrap value now gives us the following necessary conditions for optimality
of an arc (Xe(τ), Ze(τ), xe(τ), T

e
). (See Seierstad and Sydsaeter, 1987, Theorem 11, p. 143).)

Costate variables. µ(τ) and ν(τ) are both continuously differentiable on R+ with

−µ̇(τ) =
∂He

∂X
(Xe(τ), Ze(τ), xe(τ), τ, µ(τ), ν(τ))

or

(A.37) µ̇(τ) = ∆f(Xe(τ))ν(τ) ∀τ ∈
[
0, T

e
]

;

and

−ν̇(τ) =
∂He

∂Z
(Xe(τ), Ze(τ), xe(τ), τ, µ(τ), ν(τ))

26We slightly abuse notations and omit the dependence on the initial conditions (0, 1).
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or

(A.38) ν̇(τ) = −e−λ0τu(xe(τ)) + ∆ν(τ) ∀τ ∈
[
0, T

e
]
.

Transversality conditions. The boundary conditions Xe(0) = 0, Xe(T
e
) = X and Ze(0) = 1

imply that there are no transversality conditions on µ(τ) at both τ = 0 and τ = T
e

and on ν(τ)
at τ = 0 only while

(A.39) ν(T
e
) = 0.

Free-end point conditions. The optimality condition with respect to T writes as

(A.40) He(Xe(T
e
), Ze(T

e
), xe(T

e
), T

e
, µ(T

e
), ν(T

e
)) +

d

dT

(
Z(T )e−λ0T

)
T=T

e V∞ = 0.

Using (A.36), (A.39), (4.6) taken for T
e

(with the fact that F has no mass point at X), namely

(A.41) Ż(T
e
) = −∆Z(T

e
),

Condition (A.40) rewrites as

(A.42) e−λ0T
e

Z(T
e
)
(
u(xe(T

e−
))− λ1V∞

)
+ µ(T

e
)xe(T

e−
) = 0

or

(A.43) −1

2
e−λ0T

e

Z(T
e
)(xe(T

e−
)− ζ)2 + µ(T

e
)xe(T

e−
) = 0

where xe(T
e−

) denotes the l.-h. side limit of xe(τ) as τ → T
e−

.
Control variable xe(τ).

xe(τ) ∈ arg max
x≥0
He(Xe(τ), Ze(τ), x, µ(τ), ν(τ)).

Because He(Xe(τ), Ze(τ), x, τ, µ(τ), ν(τ)) is strictly concave in x, an interior solution satisfies

∂He

∂x
(Xe(τ), Ze(τ), xe(τ), τ, µ(τ), ν(τ)) = 0

or

(A.44) xe(τ) = ζ + eλ0τ
µ(τ)

Ze(τ)
.

Characterization. Inserting (A.44) taken for T
e

into (A.43) yields

eλ0T
e

µ2(T
e
)

2Ze(T
e
)

+ µ(T
e
)ζ = 0.

The only solution consistent with a non-negative action at date T
e

is thus

(A.45) µ(T
e
) = 0.

From there, it follows that the optimal action is continuous at T
e
, namely

(A.46) xe(T
e−

) = xe(T
e+

) = ζ.

The solution for (A.38) that satisfies the transversality condition (A.39) is

(A.47) ν(τ) = e∆τ

∫ T
e

τ

e−λ1su(xe(s))ds.
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Inserting into (A.37) and integrating yields

µ(τ) = µ(T
e
)−

∫ T
e

τ

∆f(Xe(s))e∆s

(∫ T
e

s

e−λ1s
′
u(xe(s′))ds′

)
ds

or, using (A.45),

(A.48) µ(τ) = −
∫ T

e

τ

∆f(Xe(s))e∆s

(∫ T
e

s

e−λ1s
′
u(xe(s′))ds′

)
ds.

Inserting into (A.44), we obtain (A.31). Finally, the value of T
e

is obtained when
∫ T e

0
xe(τ)dτ =

X or (A.32). That T
e
< T

m
is immediate.

Q.E.D.

Proofs of Proposition 2 : The Hamilton-Bellman-Jacobi equation (4.16) and the optimal
feedback rule (4.18). Iimmediately follows from Proposition 1 taken at Z = 1.
Comparative Statics. From (4.16), we have ∂Ve

∂X (X, 1) ≤ 0 if and only if Ve(X, 1) ≤ λ1

λ0
V∞

Observe that Ve(X, 1) < λ1

λ0
V∞ because of (4.17). Moreover, Ve(X, 1) were to cross λ1

λ0
V∞ at

X1 < X, we would have ∂Ve
∂X (X1, 1) = 0. Observe that λ1

λ0
V∞ is a constant solution to (4.16).

Suppose that Ve(X, 1) were to cross λ1

λ0
V∞ at X1 < X. By Cauchy-Lipschitz Theorem, the

only solution to (4.16) which is such Ve(X1, 1) = λ1

λ0
V∞ is such that Ve(X, 1) = λ1

λ0
V∞ for all

X ∈
[
0, X

]
. This would contradict the boundary condition (4.17). Hence, necessarily, Ve(X, 1) <

λ1

λ0
V∞ for all X. From (4.16), ∂Ve

∂X (X, 1) < 0 for X < X. From (4.17), we thus have Ve(X, 1) >

V∞) for X < X.
Turning now to the optimal action. The r.-h.s. inequality of (4.21) follows from (4.18) and

∂Ve
∂X (X, 1) < 0 for X < X. The l.-h.s. inequality follows from the l.-h.s. inequality in (??),
together with (4.16) and (4.18).

Differentiating (4.16) with respect to X yields

(A.49)

(
1 +

ζ
∂Ve
∂X (X, 1)

)
∂2Ve

∂X2
(X, 1) = λ0.

Because ∂Ve
∂X (X, 1) < 0 for X ∈ [0, X) and σe(X, 1) = ∂Ve

∂X (X, 1) + ζ > 0, we deduce that
∂2Ve
∂X2 (X, 1) < 0 for X ∈ [0, X) and thus σe(X, 1) is decreasing. Q.E.D.

APPENDIX B: SME WITH OBSERVABLE IMPULSE DEVIATIONS

For further reference, we now state some preliminary Lemmas.

Lemma B.1

(B.1)
∂Xo

∂X
(τ ;X) =

σo(Xo(τ ;X))

σo(X)
=

∂Xo

∂τ (τ ;X)

σo(X)
.

Lemma B.2

(B.2)
∂X̂

∂ε
(x, ε, τ ;X)|ε=0 = σo(Xo(τ ;X))

(
x

σo(X)
− 1

)
.

Lemma B.3 Z(τ ;X) and Zo(X) satisfy the following conditions

(B.3) σo(X)
∂Z

∂X
(τ ;X) =

∂Z

∂τ
(τ ;X) ∀τ ≥ 0, X ≥ 0,

(B.4) σo(X)Żo(X) = ∆(1− F (X)− Zo(X)) ∀X ≥ 0 with Zo(0) = 1.

