
From Contemplative to Predictive Modeling
(in actuarial science and risk management)

Arthur Charpentier, Florent Crouzet & Agathe Fernandes Machado

KU Leuven, 2024

� @freakonometrics § freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, 2024 (KU Leuven) 1 / 135

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Back in June 2015...
In June 2015, Jan invited me to give a Actuarial Contact Program (ACP) talk in
Leuven. The take-away slide started with
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Back in June 2015...
In June 2015, Jan invited me to give a Actuarial Contact Program (ACP) talk in
Leuven. The take-away slide was claiming that data won’t speak for themselves
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”End of Theory”... and Models ?

Source: https://www.wired.com/2008/06/pb-theory/
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... Data can’t speak for itself

Source: https://marketoonist.com/2014/01/big-data.html
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Arthur Charpentier Professor at Université du Québec à Montréal

� Denuit and Charpentier (2004, 2005) Mathématiques de l’Assurance Non-Vie,
� Charpentier (2014) Computational Actuarial Science with R,
� Bénéplanc et al. (2022) Manuel d’Assurance,
� Charpentier (2024) Insurance: Biases, Discrimination and Fairness.
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Disclaimer

“Whereof what’s past is prologue,” William Shakespeare (1610), The Tempest

(that phrase stands for the idea that history sets the context for the present, see e.g.
Murray and Sinnreich (2006))

contemplation: noun, con·tem·pla·tion; the act of regarding steadily [MW]

This is a long ongoing work, and, despite my efforts, it might contain errors of any type. Concepts and
results presented in those slides are probably either extremely vague, or wrong. All apologies.
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Agenda

“Rara avis in terris nigroque simillima cygno,” Decimus Iunius Iuvenalis (82 AD)

“No amount of observations of white swans can allow the in-
ference that all swans are white, but the observation of a sin-
gle black swan is sufficient to refute that conclusion,” John Stu-
art Mill (1848)

Statistics rely (a lot) on i.i.d. (stationary) assumption
Machine learning focuses (mainly) on generalization
Accuracy is based on strong stability assumptions
Bias selection can impact interpretation of models
In many actuarial applications, we know that there are ruptures or changes...
what could we do about it ?
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Agenda

what if we observe {x1, · · · , xn} drawn under P but we need to compute
quantities under Q ?
what if we were able to estimate EP[Y |X ] but we want EQ[Y |X ] ?
what if X1 ̸⊥⊥ X2 under P, can we have X1 ⊥⊥ X2 under Q (fairness)
a lot of problems in actuarial science can be formalized like that
brief introduction to ”transfer learning”

instance transfer (reweighting observations)
feature transfer (mapping into a common space)
parameter transfer
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Climate, Finance and Insurance
As mentioned in Intergovernmental Panel on Climate Change, page 594

“What does the accuracy of a climate model’s simulation of past or
contemporary climate say about the accuracy of its projections of climate
change? This question is just beginning to be addressed, exploiting the newly
available ensembles of models...” Randall et al. (2007)

A standard financial disclaimer, see e.g.,

“Past performance is no guarantee of future returns,” Brain (2010)

or in insurance (about wildfire losses in California)

“Looking backward has become less effective in predicting the future,” Frazier
(2021)

“History Doesn’t Repeat Itself, but It Often Rhymes,” Mark Twain (1874)
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Motivation, statistics, rebus sic stantibus

Statistics : clausula rebus sic stantibus (”with things thus standing”)
Statistics commonly deals with random samples. A random sample can be
thought of as a set of objects that are chosen randomly. More formally, it is
”a sequence of independent, identically distributed random data points”. (...)
Independent and identically distributed random variables are often used as an
assumption, which tends to simplify the underlying mathematics. In practical
applications of statistical modeling, however, the assumption may or may not be
realistic ®

Let (Ω, F ,P) denote a probability space,

Let y1, y2, · · · , yn be n i.i.d. samples of a random variable Y distributed by P
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Motivation, statistics, rebus sic stantibus

An important concept in actuarial science is the return period.

“1.0.1. Conditions. The aim of a statistical theory of extreme values is to
analyze observed extremes and to forecast further extremes. (...) The essential
condition in the analysis is the clausula rebus sic stantibus,” Emil Gumbel
(1958), Statistics of Extremes, page 1.

rebus sic stantibus is Latin for ”with things thus standing” (”in gelijkblijvende
omstandigheden” or ”les choses demeurant en l’état”)
clausula rebus sic stantibus is the legal doctrine allowing for a contract or a treaty
to become inapplicable because of a fundamental change of circumstances,
maxim omnis conventio intelligitur rebus sic stantibus for ”every convention is
understood with circumstances as they stand”, by the Italian jurist Scipione
Gentili (1563–1616).
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Motivation, statistics, rebus sic stantibus

“The distribution from which the extremes have been drawn and its
parameters must remain constant in time (or space), or the influence that time
(or space) exercises upon them must be taken into account or eliminated (...)
This assumption, made in most statistical work, is hardly ever realized.” Emil
Gumbel (1958), Statistics of Extremes, page 1.

“1.0.3. The Flood Problem. Similar stationary time series may easily be
obtained for annual droughts, largest precipitations, snowfalls, maxima and
minima of atmospheric pressures and temperatures, and other meteorological
phenomena.” Emil Gumbel (1958), Statistics of Extremes, page 4.

Gumbel (1941a,b) discussed ”the return period of flood flows”, term used in Fuller
(1914) Hazen (1930), on flood flows.
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Motivation, statistics, rebus sic stantibus

Geometric distribution: The probability that the first occurrence of success requires
k independent trials, each with success probability p, the probability that the k-th trial
is the first success is

P(X = k) = (1 − p)k−1p

for k = 1, 2, 3, 4, · · ·. And then, EP[X ] = p−1.
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Motivation, statistics, rebus sic stantibus
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Motivation, statistics, rebus sic stantibus

There is also a connection with the law of small numbers,

Law of small numbers: In a given period of n years, the probability of a given number
r of events of a return period µ is given by the binomial distribution as follows,

P(X = r) =
(

n
r

)
µr (1 − µ)n−r

and if n → ∞ and µ → 0 in such a way that nµ → λ then(
n
r

)
µr (1 − µ)n−r → e−λ λr

r ! .
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Motivation, statistics, rebus sic stantibus

If µ = 1/T , P
(
no-occurrence in [0, t]

)
= e−µt = e−t/T .

e−1 = 0.3678794 and 1 − e−1 = 0.6321206

This means, for example, that there is a 63.2% probability of a flood larger than
the 50-year return flood to occur within any period of 50 year ®

Is this only in the statistical literature ?

See ”generalization” in machine learning...
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Motivation, statistics and overfit
In “old school econometrics”, consider model yi = x⊤

i β + εi , or y = Xβ + ε .

(true) residuals

Ordinary least squares, β̂ = (X⊤X)−1X⊤y so that ŷ = Xβ̂ = X(X⊤X)−1X⊤ y

H

Estimated residuals are ε̂ = (I − H)y = ( I − H ) ε .

(estimated) residuals (true) residuals

Standardized residuals are r̂i =
ε̂i

σ̂
√

1 − Hi ,i
.

(studentized) residuals
(estimated) residuals

Externally studentized residual residuals are t̂i =
ε̂i

σ̃
√

1 − Hi ,i
=

yi − ŷ(i)

si
.