Zo(X) ≥ 1−F (X) for all X with equality at X = 0 only, and thus Żo(X) ≤ 0 when σo(X) > 0.
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Next Lemma provides a characterization of any continuously differentiable SME with Stock-
Markov value function and feedback rule (Vo(X), σo(X))).

Lemma B.4 If Vo(X) is continuously differentiable, the following necessary conditions hold:

(B.5) 0 = max
x∈X

∂V̂
∂ε

(x, 0, X),

(B.6) σo(X) ∈ arg max
x∈X

∂V̂
∂ε

(x, 0, X).

We are now ready to characterize the Stock-Markov value function.

Proof of Proposition 4: We define

(B.7) Wo(X) = Zo(X)Vo(X)

where

(B.8) Wo(X) =

∫ +∞

0

e−λ0τZ(τ ;X)u(σo(Xo(τ ;X)))dτ.

Next lemma turns to the properties of Vo(X) and ϕo(X).

Lemma B.5 Vo(X) and ϕo(X) satisfy the following system of first-order differential equations:

(B.9) σo(X)

(
V̇o(X) +

Żo(X)

Zo(X)
Vo(X)

)
= λ0Vo(X)− u(σo(X)),

(B.10) σo(X)ϕ̇o(X) = λ1ϕ
o(X)− u(σo(X)).

Proof of Lemma B.5: Differentiating (B.8) with respect to X yields

Ẇo(X) =

∫ +∞

0

e−λ0τZ(τ ;X)u′(σo(Xo(τ ;X)))σ̇o(Xo(τ ;X))
∂Xo

∂X
(τ ;X)dτ

+

∫ +∞

0

e−λ0τ
∂Z

∂X
(τ ;X)u(σo(Xo(τ ;X)))dτ.

Using (B.1), we rewrite this condition as

(B.11) σo(X)Ẇo(X) =

∫ +∞

0

e−λ0τZ(τ ;X)u′(σo(Xo(τ ;X)))σ̇o(Xo(τ ;X))
∂Xo

∂τ
(τ ;X)dτ

+

∫ +∞

0

e−λ0τσo(X)
∂Z

∂X
(τ ;X)u(σo(Xo(τ ;X)))dτ.

Integrating by parts the first integral above, we find

(B.12)

σo(X)Ẇo(X) =
[
e−λ0τZ(τ ;X)u(σo(Xo(τ ;X)))

]+∞
0

+λ0

∫ +∞

0

e−λ0τZ(τ ;X)u(σo(Xo(τ ;X)))dτ

+

∫ +∞

0

e−λ0τ

(
σo(X)

∂Z

∂X
(τ ;X)− ∂Z

∂τ
(τ ;X)

)
u(σo(Xo(τ ;X)))dτ.
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Using (B.3) and simplifying yields

(B.13) σo(X)Ẇo(X) = λ0Wo(X)− Zo(X)u(σo(X)) ∀X.

Using the definition of Wo(X) in (B.7) and simplifying yields (B.9).
Using (5.7) and differentiating with respect to X yields

ϕ̇o(X) =

∫ +∞

0

e−λ1τu′(σo(Xo(τ ;X)))
∂Xo

∂X
(τ ;X)dτ.

Using (B.1), we rewrite this condition as

(B.14) σo(X)ϕ̇o(X) =

∫ +∞

0

e−λ1τu′(σo(Xo(τ ;X)))
∂Xo

∂τ
(τ ;X)dτ.

Integrating by parts we obtain∫ +∞

0

e−λ1τu′(σo(Xo(τ ;X)))
∂Xo

∂τ
(τ ;X)dτ =

[
e−λ1τu(σo(Xo(τ ;X)))

]+∞
0

+λ1

∫ +∞

0

e−λ1τu(σo(Xo(τ ;X)))dτ = −u(σo(X)) + λ1ϕ
o(X).

Inserting into (B.14) ends the proof. Q.E.D.

By adopting the deviation (5.8)-(5.9), the regime survival ratio would also change as (5.10).
We can thus write the benefit of a deviation as

(B.15) W(ε, x;X) =W1(ε, x;X) +W2(ε, x;X)

where

(B.16) W1(ε, x;X) = (Zo(X)− 1)

(∫ ε

0

e−λ1τu(x)dτ +

∫ +∞

ε

e−λ1τu(σo(X̂(x, ε, τ ;X)))dτ

)

and

(B.17) W2(ε, x;X) =

∫ ε

0

e−λ0τ

(
1−∆e−∆τ

∫ τ

0

F (X + xs)e∆sds

)
u(x)dτ

+

∫ +∞

ε

e−λ0τ

(
1−∆e−∆τ

∫ τ

0

F (X̂(x, ε, τ ;X))e∆sds

)
u(σo(X̂(x, ε, τ ;X)))dτ.

From (B.16), we deduce

(B.18)
∂W1

∂ε
(0, x,X) = (Zo(X)− 1)

(
u(x)− u(σo(X))

+

∫ +∞

0

e−λ1τu′(σo(Xo(τ ;X)))σ̇o(Xo(τ ;X))
∂X̂

∂ε
(x, ε, s;X)|ε=0dτ

)
.

Using (B.2), this expression can be simplified as

(B.19)
∂W1

∂ε
(0, x,X) = (Zo(X)− 1)

(
u(x)− u(σo(X))

+

(
x

σo(X)
− 1

)∫ +∞

0

e−λ1τu′(σo(Xo(τ ;X)))σ̇o(Xo(τ ;X))
∂Xo

∂τ
(τ ;X)dτ

)
.
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Integrating by parts, we also have

(B.20)

∫ +∞

0

e−λ1τu′(σo(Xo(τ ;X)))σ̇o(Xo(τ ;X))
∂Xo

∂τ
(τ ;X)dτ

=
[
e−λ1τu(σo(Xo(τ ;X)))

]+∞
0

+ λ1

∫ +∞

0

e−λ1τu(σo(Xo(τ ;X)))dτ.

= −u(σo(X)) + λ1ϕ
o(X) = σo(X)ϕ̇o(X)

where the last equality follows from (B.10). Inserting into (B.19) yields

(B.21)
∂W1

∂ε
(0, x,X) = (Zo(X)− 1)

(
u(x)− u(σo(X)) + (x− σo(X)) ϕ̇o(X)

)
.

From (B.17) and (5.10), we deduce

(B.22)
∂W2

∂ε
(0, x,X) = u(x)− u(σo(X))

+

∫ +∞

0

e−λ0τ
(
Z(τ ;X)− (Zo(X)− 1)e−∆τ

)
u′(σo(Xo(τ ;X)))σ̇o(Xo(τ ;X))

∂X̂

∂ε
(x, ε, τ ;X)|ε=0dτ

+

∫ +∞

0

e−λ0τ

(
−∆e−∆τ

∫ τ

0

f(Xo(s;X))
∂X̂

∂ε
(x, ε, s;X)|ε=0e

∆sds

)
u(σo(Xo(τ ;X)))dτ.

Using (B.2), this expression can be simplified as

(B.23)
∂W2

∂ε
(0, x,X) = u(x)− u(σo(X))

+

(
x

σo(X)
− 1

)(∫ +∞

0

e−λ0τ
(
Z(τ ;X)− (Zo(X)− 1)e−∆τ

)
u′(σo(Xo(τ ;X)))σ̇o(Xo(τ ;X))

∂Xo

∂τ
(τ ;X)dτ

+

∫ +∞

0

e−λ0τ

(
−∆e−∆τ

∫ τ

0

f(Xo(s;X))
∂Xo

∂τ
(s;X)e∆sds

)
u(σo(Xo(τ ;X)))dτ

)
.

Differentiating (E.8) with respect to X and using (B.1) yields

(B.24) σo(X)
∂Z

∂X
(τ ;X) = σo(X)Żo(X)e−∆τ −∆e−∆τ

∫ τ

0

f(Xo(s;X))
∂Xo

∂s
(s;X)e∆sds.

Using (B.24), we now rewrite

(B.25)

∫ +∞

0

e−λ0τ

(
−∆e−∆τ

∫ τ

0

f(Xo(s;X))
∂Xo

∂τ
(s;X)e∆sds

)
u(σo(Xo(τ ;X)))dτ

=

∫ +∞

0

e−λ0τ

(
σo(X)

∂Z

∂X
(τ ;X)− σo(X)Żo(X)e−∆τ

)
u(σo(Xo(τ ;X)))dτ.

Integrating by parts, we also have

(B.26)

∫ +∞

0

e−λ0τ
(
Z(τ ;X)− (Zo(X)− 1)e−∆τ

)
u′(σo(Xo(τ ;X)))σ̇o(Xo(τ ;X))

∂Xo

∂τ
(τ ;X)dτ

=
[
e−λ0τ

(
Z(τ ;X)− (Zo(X)− 1)e−∆τ

)
u(σo(Xo(τ ;X)))

]+∞
0

+∫ +∞

0

(
λ0

(
Z(τ ;X)− (Zo(X)− 1)e−∆τ

)
− ∂Z

∂τ
(τ ;X)−∆(Zo(X)− 1)e−∆τ

)
e−λ0τu(σo(Xo(τ ;X)))dτ.
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= λ0Wo(X)−u(σo(X))−λ1(Zo(X)−1)ϕo(X)−
∫ +∞

0

e−λ0τ
∂Z

∂τ
(τ ;X)u(σo(Xo(τ ;X)))dτ.

Using (B.25) and (B.26) and inserting into (B.23) yields

∂W2

∂ε
(0, x,X) = u(x)− u(σo(X))

+

(
x

σo(X)
− 1

)(
λ0Wo(X)− u(σo(X))− λ1(Zo(X)− 1)ϕo(X)

+

∫ +∞

0

e−λ0τ

(
σo(X)

∂Z

∂X
(τ ;X)− ∂Z

∂τ
(τ ;X)−σo(X)Żo(X)e−∆τ

)
u(σo(Xo(τ ;X)))dτ

)
.

Using (B.3) and simplifying yields

(B.27)
∂W2

∂ε
(0, x,X) = u(x)− u(σo(X))

+

(
x

σo(X)
− 1

)(
λ0Wo(X)−Zo(X)u(σo(X))+(Zo(X)−1)u(σo(X))−σo(X)Żo(X)ϕo(X)

−λ1(Zo(X)− 1)ϕo(X)

)
.

Using (B.13) and (B.10) and simplifying yields

(B.28)

∂W2

∂ε
(0, x,X) = u(x)−u(σo(X))+(x− σo(X))

(
Ẇo(X)− (Zo(X)− 1)ϕ̇o(X)− Żo(X)ϕo(X)

)
.

Gathering (B.28) and (B.21) finally yields

∂W
∂ε

(0, x,X) = Zo(X)

(
u(x)− u(σo(X))

)
+ (x− σo(X))

(
Ẇo(X)− Żo(X)ϕo(X)

)
.

Because ∂W
∂ε (0, x,X) so obtained is strictly concave in x, the following first-order condition is

necessary and sufficient for an interior optimum obtained from (B.5) and (B.6):

0 =
∂2W
∂ε∂x

(0, σo(X), X)

Developing, we find

(B.29) σo(X) = ζ +
Ẇo(X)

Zo(X)
− Żo(X)

Zo(X)
ϕo(X).

which writes as (5.16).
Inserting (5.16) into (B.9), we now obtain

σo(X)

(
σo(X)− ζ +

Żo(X)

Zo(X)
ϕo(X)

)
= λ0Vo(X)− λ1V∞ +

1

2
(σo(X)− ζ)2.

Simplifying, we obtain

(B.30)

(
σo(X) +

Żo(X)

Zo(X)
ϕo(X)

)2

= 2λ0Vo(X) +

(
Żo(X)

Zo(X)
ϕo(X)

)2

.
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Taking then the highest root to (B.30), we obtain

(B.31) σo(X) +
Żo(X)

Zo(X)
ϕo(X) =

√√√√2λ0Vo(X) +

(
Żo(X)

Zo(X)
ϕo(X)

)2

.

Inserting (5.16) into (B.31) and simplifying finally yields (5.14).
Limiting Behavior. From (E.8) and the fact that Xo(τ ;X) ≥ X for all τ ≥ 0 and X ≥ X, it
follows that

(B.32) Z(τ ;X) = Zo(X)e−∆τ ∀τ ≥ 0, X ≥ X.

Inserting into (5.6) immediately yields (5.15). From there, it immediately follows that

(B.33) σo(X) = ζ ∀X ≥ X.

Q.E.D.

Proof of Proposition 5: Clearly (5.23) holds for X ≥ X. We turn to the more difficult
case, X ∈ [0, X). Consider the pair (Ve(X,Zo(X)), σe(X,Zo(X))) together with a belief index
Zo(X) now defined as

(B.34) σe(X,Zo(X))Żo(X) = ∆(1− F (X)− Zo(X))

with the boundary condition

(B.35) Zo(0) = 1.

Observe that, provided that σe(X,Z) remains positive, such a Zo(X) is uniquely defined and
satisfies the same properties as in Lemma B.3. In particular, Zo(X) is positive for all X ∈ [0, X).

We shall prove that Ve(X,Zo(X) ≡ Vo(X), σe(X,Zo(X)) ≡ σo(X) and Zo(X) as defined
above altogether form a SME. To ease notations, define accordingly Wo(X) as in (B.7).

First, notice that, from (A.24), it immediately follows that, for X ∈ [0, X),

(B.36)

λ0We(X,Zo(X)) = sup
x∈X

{
Zo(X)u(x) + x

∂We

∂X
(X,Zo(X)) + ∆(1− F (X)− Zo(X))

∂We

∂Z
(X,Zo(X))

}
where we remind that We(X,Zo(X)) = Zo(X)Ve(X,Zo(X)).