(externally studentized) residuals (estimated) residuals
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Motivation, statistics and overfit

ŷ(i) is the predicted value for i-th point (i.e., x i) when observation (x i , yi) is removed
from the (training) dataset: leave-one-out cross-validation, or ”Jackknife”

Given a sample of size n, a jackknife estimator can be built by aggregating the
parameter estimates from each subsample of size (n − 1) obtained by omitting
one observation. The jackknife technique was developed by Maurice Quenouille
(1924–1973) from 1949 and refined in 1956. John Tukey expanded on the tech-
nique in 1958 and proposed the name ”jackknife” ®

Related to the idea of ”cross-validation”, Stone (1974)
Cross-validation is any of various similar model validation techniques for assessing
how the results of a statistical analysis will generalize to an independent data set
(...) It is often used in settings where the goal is prediction, and one wants to
estimate how accurately a predictive model will perform in practice. It can also
be used to assess the quality of a fitted model ®

� @freakonometrics § freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, 2024 (KU Leuven) 18 / 135

https://en.wikipedia.org/wiki/Jackknife_resampling
https://en.wikipedia.org/wiki/Jackknife_resampling
https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Motivation, statistics and overfit

”Under-fit & Over-fit” (and Goldilocks)

Plan (vanilla) GLM (logistic) regression.
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Motivation, statistics and overfit

”Under-fit & Over-fit” (and Goldilocks)

GAM (logistic) regression, with splines.
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Motivation, statistics and overfit

”Under-fit & Over-fit” (and Goldilocks)

k-nearest neighbors.
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Motivation, statistics and overfit

”Under-fit & Over-fit” (and Goldilocks)

k-nearest neighbors.
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Motivation, statistics and overfit

”Under-fit & Over-fit” (and Goldilocks)

Training error is shown in blue, valida-
tion error in red, both as a function
of the number of training cycles. If
the validation error increases (positive
slope) while the training error steadily
decreases (negative slope) then a situ-
ation of overfitting may have occurred.
The best predictive and fitted model
would be where the validation error has
its global minimum. ®
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Motivation, statistics and overfit
In statistics and machine learning, the bias–variance tradeoff describes the rela-
tionship between a model’s complexity, the accuracy of its predictions, and how
well it can make predictions on previously unseen data that were not used to
train the model. In general, as we increase the number of tunable parameters in
a model, it becomes more flexible, and can better fit a training data set. It is
said to have lower error, or bias. However, for more flexible models, there will
tend to be greater variance to the model fit each time we take a set of samples
to create a new training data set. It is said that there is greater variance in the
model’s estimated parameters. ®

To compute biases and variances, we need some model...
Overfitting is more likely to be a serious concern when there is
little theory available to guide the analysis, ®
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Motivation, machine learning, generalization

Machine learning : a key concept is generalization,

“The generalization performance of a learning method relates to its prediction
capability on independent test data,” section 7.1 Hastie et al. (2009)

A central goal in designing a machine learning system is to guarantee that the
learning algorithm will generalize, or perform accurately on new examples after
being trained on a finite number of them. ®

Law of large numbers: If X , X1, X2, · · · , Xn, · · · are i.i.d. samples of a random
variable distributed according to P, then for any (small) positive non-zero value ϵ > 0:

lim
n→∞

P
[∣∣∣∣∣EP[X ] − 1

n

n∑
i=1

Xi

∣∣∣∣∣ > ϵ

]
= 0
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Motivation, machine learning, generalization
To minimize the discrepancy between training and generalization errors, it is essential
to understand the implications of the law of large numbers.
This understanding is facilitated by concentration inequalities, which provide a
quantitative measure of how much random variables deviate from their expected values.

Höffding’s inequality: If X , X1, X2, · · · , Xn, · · · are i.i.d. samples of a random variable
distributed according to P, such that P

(
Xi ∈ [a, b]

)
= 1, then for any (small) positive

non-zero value ϵ > 0:

P
[∣∣∣∣∣EP[X ] − 1

n

n∑
i=0

Xi

∣∣∣∣∣ > ϵ

]
≤ 2 exp

(
−2nϵ2

(b − a)2

)

Note that we can write

P

∣∣∣∣∣EP[X ] − 1
n

n∑
i=0

Xi

∣∣∣∣∣ > (b − a)
√

−1
2n log(2δ)

 ≤ δ
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Motivation, machine learning, generalization

For binary and 0/1 loss,

for a given m ∈ M, R(m) − R̂n(m) ∼ 1√
n

and we have the following ”worst case scenario”

sup
m∈M

{
R(m) − R̂n(m)

}
∼ log(Card(M))√

n

see Bousquet et al. (2003). And if M is infinite, see Vapnik-Chervonenkis (VC)
dimension, from Vapnik and Chervonenkis (1971).
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Motivation, Time Series

On i.i.d. data, standard to use k-fold cross validation

”This approach involves randomly dividing the set of observations into k
groups, or folds, of approximately equal size. The first fold is treated as a
validation set, and the method is fit on the remaining k-1 folds,” James et al.
(2013)
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Motivation, Time Series
Standard approach, shuffle and then create k groups (sorted)

”there is a bias-variance trade-off associated with the choice of k in k-fold
cross-validation. Typically, given these considerations, one performs k-fold
cross-validation using k = 5 or k = 10, as these values have been shown
empirically to yield test error rate estimates that suffer neither from
excessively high bias nor from very high variance,” James et al. (2013)
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Motivation, Time Series

With cross validation, it is possible to ”adapt” and take into account the dynamics,

for time series, use ”forward-validation”, Hjorth (1982, 1994), or ”rolling
cross-validation, Bergmeir and Beńıtez (2012)
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Motivation, actuarial science

Claims reserving : assume that dynamic of past payments

Astesan (1938)’s chain ladder
• i accident year (cohort)
• j development year
• i + j calendar year

Ci ,j+1 = λj · Ci ,j

development factor

Ci ,j + Yi ,j+1

The primary underlying assumption of the chain-ladder method is that historical
loss development patterns are indicative of future loss development patterns. ®

Mack (1991)’s log-Poisson model, Yi ,j ∼ P(µi ,j), µi ,j = eai +bj

Verrall (1996)’s additive version Yi ,j ∼ P(µi ,j), µi ,j = ea(i)+b(j)
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Motivation, actuarial science

Observed incremental payment
Yi ,j , where i + j ≤ n

Yn,0

Yn−1,1

Y2,n−2

Y1,n−1

Yn−1,0

Y2,0

Y1,0

Y2,1

Y1,1 Y1,n−2

Yn,0

Yn−1,1

Y2,n−2

Y1,n−1

Yn−1,0

Y2,0

Y1,0

Y2,1

Y1,1 Y1,n−2

Future incremental payment
Yi ,j , where i + j > n, to be predicted
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Motivation, actuarial science

Yi ,j ∼ P(µi ,j), µi ,j = e ai + bj

development factor

accident year factor

an

an−1

a2

a1

Yn,0

Yn−1,1

Y2,n−2

Y1,n−1

Yn−1,0

Y2,0

Y1,0

Y2,1

Y1,1 Y1,n−2
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Motivation, actuarial science

Yi ,j ∼ P(µi ,j), µi ,j = e ai + bj

development factor

accident year factor

Once we have estimates, âi and b̂j ,
i , j = 1, · · · , n,

Ŷi ,j = eâi +b̂j

b0 b1 bn−1 bn

Yn,0

Yn−1,1

Y2,n−2

Y1,n−1

Yn−1,0

Y2,0

Y1,0

Y2,1

Y1,1 Y1,n−2

� @freakonometrics § freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, 2024 (KU Leuven) 34 / 135

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Motivation, actuarial science
Taylor (1977)’s separation method

“It is crucial to the logic underly-
ing the chain-ladder method that
the “exogeneous influences” should
not be too great (...) Clearly, it
would be preferable to separate, if
possible, the basic stationary claim
delay distribution from the exoge-
neous influences which are upset-
ting the stationarity”

Yi ,j ∼ P(µi ,j), µi ,j = eai +γi+j

Ŷi ,j = eâi +γ̂i+j

γn−1 Yn,0

Yn−1,1

Y2,n−2

Y1,n−1

Yn−1,0

Y2,0

Y1,0

Y2,1

Y1,1 Y1,n−2

� @freakonometrics § freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, 2024 (KU Leuven) 35 / 135

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Motivation, actuarial science

Taylor (1977)’s separation method
Yi ,j ∼ P(µi ,j), µi ,j = eai +γi+j

Ŷi ,j = eâi +γ̂i+j

what is γ̂i+j when i + j > n ?

γn+2

Yn,0

Yn−1,1

Y2,n−2

Y1,n−1

Yn−1,0

Y2,0

Y1,0

Y2,1

Y1,1 Y1,n−2
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Motivation, actuarial science

Quarg and Mack (2004)’s Munich chain ladder, learn from both (accumulated)
payments and incurred estimates

Cn,0

Cn−1,1

C2,n−2

C1,n−1

Cn−1,0

C2,0

C1,0

C2,1

C1,1 C1,n−2

In,0

In−1,1

I2,n−2

I1,n−1

In−1,0

I2,0

I1,0

I2,1

I1,1 I1,n−2
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Motivation, actuarial science

Quarg and Mack (2004)’s Munich chain ladder, learn from both (cumulated)
payments and incurred estimates

Cn,0

Cn−1,1

C2,n−2

C1,n−1

Cn−1,0

C2,0

C1,0

C2,1

C1,1 C1,n−2

In,0

In−1,1

I2,n−2

I1,n−1

In−1,0

I2,0

I1,0

I2,1

I1,1 I1,n−2

Constraint, Ci ,n−1 = Ii ,n−1, ∀i
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Motivation, actuarial science

Static life table :
Denuit and Robert (2007) or
Pitacco et al. (2009)

Exposure Ex ,t
Deaths Dx ,t = Ex ,t − Ex+1,t+1

At t, fixed qx = Dx ,t
Ex ,t

= µx

Lx+1 = Lx · (1 − qx )
The period life table represents
mortality rates during a specific
time period for a certain popu-
lation ®

ag
e

x

year t
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Motivation, actuarial science

Prospective (cohort) life table :
Lee and Carter (1992) or
Pitacco et al. (2009)

log[µx ,t ] = ax + bx · κt

average rate

rate of change per age

time index

µx ,t = Dx ,t
Ex ,t

= Ex ,t − Ex+1,t+1
Ex ,t

We need κ̂t for t > today.
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Motivation, actuarial science
A cohort life table, often referred to as a generation life table, is used to represent
the overall mortality rates of a certain population’s entire lifetime. ®

Multiple prospective life table : Li and Lee (2005)

log[µi
x ,t ] = ai

x + bi
x · κi

t + Bx · Kt

average rate

rate of change per age

time index

rate of change per age

time index
“Mortality patterns and trajectories in closely related populations are likely to
be similar in some respects, and differences are unlikely to increase in the long
run. It should therefore be possible to improve the mortality forecasts for
individual countries by taking into account the patterns in a larger group,” Li
and Lee (2005)
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Motivation, climate change

Climate, how to predict in ”uncharted territory”, Schmidt (2024)?
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Motivation, climate change
A wildfire (or forest fire, bushfire) is an unplanned, uncontrolled and unpredictable
fire in an area of combustible vegetation. ®

Climate risk in California (U.S.)

“Why is it illegal in California to consider climate-informed catastrophe
models when setting wildfire insurance premiums?” Frazier (2021)

Some general context:
California Code Of Regulations, title 10, Chapter 5 (Insurance Commissioner), § 2644
(”Determination of Reasonable Rates”)

Cal. Code Regs. tit. 10 § 2644.4 (Projected Losses)

”Projected losses” means the insurer’s historic losses per exposure, adjusted by
catastrophe adjustment, as prescribed in section 2644.5. �
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Motivation, climate change

Cal. Code Regs. tit. 10 § 2644.5 (Catastrophe Adjustment)

In those insurance lines and coverages where catastrophes occur, the
catastrophic losses of any one accident year in the recorded period are replaced
by a loading based on a multi-year, long-term average of catastrophe claims.
The number of years over which the average shall be calculated shall be at
least 20 years for homeowners multiple peril fire, and at least 10 years for
private passenger auto physical damage. Where the insurer does not have
enough years of data, the insurer’s data shall be supplemented by appropriate
data. The catastrophe adjustment shall reflect any changes between the
insurer’s historical and prospective exposure to catastrophe due to a change in
the mix of business. There shall be no catastrophe adjustment for private
passenger auto liability. �
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Motivation, climate change

Climate risk in France,
Subsidence is a general term for downward vertical movement of the Earth’s
surface, which can be caused by both natural processes and human activities.
®

“To determine whether a drought episode is considered abnormal, the SWI
established for a given month is compared to the indicators for that same
month over the previous 50 years. It is considered “abnormal” if the indicator
presents a return period greater or equal to 25 years,” Charpentier et al. (2022)1

1not sure how to define properly a “25 year return period” for non-stationary time series,
Olsen et al. (1998), Salas and Obeysekera (2014), Read and Vogel (2015), Du et al. (2015)
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Motivation, is-ought (and algorithmic fairness)
Fairness, of predictive models, Charpentier (2024),

“is-ought” problem, David Hume (1739, 1748)
The is–ought problem arises when one makes claims about what ought to be
that are based solely on statements about what is (...) an ethical or judgmental
conclusion cannot be inferred from purely descriptive factual statements. ®

On a French motor dataset, average claim frequencies are 8.94% (men) 8.20% (women).