Using (A.28) and (B.34), we rewrite (B.36) as

(B.37)

λ0We(X,Zo(X)) = sup
x∈X

{
Zo(X)u(x) + x

∂We

∂X
(X,Zo(X)) + σe(X,Zo(X))Żo(X)ϕe(X,Zo(X))

}
where the maximand above is achieved for

(B.38) σe(X,Zo(X)) = ζ +
1

Zo(X)

∂We

∂X
(X,Zo(X)) ∀X ∈ [0, X).

Still using (A.28), we obtain the following expression of the total derivative of We(X,Zo(X))

(B.39)
dWe

dX
(X,Zo(X)) =

∂We

∂X
(X,Zo(X)) + Żo(X)ϕe(X,Zo(X)) ∀X ∈ [0, X).

Inserting (B.39) into (B.38) yields

(B.40) σe(X,Zo(X)) = ζ+
1

Zo(X)

(
d

dX
We(X,Zo(X))− Żo(X)ϕe(X,Zo(X))

)
∀X ∈ [0, X).
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Also, (A.19) allows us to rewrite

(B.41) ϕe(X,Zo(X)) =

∫ +∞

0

e−λ1τu(σe(X̃e(τ ;X,Zo(X)), Z̃e(τ ;X,Zo(X))))dτ.

At equilibrium, DM expects that the feedback rule σo(X ′) = σe(X ′, Zo(X ′)) prevails for all
X ′ > X and in particular forX ′ = Xo(τ ;X) for τ > 0, Observe that the future trajectory of stock

and beliefs is thus such that X̃e(τ ;X,Zo(X)) = Xo(τ ;X) and Z̃e(τ ;X,Zo(X))) = Zo(Xo(τ ;X))
for all τ > 0. Hence, we rewrite (B.41) as

ϕe(X,Zo(X)) =

∫ +∞

0

e−λ1τu(σe(Xo(τ ;X), Zo(Xo(τ ;X)))dτ

or

(B.42) ϕo(X) = ϕe(X,Zo(X)).

Inserting (B.42) into (B.40) yields

(B.43)

σe(X,Zo(X)) = ζ+
1

Zo(X)

(
Zo(X)

d

dX
Ve(X,Zo(X)) + Żo(X)(Ve(X,Zo(X))− ϕo(X))

)
∀X ∈ [0, X).

Rewriting (B.37), we obtain that Ve(X,Zo(X)) solves

(B.44) λ0Z
o(X)Ve(X,Zo(X)) = sup

x∈X
Zo(X)u(x)

+x

(
Zo(X)

d

dX
Ve(X,Zo(X)) + Żo(X)(Ve(X,Zo(X))− ϕo(X))

)
+σe(X,Zo(X))Żo(X)ϕo(X)

where the maximum is achieved with σe(X,Zo(X)) that satisfies (B.43).
From this, we now observe that Vo(X) ≡ Ve(X,Zo(X) and σo(X) = σe(X,Zo(X)) altogether

solve

(B.45) λ0Z
o(X)Vo(X) = sup

x∈X
Zo(X)u(x) + x

(
Zo(X)V̇o(X) + Żo(X)(Vo(X)− ϕo(X))

)
+σo(X)Żo(X)ϕo(X)

where σo(X), which achieves the maximum on the r.-h.s. above, satisfies

(B.46) σo(X) = ζ +
1

Zo(X)

(
Zo(X)V̇o(X) + Żo(X)(Vo(X)− ϕo(X))

)
∀X ∈ [0, X).

Inserting (B.46) into (B.45), rearranging and simplifying yields that Vo(X) = Ve(X,Zo(X))
indeed satisfies (5.14) as requested with any (continuously differentiable) SME. Moreover, and
from (4.14), the boundary condition (5.15) holds. Hence, (Ve(X,Zo(X)), σe(X,Zo(X))) together
with the associated index Zo(X) that satisfies (B.34)-(B.35) form a SME. Q.E.D.

Bounds. This implementation of the optimum is useful to get bounds on payoffs and actions at
the optimum. Proposition B.1 below provides tight bounds on the Stock-Markov value function
and the feedback rule for any SME, and in particular the one, described in Section 5, that
implements the optimal trajectory.

Proposition B.1 Vo(X), ϕo(X) and σo(X) admit the following bounds:

(B.47) ϕo(X) ≤ V∞ ≤ Vo(X) ≤ V∞
(

1 +
∆

λ0
(1− F (X))

)
∀X ∈

[
0, X

]
,

(B.48) ζ

√
λ0

λ1
≤ σo(X) ≤ ζ ∀X ∈

[
0, X

]
.
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Proof of Proposition B.1: First, using (E.8) and noticing that F (X) ≤ F (Xo(τ ;X)) ≤ 1
for τ ≥ 0, we obtain the bounds

(B.49) Zo(X)e∆τ ≤ Z(τ ;X) = Zo(Xo(τ ;X)) ≤ 1− F (X) + F (X)e−∆τ ∀τ ≥ 0, X ≥ 0.

Inserting into the definition of Vo(X) given in (5.6) and integrating, we obtain

(B.50) Zo(X)ϕo(X) ≤ Zo(X)Vo(X) ≤ (1− F (X))
λ1

λ0
+ F (X)ϕo(X) ∀X ≥ 0.

Of course, we have

(B.51) ϕo(X) ≤ V∞ ∀X ≥ 0

which is the l.-h.s. inequality in (B.47). Inserting into (B.50) yields the r.-h.s. inequality in (B.47).
The second inequality immediately follows from (5.23) and (A.29) taken for Z = Zo(X).

To obtain the r.-h.s. inequality in (B.48), first observe that (4.12), (4.15) and (5.23) imply

σo(X) ≤
√

2λ1V∞ = ζ

as requested. To obtain the l.-h.s. inequality in (B.48), observe that Żo(X) ≤ 0 (from Lemma
B.3) and ϕo(X) ≥ 0 altogether imply

σo(X) ≥
√

2λ0Vo(X).

Using the second left inequality in (B.47) yields the result. Q.E.D.

APPENDIX C: SME WITH NON-OBSERVABLE IMPULSE DEVIATIONS

Proof of Proposition 6: Being given that each decision-maker takes as given the evolution
of beliefs when looking for an optimal action, Vno(X) as defined by (6.4) and following Definition
2 solves

(C.1) Vno(X) = sup
A

∫ +∞

0

e
−
∫ τ
0

(
λ0−σno(Xno(s;X))

Żno(Xno(s;X))
Zno(Xno(s;X))

)
ds
u(σno(Xno(τ ;X)))dτ.

where Zno(X) is consistent with the feedback rule σno(X) that is optimal for problem (C.1) and
satisfies (6.1)-(6.2).

Let first define

(C.2) Wno(X) = Zno(X)Vno(X).