Logistic regression on k variables excluding gender.
men women

k = 0 8.68% 8.68%
k = 2 8.85% 8.37%
k = 8 8.87% 8.33%
k = 15 8.94% 8.20%
empirical 8.94% 8.20%
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Motivation, is-ought (and algorithmic fairness)
“Machine learning won’t give you anything like gender neutrality ‘for free’ that
you didn’t explicitly ask for,” Kearns and Roth (2019).
What if distributions of scores, conditional on S1 or S2 (two protected attributes) are
significantly different ? e.g., S1 ∈ {man, woman} and S2 ∈ {white, black}.
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Motivation, is-ought (and algorithmic fairness)

Mitigation of discrimination (or unequal treatment) has a lot to do with the
“is-ought” problem
Supreme Court Justice Harry Blackmun stated, in 1978, “in order to get beyond
racism, we must first take account of race. There is no other way. And in order
to treat some persons equally, we must treat them differently,” cited in Knowlton
(1978), as mentioned in Lippert-Rasmussen (2020)

To quote another Supreme Court Justice, in 2007, John G. Roberts of the US
Supreme Court submits: “The way to stop discrimination on the basis of race
is to stop discriminating on the basis of race” Turner (2015) and Sabbagh (2007)
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Selection Biais & Observational Data

Selection bias
The phrase ”selection bias” most often refers to the distortion of a statistical
analysis, resulting from the method of collecting samples. If the selection bias is
not taken into account, then some conclusions of the study may be false. ®

Classical econometric problem, see Heckman (1974, 1976, 1979). Suppose

yi = x⊤
i β + εi

but either observed zi = 1, or not zi = 0. Suppose

zi =
{

1 if z⋆
i = x⊤

i γ + ui > 0
0 if z⋆

i = x⊤
i γ + ui ≤ 0

where U ∼ N (0, 1).
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Selection Biais & Observational Data

zi = 1 (not censored) when ui ≥ −x⊤
i γ, i.e.

P
(
Zi = 1

)
= P

(
ui ≥ −x⊤

i γ
)

= 1 − Φ(−x⊤
i γ) = Φ(x⊤

i γ).

Suppose (
U
ε

)
∼ N

((
0
0

)
,

(
1 ρ
ρ σ2

))

i.e. E
(
Yi
∣∣Yi observed

)
= E

(
Yi
∣∣Z ⋆

i > 0
)

= E
(
Yi
∣∣Ui > −x⊤

i γ
)
,

E
(
Yi
∣∣Yi observed

)
= x⊤

i β + E
(
εi
∣∣Ui > −x⊤

i γ
)

= x⊤
i β + ρσ

ϕ(x⊤
i γ)

Φ(x⊤
i γ)

inverse Mills ratio

If ρ = 0, no endogenous selection effects.
See Charpentier and Geoffard (2024) on bodily
injury claims, in France (trial or insurance).
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Selection Biais & Observational Data
Propensity score

The “propensity” describes how likely a unit is to have been treated, given its
covariate values. The stronger the confounding of treatment and covariates, and
hence the stronger the bias in the analysis of the naive treatment effect, the
better the covariates predict whether a unit is treated or not. By having units
with similar propensity scores in both treatment and control, such confounding
is reduced. ®

”The propensity score is the conditional probability of assignment to a
particular treatment given a vector of observed covariates”, Rosenbaum and
Rubin (1983)

Suppose observed data are {
(
x i , ai , yi

)
}n

i=1 drawn i.i.d (independent and identically
distributed) from unknown distribution P, where A ∈ {0, 1}, denotes either ”control”
(placebo) or ”treated” (medicine).
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Selection Biais & Observational Data

Let Y (a) (or Y (x , a)) denote ”potential outcomes” (under control and treatment).

In many application, the quantity of interest is TE (or TE (x)) the treatment effect,
TE = Y (1) − Y (0)

Name Treatment Outcome (Weight) Gender Height · · ·
ai yi yi(0) yi(1) TE x1,i x2,i · · ·

1 Alex 0 75 75 ? ? H 172 · · ·
2 Betty 1 52 ? 52 ? F 161 · · ·
3 Beatrix 1 57 ? 57 ? F 163 · · ·
4 Ahmad 0 78 78 ? ? H 183 · · ·

Different notations are used y(1) and y(0) in Imbens and Rubin (2015), y1 and y0 in
Cunningham (2021), or yt=1 and yt=0 in Pearl and Mackenzie (2018).

� @freakonometrics § freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, 2024 (KU Leuven) 52 / 135

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Selection Biais & Observational Data

When ai = 1 is observed, and x i ,{
observation : yi(1)
counterfactual : yi(0)

Following Holland (1986), given a ”treatment” T (here A), the average treatment
effect on outcome y is

τ = ATE = E
[
Y (1) − Y (0)

]
,

and following Wager and Athey (2018), given a treatment a, the conditional average
treatment effect on outcome y , given some covariates x ,is

τ(x) = CATE(x) = E
[
Y (1) − Y (0)

∣∣X = x
]
.
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Selection Biais & Observational Data

Strongly ignorable treatment assignment
Treatment assignment is said to be strongly ignorable if the potential outcomes are
independent of treatment (A) conditional on background variables X

(Y (0), Y (1)) ⊥⊥ A | X

Balancing score
Following Rubin (1973, 1974), a balancing score b(X) is a function of the observed
covariates X such that the conditional distribution of X given b(X) is the same for
treated (A = 1) and control (A = 0) units

A ⊥⊥ X | b(X)
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Selection Biais & Observational Data

Propensity score

e(x) = P(A = 1|A = x)

As proved in Rosenbaum and Rubin (1983),
the propensity score e(x) is a balancing score
if treatment assignment is strongly ignorable given x then, it is also strongly
ignorable given any balancing function (specifically, given the propensity score)

(Y (0), Y (1)) ⊥⊥ A | e(X).
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Selection Biais & Observational Data

Horvitz -Thompson theory
One very early weighted estimator is the Horvitz–Thompson estimator of the
mean. When the sampling probability is known, from which the sampling pop-
ulation is drawn from the target population, then the inverse of this probability
is used to weight the observations. This approach has been generalized to many
aspects of statistics under various frameworks. In particular, there are weighted
likelihoods, weighted estimating equations, and weighted probability densities
from which a majority of statistics are derived. ®

Suppose observed data are {
(
X i , Ai , Yi

)
}n

i=1 drawn i.i.d (independent and identically
distributed) from unknown distribution P, where A ∈ {0, 1}.
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Selection Biais & Observational Data

Suppose observed data are {
(
X i , Ai , Yi

)
}n

i=1 drawn i.i.d (independent and identically
distributed) from unknown distribution P, where A ∈ {0, 1}.
On can derive an Inverse Probability Weighted Estimator (IPWE )

µa = E
[ 1A=aY

p(A = a|X)

]
where p(a|x) = P(A = a|X = x) = P(A = a, X = x)

P(X = x)
estimate p(a|x) with p̂n(a|x), using any propensity model (e.g., logistic regression
model)

µ̂IPWE
a,n = 1

n

n∑
i=1

yi1Ai =a
p̂n(ai |x i)
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Selection Biais & Observational Data

We make the following assumptions.
(A1) Consistency: Y = Y (A)
(A2) No un-measured confounders: {Y (0), Y (1)} ⊥⊥ A|X .

More formally, for each bounded and measurable functions f and g ,

E(A,Y ) [f (Y (X , A)) g(A) | X ] = EY [f (Y (X , A)) | X ] · EA [g(A) | X ] .

This means that treatment assignment is based solely on covariate data and
independent of potential outcomes.

(A3) Positivity: P(A = a|X = x) = EA[1(A = a) | X = x] > 0 for all a and x.
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Selection Biais & Observational Data

E [Y ∗(a)] = E(X ,Y ) [Y (X , a)] = E(X ,A,Y )

[ Y 1(A = a)
P(A = a|X )

]
E(X ,Y ) [Y (X , a)] = EX [EY [Y (X , a) | X ]] .

from (A1)

then simply (by (A3) EA[1(A = a) | X ] > 0)

EY [Y (X , a) | X ] = EY [Y (X , a) | X ] EA[1(A = a) | X ]
EA[1(A = a) | X ] =

E(A,Y ) [Y (X , a)1(A = a) | X ]
E[1(A = a) | X ]

i.e.
EY [Y (X , a) | X ] = E(A,Y )

[Y (X , a)1(A = a)
E[1(A = a) | X ]

∣∣∣∣X]
The Inverse Probability Weighted Estimator (IPWE ) is known to be unstable if some
estimated propensities are too close to 0 or 1 (see calibration issues).
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Selection Biais & Observational Data

Augmented Inverse Probability Weighted Estimator (AIPWE ), Cao et al. (2009)

µ̂AIPWE
a,n = 1

n

n∑
i=1

(
Yi1Ai =a

p̂n(Ai |Xi)
− 1Ai =a − p̂n(Ai |Xi)

p̂n(Ai |Xi)
Q̂n(Xi , a)

)

= 1
n

n∑
i=1

(
1Ai =a

p̂n(Ai |Xi)
Yi + (1 − 1Ai =a

p̂n(Ai |Xi)
)Q̂n(Xi , a)

)

= 1
n

n∑
i=1

(
Q̂n(Xi , a)

)
+ 1

n

n∑
i=1

1Ai =a
p̂n(Ai |Xi)

(
Yi − Q̂n(Xi , a)

)

here we need a regression estimator Q̂n(x, a) to predict outcome Y based on covariates
X and treatment A, for some subject i .
This approach is said to by ”doubly robust” (with a second order bias)
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Post Stratification and Weights
Inspired from techniques used in sampling theory, use post-stratification techniques,
which is standard when dealing with a ”biased sample”.
The regression function is defined a

µ(x) = EP[Y |X = x] = E
[
EP[Y |X = x, A]

]
=
∫

A
EP[Y |X = x, A = a]dP[A = a].

Following Moodie and Stephens (2022), the later can be written

µ(x) =
∫

A
EP[Y · W |X = x, A = a]dP[A = a|X = x] = EP[Y · W |X = x],

where W is a version of the Radon-Nikodym derivative

W = dP[A = a]
dP[A = a|X = x] ,

corresponding to the change of measure that will give independence between X and A.
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Post Stratification and Weights

Properties of W
We have the following interesting property: let W be a version of the Radon-Nikodym
derivative

W = dP[A = a]
dP[A = a|X = x] ,

then EP[W ] = 1, EP[A · W ] = EP[A] and EP[X · W ] = EP[X ].
As proved in Fong et al. (2018),

EP[W ] =
∫∫

wdP[A = a, X = x] =
∫∫

wdP[A = a|X = x]dP[X = x]

that can be written

EP[W ] =
∫∫ dP[A = a]

dP[A = a|X = x]dP[A = a|X = x]dP[X = x],
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Post Stratification and Weights

and therefore
EP[W ] =

∫∫
dP[A = a]dP[X = x] = 1.

Similarly

EP[A · W ] =
∫∫

swdP[A = a, X = x] =
∫∫

swdP[A = a|X = x]dP[X = x],

and

EP[A · W ] =
∫∫

sdP[A = a]dP[X = x] =
∫

EP[S]dP[X = x] = EP[S].

In statistics, this Radon-Nikodym derivative is related to the propensity score, as
discussed in Freedman and Berk (2008), Li and Li (2019) and Karimi et al. (2022).
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Censoring, Kaplan-Meier and Reweighting
Classical problem in survival analysis, t is (true) failure times, a ∈ {0, 1} denotes
censoring, and c censored time.

ai = 1(ti ≤ ci) and we observe yi = min{ti , ci}.

Let S(t) = P[T > t] and K (t) = P[C > t].
Observations are (yi , ai). Suppose random censoring.
Following Kaplan and Meier (1958), recall that the survival function satisfies
S(t + 1) = q(t + 1) · S(t), for t ∈ N

S(t) = Prob(τ > t | τ > t − 1) Prob(τ > t − 1)

= (1 − Prob(τ ≤ t | τ > t − 1)) Prob(τ > t − 1)

= (1 − Prob(τ = t | τ ≥ t)) Prob(τ > t − 1)

= q(t)S(t − 1) ,
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Censoring, Kaplan-Meier and Reweighting

If we iterate S(t) = q(t) · S(t − 1) = q(t) · q(t − 1) · S(t − 2) = · · · ,

S(t) =
t∏

k=0
q(k) where q(k) = 1 − P[t = k|t ≥ k]

ŜKM(t) =
t∏

k=0
q̂(k) where q̂(k) = 1 − dk

nk
= 1 −

n∑
i=1

1(yi = k)

n∑
i=1

1(yi ≥ k)
,

d(k) is the number of known deaths at time k and n(k) is the number of those
persons who are alive (and not being censored) at time k − 1.

Similarly, we can also derive the survival function for censoring times K , K̂ (t).
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Censoring, Kaplan-Meier and Reweighting

Recall that without censoring, F̂ (t) = 1
n

n∑
i=1

1(yi ≤ t) . With censoring, Robins and

Rotnitzky (1992) suggested

F̂ (t) = 1
n

n∑
i=1

ai1(yi ≤ t)
K̂ (y−

i )

where ai = 1(ti ≤ ci). Satten and Datta (2001) proved that F̂ (t) = 1 − ŜKM(t).
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Calibration (when ”probabilities” are badly assessed)
In many applications, we need to properly assess P(Y = 1| X = x)

model calibration can be also used to refer to Bayesian inference about the value
of a model’s parameters, given some data set, or more generally to any type
of fitting of a statistical model. As Philip Dawid puts it, ”a forecaster is well
calibrated if, for example, of those events to which he assigns a probability 30
percent, the long-run proportion that actually occurs turns out to be 30 percent.”
®, see Dawid (1982).

Prediction Ŷ of Y is a well-calibrated prediction if EP[Y |Ŷ = p] = ŷ , for all p ∈ (0, 1).
“Out of all the times you said there was a 40 percent chance of rain, how often
did rain actually occur? If, over the long run, it really did rain about 40 percent
of the time, that means your forecasts were well calibrated,” Silver (2012)
“we desire that the estimated class probabilities are reflective of the true
underlying probability of the sample,” Kuhn and Johnson (2013)
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Calibration (when ”probabilities” are badly assessed)

“When we speak of the ‘probability of death’, the exact meaning of this
expression can be defined in the following way only. We must not think of an
individual, but of a certain class as a whole, e.g., ‘all insured men forty-one
years old living in a given country and not engaged in certain dangerous
occupations’. A probability of death is attached to the class of men or to
another class that can be defined in a similar way. We can say nothing about
the probability of death of an individual even if we know his condition of life
and health in detail. The phrase ‘probability of death’, when it refers to a
single person, has no meaning for us at all,” von Mises (1928, 1939).
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Calibration (when ”probabilities” are badly assessed)

As explained in Van Calster et al. (2019), “among patients
with an estimated risk of 20%, we expect 20 in 100 to
have or to develop the event”.

If 40 out of 100 in this group are found to have the
disease, the risk is underestimated,
If we observe that in this group, 10 out of 100 have the
disease, we have overestimated the risk.