It is routine to show that, at any point of differentiability, Wno(X) satisfies the following
Hamilton-Bellman-Jacobi equation for problem (6.4):

(C.3) λ0Wno(X) = max
x∈X

Zno(X)u(x) + xẆno(X).

The maximand is obtained for an interior solution

(C.4) σno(X) = ζ +
Ẇno(X)

Zno(X)
.

Simplifying yields (6.10). Inserting (C.4) into (C.3) yields

λ0Wno(X) = Zno(X)λ1V∞ +
(Ẇno(X))2

2Zno(X)
+ ζẆno(X).

Solving this second-degree equation in Ẇno(X) yields

(C.5) Ẇno(X) = Zno(X)

(
− ζ +

√
2λ0
Wno(X)

Zno(X)

)
.
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Rewriting this condition in terms of Vno(X) yields (6.8).
The boundary condition (6.9) is immediate. For future reference, observe that it also writes

in terms of Wno(X) as

(C.6) Wno(X) = Zno(X)V∞ ∀X ≥ X.

Q.E.D.

Existence. Finally, our last result proves existence of a SME with non-observable impulse
deviations. Its proof consists in studying the properties of the system of first-order differential
equations satisfied by (Vno(X), Zno(X)) and showing that the boundary conditions at X = 0
and X = X for that system are satisfied.

Proposition C.1 A Stock-Markov value function with non-observable deviations Vno(X) and
an associated feedback rule σno(X) always exist.

Proof of Proposition C.1: We consider the flow of the differential system made of (6.1)
and (C.5) with the initial condition for Zno(X) given by (6.2) together with an arbitrary initial
condition for Wno(X) given by

(C.7) Wno(0) ∈
[
0,
λ1

λ0
V∞
]
.

We look for such an initial value Wno(0) so that the terminal condition (C.6) is satisfied.
Observe that the system (6.1)-(C.5) is Lipschitz-continuous on the open domain

(C.8) Wno(X) > 0

We now define W̃no(Y ) =Wno(X), Zno(Y ) = Zno(X), σ̃no(Y ) = σno(X) where Y = 1−F (X) ∈
[0, 1]. Let also denote R(Y ) = f(F−1(1 − Y )) for all Y ∈ [0, 1]. First, notice that we also have

Żno(Y ) = − Ż
no(X)
R(Y ) and

˙̃W
no

(Y ) = − Ẇ
no(X)
R(Y ) . Second, using (6.10) and (C.2), we rewrite

(C.9) σ̃no(Y ) =

√
2λ0
W̃no(Y )

Zno(Y )
.

We now transform the system of first-order differential equations (6.1)-(C.5) as

(C.10)
˙̃W
no

(Y ) =
Zno(Y )

R(Y )
(ζ − σ̃no(Y )),

(C.11) Żno(Y ) =
∆(Zno(Y )− Y )

R(Y )σ̃no(Y )
.

together with the following boundary conditions

(C.12) W̃no(1) ∈
[
0,
λ1

λ0
V∞
]
, Zno(1) = 1

and

(C.13) W̃no(0) = Zno(0)V∞.

Satisfying boundary conditions at the two end-points Y = 0 and Y = 1 requires a global analysis
of the system. The first step consists in observing that the new system (C.10) can be transformed
into an homogenous system expressed in terms of a variable τ ∈ R+ such that (slightly abusing
notations by not changing the names of variables although they now depend on τ)

(C.14)
˙̃W
no

(τ) = Zno(τ)(−ζ + σ̃no(τ)),
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(C.15) Żno(τ) =
∆(Y − Zno(τ))

σ̃no(Y )
,

(C.16) Ẏ (τ) = −R(Y (τ))

together with the following boundary conditions

(C.17) W̃no(0) ∈
[
0,
λ1

λ0
V∞
]
, Zno(0) = 1, Y (0) = 1

and

(C.18) lim
τ→+∞

W̃no(τ)− Zno(τ)V∞ = 0, lim
τ→+∞

Y (τ) = 0.

Observe that Y (τ) is decreasing. Moreover, direct integration of (C.16) together with the third
condition in (C.17) yields

(C.19) τ =

∫ 1

Y (τ)

dY

R(Y )
.

Consider now the hyperplans

D0 =

{
(W̃, Z, Y ) ∈ R+

3 s.t. W̃ =
λ1V∞
λ0

Z

}
and D1 =

{
(0, Z, Y ) ∈ R+

3
}
.

Observe that the segment for initial conditions

D3 =

{
(W̃, Z, Y ) ∈ R+

3 s.t. W̃ ∈
[
0,
λ1

λ0
V∞
]
, Z = 1, Y = 1

}
lies in the cone of the positive orthant whose faces are the hyperplans D0 and D1. Observe that
the hyperplan

D4 =
{

(W̃, Z, Y ) ∈ R+
3 s.t. W̃ = ZV∞

}
belongs to that cone since 0 < V∞ < λ1

λ0
V∞ and intersects D0 and D1 at the origin only.

Condition (C.19) shows that any trajectory is such that Y (τ) is decreasing and remains in the
bandwith

D2 =
{

(W̃, Z, Y ) ∈ R+
3 s.t. Y ∈ [0, 1]

}
.

Moreover, Condition (C.19) also implies that a trajectory reaches Y = 0 in finite time if and

only if
∫ 1

0
dY
R(Y ) < +∞. If instead

∫ 1

0
dY
R(Y ) = +∞, Y = 0 is only reached asymptotically.

Note that any solution to the system (C.14)-(C.15)-(C.16) with initial conditions (C.17) that

would cross the hyperplan D0 at a time T crosses it from below (from the fact that
˙̃W
no

(T ) ≤ 0
and that direction is not in the hyperplan D0). Similarly, any solution to the system (C.14)-
(C.15)-(C.16) with initial conditions (C.17) that would cross the hyperplan D1 at a time τ1
reaches it from above (from the fact that Żno(τ1) = +∞ and that direction is not in the
hyperplan D1). Moreover, such trajectory stops there.

Because the system is continuous on the open positive cone defined by the faces D0, D1, and
D2, any trajectory starting from the segment D3 can be extended till it reaches the boundaries
of this domain in finite time (Nemytskii and Stepanov, 1989, p. 307). Because the flow of the
system is continuous, the image of D3 which is connected and compact consists of a continuous
line L that might lie on D0, D1, and D2. Observe that, for the initial condition W̃(0) = λ1

λ0
V∞,
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the trajectory immediately crosses D0 and goes out of the cone. Similarly, for the initial condition
W̃(0) = D

λ0
, the trajectory immediately reaches D1 and stays there. By continuity of the flow of

the differential system, trajectories with an initial condition W̃(0) in a neighborhood of λ1

λ0
V∞

goes through D0 while trajectories with an initial condition W̃(0) in a neighborhood of D
λ0

reaches D1. Two cases may a priori arise. First, L may not go though the origin (0, 0, 0). In
this case, and by continuity, the part of L that lies on D2 necessarily crosses D4 somewhere
and the boundary problem has a solution such that limτ→+∞ W̃(τ) = limτ→+∞ Zno(τ)V∞ > 0
or, expressed in terms of original variables Wno(X) = Zno(X)V∞ > 0. Second, L may go
though the origin (0, 0, 0). In this case, there is a trajectory that satisfies the boundary condition

with limτ→+∞ W̃(τ) = limτ→+∞ Zno(τ)V∞ = 0 or expressed in terms of original variables
Wno(X) = Zno(X)V∞ = 0.