Hosmer-Lemeshow test, from Hosmer Jr et al. (2013) (logis-
tic regression), and Bier score, from Brier (1950) and Murphy
(1973).
Function plotted in psychological papers Keren (1991).
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Calibration (when ”probabilities” are badly assessed)

BS = 1
n

n∑
i=1

(
ŝ(x i) − yi

)2
Calibration curve is defined as

g :
{

[0, 1] → [0, 1]
p 7→ g(p) := EP[Y | ŝ(x) = p]

Quantile Bins
Set ŷi = ŝ(x i), sorted ŷ1 ≤ ŷ2 ≤ · · · ≤ ŷn, partition I1, · · · , I10 of {1, 2, · · · , n}.
As in Pakdaman Naeini et al. (2015), consider scatter plot

(u,vk), where uk = 1
nk

∑
i∈Ik

ŷi and vk = 1
nk

∑
i∈Ik

yi
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Calibration (when ”probabilities” are badly assessed)

Local Regression
Local regression of {(ŝ(x i), yi)}

ĝα(p) = 1
nI

∑
i∈I

yi where I = {i : |ŝ(x i) − p| ≤ α}.

as suggested in Denuit et al. (2021)
One could also consider some kernel based local regression (of degree 1 or 2)
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Calibration (when ”probabilities” are badly assessed)

Calibration scatterplot per quantile bins

(see also Machado et al. (2024a,b))

� @freakonometrics § freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, 2024 (KU Leuven) 72 / 135

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Calibration (when ”probabilities” are badly assessed)

Local regression scatterplot per bins, [0; 0.1), [0.1; 0.2), [0.2; 0.3), [0.3; 0.4), etc
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Calibration (when ”probabilities” are badly assessed)

Calibration scatterplot per local regression (small bandwidth)
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Calibration (when ”probabilities” are badly assessed)

Local regression scatterplot per local regression (larger bandwidth)
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Selection Bias and Importance Sampling
Importance sampling is a classical technique for Monte Carlo simulations.
Monte Carlo is based on the law of large numbers: if we can draw i.i.d. copies of a
random variable Xi ’s, under probability P, then

1
n

n∑
i=1

h(xi) → EP[h(X )], as n → ∞.

Much more can be obtained, since the empirical distribution Pn (associated with
sample {x1, · · · , xn}) converges to P as n → ∞ (see, e.g., Van der Vaart (2000)).

Now, assume that we have an algorithm to draw efficiently i.i.d. copies of a random
variable Xi ’s, under probability P, and we want to compute EQ[h(X )].

1
n

n∑
i=1

dQ(xi)
dP(xi)︸ ︷︷ ︸

ωi

h(xi) → EQ[h(X )], as n → ∞.
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Selection Bias and Importance Sampling

The term is on the left is
µ̂IS = 1

n

n∑
i=1

dQ(xi)
dP(xi)

h(xi)

and if the likelihood ratio is known only up to a multiplicative constant, define a
“self-normalized importance sampling” estimate, as coined in Neddermeyer (2009) and
Owen (2013),

µ̂IS′ =
∑n

i=1 ωih(xi)∑n
i=1 ωi

with ωi ∝ dQ(xi)
dP(xi)

.

µ̂IS′ =
∑n

i=1 ωih(xi)∑n
i=1 ωi

= 1
n

n∑
i=1

ωih(Xi)︸ ︷︷ ︸
→EP[X ]

n
n∑

i=1
ωih(xi)︸ ︷︷ ︸
→1

→ EQ[X ], as n → ∞.
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Selection Bias and Importance Sampling

Law of large numbers: If X , X1, X2, · · · , Xn, · · · are i.i.d. samples of a random
variable distributed according to P, then for any (small) positive non-zero value ϵ > 0,
if Q ≪ P:

lim
n→∞

Q
[∣∣∣∣∣EQ[X ] − 1

n

n∑
i=1

ωiXi

∣∣∣∣∣ > ϵ

]
= 0, where ωi ∝ dQ(xi)

dP(xi)
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Selection Bias and Importance Sampling
(1) suppose we can generate Poisson distribution P(8), we want some Poisson P(5),
(2) suppose we can generate Poisson distribution P(5), we want some Poisson P(8).
In our context, one can define the ”importance sampling estimator” of EP[Y (1)], as

µ̂IS(Y (1)) = 1
n1

∑
ti =1

yi
e(x i)

nt
n = 1

n
∑
ti =1

yi
e(x i)

,

and a ”self-normalized importance sampling” estimate for EP[Y (1)] is

µ̂IS′(Y (1)) =
∑

ti =1 ωiyi∑
ti =1 ωi

, where ωi = 1
e(x i)

.

The ”self-normalized importance sampling” estimate for τ

τ̂ IS′ =
∑

ti =1 ωiyi∑
ti =1 ωi

−
∑

ti =0 ω′
iyi∑

ti =0 ω′
i

−, where ωi = 1
e(x i)

and ω′
i = 1

1 − e(x i)
.
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Distorting Scores to Mitigate Unfairness

When dealing with fairness and discrimination, Charpentier (2024), we want to insure,
if ŷ = m(x, s), either

that model m satisfies the independence property if m(X , S) ⊥⊥ S , with
respect to the distribution P of the triplet (X , S, Y )

that model satisfies the separation property if m(X , S) ⊥⊥ S | Y , with respect
to the distribution P of the triplet (X , S, Y )

that model satisfies the sufficiency property if Y ⊥⊥ S | m(X , S) , with respect
to the distribution P of the triplet (X , S, Y )

demographic parity

equalized odds

calibration
For demographic parity, maybe Ŷ ̸⊥⊥ S under P, but Ŷ ⊥⊥ S under Q.
Mitigation means distorting scores
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Distorting Scores to Mitigate Unfairness

When dealing with fairness and discrimination, Charpentier (2024), we want to insure,
e.g., demographic parity, Ŷ ⊥⊥ S (where S is a categorical sensitive attribute),weak version : EP[Ŷ |S = A] = EP[Ŷ |S = B]

strong version : (Ŷ |S = A) L= (Ŷ |S = B)

We need a ”distance” between two probability measures, PA and PB, e.g., Wasserstein,

W2
2 (PA,PB) = min

T :[0,1]→[0,1]
E
[(

T (X ) − X
)2] = E

[(
F −1

B ◦ FA(X ) − X
)2]

Y ∼ PB

X ∼ PA

Y ∼ PB

X ∼ PA
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Distorting Scores to Mitigate Unfairness

T ⋆ (x) = FB
−1 ◦ FA (x)

optimal transport mapping quantile of level p in group B

probability p associated with x in group A
T ⋆ is a monotonic (nondecreasing) mapping.

T ⋆ = argmin
T :[0,1]→[0,1]

∫ 1

0

(
T (x) − x

)2dFA(x)

i.e. argmin
T :[0,1]→[0,1]

E
[(

T (X ) − X
)2] where X ∼ FA ,

Y with Y ∼ FB
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Distorting Scores

W2(PA,PB)2 =
∫

X
|F −1

B ◦ FA(x) − x |2dPA(x) =
∫ 1

0
|F −1

B (u) − F −1
A (u)|2du

E
[(

T ⋆(X ) − X
)2] = min

T :[0,1]→[0,1]
E
[(

T (X ) − X
)2]

Mapping T is associated to a ”push-forward” operator
PB(S) = T#PA(S) = P0

(
T −1(S)

)
, ∀S ⊂ R.
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Distorting Scores
Optimal transport distance is interesting because it provides a constructive mapping,
point by point (as in the original Monge (1781)’s problem),

Monge (1781), “Mémoire sur la théorie des déblais et des remblais ”

hole / excavation site

pile of sand
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Distorting Scores
Optimal transport distance is interesting because it provides a constructive mapping,
point by point (as in the original Monge (1781)’s problem),

Monge (1781), “Mémoire sur la théorie des déblais et des remblais ”

hole / excavation site

pile of sand
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Distorting Scores
One can also consider barycenters of measures,

Q⋆ = argmin
Q

∑
j

ωj · W2
(
Q,Pj

)2
as in Agueh and Carlier (2011). This optimal distribution Q⋆ is the distribution of
m⋆(X , S) 

m⋆(x, s = A) = P[S = A] · m(x, s = A)
+ P[S = B] · F −1

B ◦ FA
(
m(x, s = A)

)
m⋆(x, s = B) = P[S = A] · F −1

A ◦ FB
(
m(x, s = B)

)
+ P[S = B] · m(x, s = B).

m⋆(x, s = A) = P[S = A] · m(x, s = A) + P[S = B] · F −1
B ◦ FA

(
m(x, s = A)

)
weights

score in group A

quantile score in group B associated with probability p

p = FA
(
m(x, s = A)

)
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Distorting Scores

For example, on distributions of scores, conditional on S1 and S2,

See Charpentier (2024) for additional properties...
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On Counterfactual Fairness

“A decision satisfies counterfactual fairness if ‘had the protected attributes (e.g.,
race) of the individual been different, other things being equal, the decision
would have remained the same’,” Kusner et al. (2017)

We achieve fairness on average treatment effect (counterfactual fairness on average)

ATE = E
[
Y (A) − Y (B)

]
= 0.

We achieve counterfactual fairness for an individual with characteristics x if

CATE(x) = E
[
Y (A) − Y (B)

∣∣X = x
]

= 0.
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A little bit of geometry ?

Optimal transport exists in any dimension (but no intuitive results based on quantiles)
In geometry, a geodesic is a curve representing in some sense the shortest path
(arc) between two points in a surface, or more generally in a Riemannian manifold
(...) It is a generalization of the notion of a ”straight line”. ®

Formally, consider some metric space, (E , d). A constant speed geodesic between two
points x0, x1 ∈ E is a continuous curve x : [0, 1] → E such that for every s, t ∈ (0, 1),
d(xs , xt) = |s − t|d(x0, x1).

Given two measures P0 and P1, and an optimal transport map T ⋆ such that
P1 = T ⋆

#P0, then

Pt = ((1 − t)I + tT ⋆)#P0, for any t ∈ (0, 1).

(that’s what we used with barycenters)
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A little bit of geometry ?
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A little bit of geometry ?
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”Distances” between distributions (or measures)
Integral probability metrics (IPMs, Müller (1997)) are distances on the space of
distributions over a set X , defined by a class F of real-valued functions on X as

DF (p, q) = sup
f ∈F

∣∣E[f ( X )] − E[f ( Y )]
∣∣.

X ∼ p Y ∼ q
Discussed also in Dedecker and Merlevède (2007)
For two distributions p and q, the total variation distance (Jordan (1881); Rudin
(1966)) between p and q is

dTV(p, q) = sup
A

{
|p(A) − q(A)|

}
.

Equivalently,
dTV(p, q) = 1

2 sup
f :Rk→{0,1}

{∫
f dp −

∫
f dq

}
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”Distances” between distributions (or measures)

(see e.g. https://djalil.chafai.net/blog/, with f : Rk → {−1, 1}, f = 1A − 1Ac )
Thus, it is an IPM with F = {f : X → {0, 1}}, so that F is a set of indicator
functions for any event.
For two distributions p and q, Kolmorov-Smirnov distance (Kolmogorov (1933);
Smirnov (1948)) between p and q is

dKS(p, q) = sup
t∈R

{
|p((−∞, t]) − q((−∞, t])|

}
= sup

t∈R

{
|Fp(t) − Fq(t)|

}
= ∥Fp − Fq∥∞,

where Fp and Fq are the respective cumulative distribution functions.
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”Distances” between distributions (or measures)

For two discrete distributions p and q, Kullback–Leibler divergence (Kullback and
Leibler (1951) ) of p, with respect to q is

DKL(p∥q) =
∑

i
p(i) log p(i)

q(i),

and for absolutely continuous distributions,

DKL(p∥q) =
∫
R

p(x) log p(x)
q(x) dx or

∫
Rk

p(x) log p(x)
q(x) dx,

in higher dimension.
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”Distances” between distributions (or measures)
Consider two measures on p and q on R. Then define Cramér distance (Cramér
(1928a,b) and Székely (2003))

Ck(p, q) =
( ∫ ∞

−∞
|Fp(x) − Fq(x)|kdx

)1/k
, for k ≥ 1

C2 is named ”energy-distance” in Székely (2003) and Rizzo and Székely (2016), and
”continuous ranked probability score” in Gneiting et al. (2007).
It is an Integral Probability Metrics (IPM), since

C k (p, q) = sup
f ∈ Fk′

∣∣E[f ( X )] − E[f ( Y )]
∣∣.

X ∼ p Y ∼ qk−1 + k ′−1 = 1
where Fk′ is the set of absolutely continuous functions such that ∥∇f ∥k′ ≤ 1.

For example, if k = 1, ∥∇f ∥∞ ≤ 1 (corresponding to 1-Lipschitz functions).
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”Distances” between distributions (or measures)
Consider two measures on p and q on R. Then define Wasserstein distance
(Wasserstein (1969))

Wk(p, q) =
( ∫ 1

0
|F −1

p (u) − F −1
q (u)|kdu

)1/k
, for k ≥ 1

Consider two measures on p and q on R.

W2(p, q)2 =
∫ 1

0
|F −1

p (u) − F −1
q (u)|2du while C2(p, q) =

∫ ∞

−∞
|Fp(x) − Fq(x)|2dx .

Consider two Gaussian distributions, then

W2
(
N (µ1, σ2

1), N (µ2, σ2
2)
)2 = (µ1 − µ2)2 + (σ1 − σ2)2,

and for two Bernoulli distributions, if p1 ≤ p2, Wk
(
B(p1), B(p2)

)
= (p2 − p1)1/k ,

W2
(
B(p1), B(p2)

)
=

√
p2 − p1 and W1

(
B(p1), B(p2)

)
= p2 − p1.
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”Distances” between distributions (or measures)

µ: multinomial distribution on {0, 1, 10}, with p = (.5, .1, .4)
νθ: binomial type distribution on {0, 10}, with qθ = (1 − θ, θ)
Let θ⋆ = argmin{d(p, qθ)} or θ⋆ = argmin{d(p∥qθ)}

with dKL(p∥qθ), dJS(p, qθ), dH(p, qθ) and dHχ2 (p∥qθ)
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”Distances” between distributions (or measures)

µ: multinomial distribution on {0, 1, 10}, with p = (.5, .1, .4)
νθ: binomial type distribution on {0, 10}, with qθ = (1 − θ, θ)
Let θ⋆ = argmin{d(p, qθ)}

with C1(p, qθ), C2(p, qθ), W1(p, qθ) and W2(p, qθ).
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”Distances” between distributions (or measures)

W1 is an IPM where F the set of 1-Lipschitz functions, Kantorovich and Rubinstein
(1958), i.e., if p and q have bounded support,