Q.E.D.

APPENDIX D: RUNNING EXAMPLE

Proof of Proposition 3: Observe that (4.7) rewrites now as

(D.1) Z(τ) = −(1− Z)e−∆τ + 1− q + qe−∆τ .

It is straightforward to check that Z(τ) ≥ 1− q for all τ > 0 when Z ≥ 1− q. Since the optimal
trajectory starts from Z = 1, this condition always holds.

This expression of Z(τ) allows us to rewrite the definition (4.11) for Ve(X,Z) in a quasi-explicit
form as

(D.2) ZVe(X,Z) = max
x,T

∫ T

0

e−λ0τ
(
−(1− Z)e−∆τ + 1− q + qe−∆τ

)
u(x(τ))dτ

+e−λ0T
(
−(1− Z)e−∆T + 1− q + qe−∆T

)
V∞

subject to

(D.3)

∫ T

0

x(τ)dτ = X −X.

Solving this problem is straightforward. Let denote by µ the multiplier for (D.3). We form the
Lagrangean

L(x, T ) =

∫ T

0

e−λ0τ
(
−(1− Z)e−∆τ + 1− q + qe−∆τ

)
u(x(τ))dτ

+e−λ0T
(
−(1− Z)e−∆T + 1− q + qe−∆T

)
V∞ + µ

(
X −X −

∫ T

0

x(τ)dτ

)
.

Pointwise optimization for this strictly concave objective yields the following expression of the
optimal action at any point in time

(D.4) ζ − xe(τ) =
µeλ0τ

Z(τ)

where, for simplicity, we omit the dependence on the state variables (X,Z).

Integrating over
[
0, T

e
]

yields

(D.5) ζT
e − (X −X) = µ

∫ T
e

0

eλ0τ

Z(τ)
dτ.
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Optimizing now with respect to T and assuming the quasi-concavity of the objective in T
yields the following necessary first-order condition

e−λ0T
e

Z(T
e
)u(xe(T

e−
)) + V∞e−λ0T

e
(
−λ0Z(T

e
) + Ż(T

e
)
)

= µxe(T
e−

)

where xe(T
e−

) denotes the l.h.-s limit of xe(τ) at T
e
. Simplifying, we get

ζxe(T
e−

)− (xe(T
e−

))2

2
+ V∞

(
−λ0 +

Ż(T
e
)

Z(T
e
)

)
= µ

e−λ0T
e

Z(T
e
)
xe(T

e−
)

Using (D.4) taken at τ = T
e
, we rewrite the r.-h.s. and get

ζxe(T
e−

)− (xe(T
e−

))2

2
+ V∞

(
−λ0 +

Ż(T
e
)

Z(T
e
)

)
= xe(T

e−
)(ζ − xe(T e−))

Simplifying further yields

xe(T
e−

) = ζ

√√√√λ0 − Ż(T
e
)

Z(T
e
)

λ1
.

From (D.4) taken at τ = T
e
, we then get

(D.6) µ
eλ0T

e

Z(T
e
)

= ζ

1−

√√√√λ0 − Ż(T
e
)

Z(T
e
)

λ1

 .

Inserting (D.6) into (D.5) and (D.4) finally yields (D.7) and (D.8) respectively:

(D.7) T
e

= T
m

+

1−

√√√√λ0 − Ż(T
e
)

Z(T
e
)

λ1

 e−λ0T
e

Z(T
e
)

∫ T
e

0

eλ0τ

Z(τ)
dτ,

(D.8) xe(τ) = ζ

1− e−λ0(T
e−τ)Z(T

e
)

Z(τ)

1−

√√√√λ0 − Ż(T
e
)

Z(T
e
)

λ1


 ∀τ ∈ [0, T

e
).

Specializing this solution to the case X = 0 and Z = 1 yields the optimal trajectory described

in (4.24) and (4.22) with Z(τ) being given by (4.23). Because eλ0τ

Z(τ) is increasing, xe(τ) is itself

decreasing over [0, T
e
).

Specializing further to the case q = 0 yields the optimal trajectory when the tipping point is

known being at X for sure. In this case, T
k

is given by (4.20) while the optimal action is now

(D.9) xk(τ) =

ζ
(

1− e−λ0(T
k−τ)

(
1−

√
λ0

λ1

))
< ζ for τ ∈ [0, T

k
),

ζ for τ ≥ T k.

Because Z(τ) is decreasing, one has

T
k
< T

m
+

(
1−

√
λ0

λ1

)
e−λ0T

k
∫ T

k

0

eλ0τdτ = T
m

+

(
1−

√
λ0

λ1

)
1− e−λ0T

k

λ0
.

Consider now the function δ(t) ≡ t −
(

1−
√

λ0

λ1

)
1−e−λ0t

λ0
. We have δ(T k) = Tm, δ(0) = 0 and

δ′(t) = 1−
(

1−
√

λ0

λ1

)
e−λ0t > 0. Hence, there is a unique positive root 0 < T

k
< Tm for (4.22).

Q.E.D.
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Proof of Proposition 7: The equilibrium trajectory starting from X = 0 solves

max
x,X(·),T

∫ T

0

e−λ0τZno(X(τ))u(x(τ))dτ + e−λ0TZno(X)V∞

subject to (4.5), X(0) = X, and X(T ) = X,

where Zno(X) is given by (6.1) and (6.2).
Let denote by µ the costate variable for (4.5). The Hamiltonian for this control problem is

(D.10) Hno(X,x, τ, λ) = e−λ0τZno(X)u(x) + µx.

The Maximum Principle with free final time and scrap value gives us the following necessary
conditions for an optimal arc (Xno(τ), xno(τ), T

no
). (See Seierstad and Sydsaeter, 1987, Theorem

11, p. 143).)
Costate variable. µ(τ) is continuously differentiable on R+ with

−µ̇(τ) =
∂Hno

∂X
(Xno(τ), xno(τ), τ, µ(τ))

or

(D.11) −µ̇(τ) = e−λ0τ Żno(Xno(τ))u(xno(τ)) ∀τ ∈
[
0, T

no
]
.

Transversality conditions. The boundary conditions Xno(0) = 0 and Xno(T
no

) = X imply that
there are no transversality conditions on µ(τ) at both τ = 0 and τ = T

no
.

Control variable xno(τ).

xno(τ) ∈ arg max
x≥0
Hno(Xno(τ), x, τ, µ(τ)).

Because Hno(Xno(τ), x, τ, µ(τ)) is strictly concave in x, an interior solution satisfies

∂Hno

∂x
(Xno(τ), xno(τ), τ, µ(τ)) = 0

or

(D.12) xno(τ) = ζ + eλ0τ
µ(τ)

Zno(Xno(τ))
.

Free-end point conditions. The optimality condition with respect to T writes as

(D.13) Hno(Xno(T
no

), xno(T
no

), T
no
, µ(T

no
))− λ0Z

no(X)e−λ0T
no

V∞ = 0.

From (D.12), we get

(D.14) xno(T
no

) = ζ + eλ0T
no µ(T

no
)

Zno(X)
.

Using (D.10), (D.14), inserting into (D.13) and simplifying yields

ζxno(T
no−

)− 1

2

(
xno(T

no−
)
)2

− λ0V∞ = xno(T
no−

)(ζ − xno(Tno−))

or

(D.15) xno(T
no−

) = ζ

√
λ0

λ1
.

where, to account for the discontinuity in action at T
no

, we denote by xno(T
no−

) the l.-h. side

limit of xno(τ) as τ → T
no−

.
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Characterization. Using (D.1) for the optimal arc starting from Z = 1, we get

(D.16) Z(τ) = 1− q + qe−∆τ .

Along the trajectory, we must have

(D.17) Zno(Xno(τ)) = Z(τ) ∀τ ≤ Tno.

Differentiating, we get

(D.18) Żno(Xno(τ)) =
Ż(τ)

xno(τ)
= −q∆e

−∆τ

xno(τ)

Now, we rewrite (D.12) as

µ(τ) = Zno(Xno(τ))(xno(τ)− ζ)e−λ0τ .

Differentiating w.r.t. τ and using (D.18) yields the following ordinary differential equation for
xno(τ):

ẋno(τ)−

(
λ0 −

Ż(τ)

2Z(τ)

)
xno(τ) = −λ0ζ.

It is routine to check that the solution of this ordinary differential equation is of the form

(D.19) xno(τ) =
eλ0τ√
Z(τ)

(
C0 − λ0ζ

∫ τ

0

e−λ0s
√
Z(s)ds

)
for some constant C0. Using (D.15), this constant is determined as

ζ

√
λ0

λ1
=

eλ0T
no√

Z(T
no

)

(
C0 − λ0ζ

∫ T
no

0

e−λ0s
√
Z(s)ds

)
or

(D.20) C0 = ζ

√
λ0

λ1
e−λ0T

no
√
Z(T

no
) + λ0ζ

∫ T
no

0

e−λ0s
√
Z(s)ds.

Integrating (D.19), the corresponding stock evolves according to

(D.21) Xno(τ) = C0

∫ τ

0

eλ0s√
Z(s)

ds− λ0ζ

∫ τ

0

eλ0s√
Z(s)

(∫ s

0

e−λ0s
′√

Z(s′)ds′
)
ds.

The value of T
no

is obtained from the terminal condition Xno(T
no

) = X = ζT
m

. We get:

(D.22) ζT
m

= C0

∫ T
no

0

eλ0τ√
Z(τ)

dτ − λ0ζ

∫ T
no

0

eλ0τ√
Z(τ)

(∫ τ

0

e−λ0s
√
Z(s)ds

)
dτ.

Simplifying and using (D.20) to express C0 yields (6.11).
Inserting the expression of C0 from (D.20) into (D.19), we obtain the expression of xno(τ) for

τ ≤ Tno given in (6.13). The expression τ ≥ Tno is straightforward.
Now, observing that Z(τ) ≥ Z(T

no
) for all τ ≤ T

no
, we obtain the following majoration of

the r.-h. side of (6.11) as

T
m
< e−λ0T

no

(∫ T
no

0

eλ0τdτ

)√
λ0

λ1
+ λ0

∫ T
no

0

e−λ0τ

(∫ τ

0

e−λ0sds

)
dτ

or, after simplifying,

T
m
< T

no −

(
1−

√
λ0

λ1

)
1− e−λ0T

no

λ0
.

From there and (4.20), it follows that T
no
> T

k
. Q.E.D.
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APPENDIX E: EXTRA PROOFS

Proof of Lemma B.1: Starting with the definition of Xo(τ ;X) we get:

∂Xo

∂τ
(τ ;X) = σo(Xo(τ ;X)).

Differentiating with respect to X and using Schwartz’ Lemma (for Xo(τ ;X) twice continuously
differentiable) yields

∂

∂τ
log

(
∂Xo

∂X
(τ ;X)

)
= σ̇o(Xo(τ ;X)).

Integrating and taking into account that Xo(0;X) = X yields

(E.1)
∂Xo

∂X
(τ ;X) = exp

(∫ τ

0

σ̇o(Xo(s;X))ds

)
.

Using the stationarity of the feedback rule and differentiating with respect to t yields

(E.2) σ̇o(Xo(τ ;X)) =
∂2Xo

∂τ2 (τ ;X)
∂Xo

∂τ (τ ;X)
.

Inserting into (E.1) and integrating yields

∂Xo

∂X
(τ ;X) = exp

(
ln

(
∂Xo

∂τ (τ ;X)
∂Xo

∂τ (0;X)

))
and thus

∂Xo

∂X
(τ ;X) =

σo(Xo(τ ;X))

σo(Xo(0;X))
.

Noticing that Xo(0;X) = X yields (B.1). Q.E.D.

Proof of Lemma B.2: Take τ > ε, we have

X̂(x, ε, τ ;X) = X + xε+

∫ τ

ε

σo(X̂(x, ε, s;X))ds

Now observe that, for s ≥ ε, we have

X̂(x, ε, s;X) = Xo(s− ε,X + xε).

Hence, we rewrite

(E.3) X̂(x, ε, τ ;X) = X + xε+

∫ τ

ε

σo(Xo(s− ε,X + xε))ds.

Differentiating with respect to ε yields

(E.4)
∂X̂

∂ε
(x, ε, τ ;X)|ε=0 = x− σo(X) +

∫ τ

0

σ̇o(Xo(s;X))

(
−∂X

o

∂s
(s;X) + x

∂Xo

∂X
(s;X)

)
ds.

Inserting (B.1) into (E.4) yields

∂X̂

∂ε
(x, ε, τ ;X)|ε=0 = x− σo(X) +

(
x

σo(X)
− 1

)∫ τ

0

σ̇o(Xo(s;X))
∂Xo

∂s
(s;X)ds.

Integrating the last term yields

(E.5)
∂X̂

∂ε
(x, ε, τ ;X)|ε=0 = x− σo(X) +

(
x

σo(X)
− 1

)
(σo(Xo(τ,X))− σo(X)) .

Simplifying further yields (B.2). Q.E.D.
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Proof of Lemma B.3: Differentiating (5.3) with respect to τ yields

(E.6)
∂Z

∂τ
(τ ;X) = Żo(Xo(τ ;X))σo(Xo(τ ;X)).

Differentiating (5.3) with respect to X and using (B.1) now yields

(E.7)
∂Z

∂X
(τ ;X) = Żo(Xo(τ ;X))

σo(Xo(τ ;X))

σo(X)
.

Gathering (E.6) and (E.7) yields (B.3). Using (B.3) and (5.3) and

(E.8) Z(τ ;X) = (Zo(X)− 1)e−∆τ + 1−∆e−∆τ

∫ τ

0

F (Xo(s;X))e∆sds ∀τ ≥ 0, X ≥ 0,

finally yields (B.4).
Consider Z0(X) = 1 − F (X). Observe that Ż0(X) < 0 when f(X) > 0. Observe also that

Żo(0) = 0 > Ż0(0) when σo(0) > 0. Hence, Zo(X) > Z0(X) in a starred-right neighborhood of 0.
Suppose that Zo(X) crosses again Z0(X) for the first time at some X1 > 0, the same reasoning
as above shows that Żo(X1) = 0 > Ż0(X1) when σo(X) > 0 and thus Zo(X) < Z0(X) in a
starred-left neighborhood of X1; a contradiction. Hence, Zo(X) ≥ Z0(X) for all X with equality
at X = 0 only. From (B.3), Żo(X) ≤ 0. Q.E.D.

Proof of Lemma B.4: If Vo(X) is continuously differentiable, V̂(x, ε;X) is itself continuously
differentiable in ε, and a first-order Taylor expansion in ε yields

(E.9) V̂(x, ε;X) = Vo(X) + ε
∂V̂
∂ε

(x, 0, X) + o(ε).

Hence, (5.12) amounts to (B.5). Conjectures being correct at equilibrium, (B.6) also holds.
Q.E.D.

A Verification Theorem. Proposition E.1 below shows that the conditions given Proposition
1 to characterize the extended value function by means of an Hamilton-Bellman-Jacobi equation
together with boundary conditions are in fact sufficient. We follow Ekeland and Turnbull (1983,
Theorem 1, p. 6) to derive a Verification Theorem.

Proposition E.1 Assume first that there exists a continuously differentiable functionW0(X,Z)
which satisfies:

(E.10)

λ0W0(X,Z) ≥ Z(t;X,Z)u(x)+x
∂W0

∂X
(X,Z)+∆(1−F (X)−Z(t;X,Z))

∂W0

∂Z
(X,Z) ∀(x,X,Z);

and, second, that there exists an action profile X and a path X(t) =
∫ t

0
X(τ)dτ , Z0(t) = 1 −

∆e−∆t
∫ t

0
F (X(τ))e∆τdτ such that

(E.11) λ0W0(X(t), Z0(t)) = Z0(t)u(X(t))

+X(t)
∂W0

∂X
(X(t), Z0(t)) + ∆(1− F (X(t))− Z0(t))

∂W0

∂Z
(X(t), Z0(t)) ∀t ≥ 0.

Then X is an optimal action profile with its associated path (X(t), Z0(t)).

Proof of Proposition E.1: Suppose that a function We(X,Z) that satisfies conditions in
Proposition A.2 is continuously differentiable. It is our candidate for the function W0(X,Z) in
the statement of Proposition E.1. By definition (A.24), we have

λ0We(X,Z) = Zu(σe(X,Z))+σe(X,Z)
∂We

∂X
(X,Z)+∆(1−F (X)−Z)

∂We

∂Z
(X,Z), ∀(X,Z)
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and thus

(E.12) λ0We(X,Z) ≥ Zu(x) + x
∂We

∂X
(X,Z) + ∆(1− F (X)− Z)

∂We

∂Z
(X,Z), ∀(x,X,Z)

where the inequality comes from the fact that σe(X,Z) maximizes the r.-h.s..

To get (E.11), we use again (A.24) but now applied to the path (xe(t), Xe(t), Ze(t)) where
Xe(t) is such that Ẋe(t) = xe(t) = σe(Xe(t), Ze(t)) with Xe(0) = 0 and Ze(t) = 1 −
∆e−∆t

∫ t
0
F (xe(τ))e∆τdτ .

Define now a value function W̃e(X,Z, t) = e−λ0tWe(X,Z). By (E.12), we get

(E.13)

0 ≥ ∂W̃e

∂t
(X,Z, t)+x

∂W̃e

∂X
(X,Z, t)+∆(1−F (X)−Z)

∂W̃e

∂Z
(X,Z, t)+e−λ0tZu(x) ∀(x,X,Z).

Using Xe(t) = σe(Xe(t), Ze(t)), Ze(t) = 1−∆e−∆t
∫ t

0
F (xe(τ))e∆τdτ and (E.11), we get

(E.14) 0 =
∂W̃e

∂t
(Xe(t), Ze(t), t) + xe(t)

∂W̃e

∂X
(Xe(t), Ze(t), t)

+∆(1− F (Xe(t))− Ze(t))∂W̃
e

∂Z
(Xe(t), Ze(t), t) + e−λ0tZe(t)u(Xe(t)) ∀t ≥ 0.

Take now an arbitrary action plan x with the associated path X(t) =
∫ t

0
x(τ)dτ and Z(t) =

1−∆e−∆t
∫ t

0
F (X(τ))e∆τdτ . Eventually, this path crosses the upper bound X at some T

e
. Let

us fix an arbitrary t > 0. Integrating (E.13) along the path (x(τ), X(τ), Z(τ)), we compute

0 ≥
∫ t

0

(
∂W̃e

∂τ
(X(τ), Z(τ), τ) + x(t)

∂W̃e

∂X
(X(τ), Z(τ), τ)

+∆(1− F (X(τ))− Z(τ))
∂W̃e

∂Z
(X(τ), Z(τ), τ) + e−λ0τZ(τ)u(x(τ))

)
dτ

or

0 ≥
∫ t

0

(
dW̃e

dτ
(X(τ), Z(τ), τ) + e−λ0τZ(τ)u(x(τ))

)
dτ ∀t ≥ 0.

Integrating the first term on the r.-h.s., we thus get

W̃e(0, 0, 0) ≥ W̃e(X(t), Z(t), t) +

∫ t

0

e−λ0τZ(τ)u(x(τ))dτ ∀τ ≥ 0.

Because W̃e(X,Z, t) = e−λ0tWe(X,Z) ≥ 0 for all (X,Z, t), we obtain:

We(0, 0) ≥ e−λ0tWe(X(t), Z(t)) +

∫ t

0

e−λ0τZ(τ)u(x(τ))dτ ∀τ ≥ 0.

Because of the boundary conditions (A.29), e−λ0tWe(X(t), Z(t)) converges towards zero as t→
+∞ for any feasible path. Moreover, for any such feasible path

∫ +∞
0

e−λ0τZ(τ)u(x(τ))dτ exists.
Henceforth, we get:

We(0, 0) ≥ sup
x

∫ +∞

0

e−λ0τZ(τ)u(x(τ))dt

which shows that (xe(τ), Xe(τ), Ze(τ)) is indeed an optimal path. Q.E.D.
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