W1(p, q) = sup
f ∈F

{∫ +∞

−∞
f (x) d(p − q)(x)

}
,

F being the class of 1-Lipschitz functions

Gretton et al. (2012) introduced Maximum Mean Discrepancy (MMD) as a distance
between two measures (using RKHS representations).
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Transfer learning in Machine Learning Literature

Source: Bozinovski and Fulgosi (1976), The influence of pattern similarity and transfer learning
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Transfer learning in Machine Learning Literature
Framingham coronary heart disease (CHD) risk score, Wilson
et al. (1987, 1998); D’Agostino et al. (2001)

6 risk factors: age, BP, smoking, diabetes, total cholesterol (TC), and
high-density lipoprotein cholesterol (HDL-C)

Framingham (U.S.) participants are of European descent
what if we use it on Chinese people ?, Liu et al. (2004)
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Transfer learning in Machine Learning Literature

Framingham coronary heart disease (CHD) risk score, Liu et al.
(2004)

Refitted on Chinese population,
Chinese Multi-provincial Cohort Study (CMCS)
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Transfer learning in Machine Learning Literature

Source: https://sefiks.com/2018/07/20/artistic-style-transfer-with-deep-learning/, ”learning style”
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Quick Overview of ”Transfer Learning”

raw
data

training
data

validation
data

model

evaluation

D = {(x i , yi)} Dt

Dv

θ̂ = argmin
θ

∑
i∈Dt

ℓ
(
yi , mθ(x i)

)
+ P(θ)



∑
i∈Dv

ℓ
(
yi , m

θ̂
(x i)

)
where formally, D is a a collection of i.i.d. observations from (X i , Yi) ∼ P (or D ∼ P)
and we suppose that both Dt ∼ P and Dv ∼ P (concept of “generalization”)
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Quick Overview of ”Transfer Learning”

More precisely, let us distinguish
the feature domain, Dx = (X ,P), with X ⊂ Rk and P is a distribution on X ,
we have a source (or training) and a target (or validation), and Ds and Dt

the task, (Y, m(·)), with Y ⊂ R is a label space and m is our predictive model,
m : X → Y

Transfer learning is about improving the target predictive model mt(·) by using Ds and
ms(·), even if we know that Ds ̸= Dt and ms(·) ̸= mt(·).

Xs ̸= Xt : heterogeneous transfer learning (different language)
Ps ̸= Pt : domain adaptation (different topic)
Ys ̸= Yt : possibly, {0, 1} vs. {0, N, 1}
Ps(y |x) ̸= Pt(y |x) (and therefore ms(·) ̸= mt(·))
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Transfer learning and domain adaptation (Ps ̸= Pt)
“Traditional machine learning is characterized by training data and testing
data having the same input feature space and the same data distribution.
When there is a difference in data distribution between the training data and
test data, the results of a predictive learner can be degraded,” Furht et al.
(2016)

notations

Consider some training (source) sample Ds = {(xs,i , ys,i)} and some test (target)
sample Dt = {(xt,i)}, both being i.i.d., with distributions Ps and Pt .
In a regression problem, y = m(x) + ε, i.e. m(x) = EP[Y |E = x]
Consider a parametric model, m(x|θ)), for some θ ∈ Θ.
Classical empirical risk minimization (ERM) leads to

θ̂ ∈ argmin
θ∈Θ

{
1
n

n∑
i=1

ℓ
(
ys,i , m(xs,i |θ))

)}
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Transfer learning and domain adaptation (Ps ̸= Pt)
If Ps = Pt , θ̂ is said to be consistent Shimodaira (2000). Otherwise...
Importance weighted empirical risk minimization (IWERM) is

θ̃ ∈ argmin
θ∈Θ

{
1
n

n∑
i=1

Ps(xs,i)
Pt(xs,i)

ℓ
(
ys,i , m(xs,i |θ))

)
whichisnowconsistent.

One can define adaptative importance weighted empirical risk minimization (AIWERM)

θ̃γ ∈ argmin
θ∈Θ

1
n

n∑
i=1

(
Ps(xs,i)
Pt(xs,i)

)γ

ℓ
(
ys,i , m(xs,i |θ))

) ,

γ ∈ [0, 1] is the flattening parameter,{
γ = 0, ordinary ERM
γ = 1, IWERM
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Transfer learning and domain adaptation (Ps ̸= Pt)

One could consider regularlized importance weighted empirical risk minimization
(RIWERM)

θ̃λ ∈ argmin
θ∈Θ

{
1
n

n∑
i=1

Ps(xs,i)
Pt(xs,i)

ℓ
(
ys,i , m(xs,i |θ))

)
+ λP(θ)

}
,

for some penalty function P(θ) (classically ∥θ∥ℓ1 (lasso) or ∥θ∥ℓ2 (ridge) types of
penalty), and λ ≥ 0.
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Transfer learning and domain adaptation (Ps ̸= Pt)
Application in a regression context

Polynomial regression model,

Px ,θ ∼ N (Pβ(x), σ2) and θ = (β, σ2), for some polynomial Pβ

i.e., y = β0 + β1x + · · · + βkxk + ε where ε ∼ N (0, σ2).
Suppose that the ”true” distribution is

Qx ∼ N (Q(x), 1)

e.g., Q(x) = −(2x − 1/2) + (2x − 1/2)3

Suppose also that{
source : πs ∼ B(as , bs)
target : πt ∼ B(at , bt)
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Transfer learning and domain adaptation (Ps ̸= Pt)
Linear model (mis-specified) and cubic model (well-specified)

max
θ

log L(θ|y , x) = max
θ

n∑
i=1

log p(y |x, θ) = min
θ

n∑
i=1

(yi − Pβ(xi ))2
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Transfer learning and domain adaptation (Ps ̸= Pt)
Linear model (mis-specified) and cubic model (well-specified)

max
θ

log Lω(θ|y , x) = max
θ

n∑
i=1

ω(xi) log p(y |x, θ) = min
θ

n∑
i=1

xat
i (1 − xi)bt

xas
i (1 − xi)st

(yi−Pβ(xi ))2
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Transfer learning and domain adaptation (Ps ̸= Pt)

Another example would be Pielke and Landsea (1998); Chavas et al. (2013); Weinkle
et al. (2018); Martinez (2020),

“Both population and wealth have increased dramatically over the last several
decades and act to enhance the recent hurricane damages preferentially over
those occurring previously. More appropriate trends in the United States
hurricane damages can be calculated when a normalization of the damages are
done to take into account inflation and changes in coastal population and
wealth,” Pielke and Landsea (1998)
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Transfer learning and domain adaptation (Ps ̸= Pt)

(Source: Pielke and Landsea (1998))
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Transfer learning and heterogeneity (Xs ̸= Xt)

Actuarial science is usually based on tabular data

Observation is (x i , yi)

In many applications, use of ”demographic information”
An ecological fallacy is a formal fallacy in the interpreta-
tion of statistical data that occurs when inferences about
the nature of individuals are deduced from inferences
about the group to which those individuals belong ®

As in Goodman (1953, 1959).

See also Holt et al. (1996), Sedgwick (2015)
(Source: https://www.towerhamlets.gov.uk/Documents/Borough stat...)
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Transfer learning and heterogeneity (Xs ̸= Xt)
Simpson’s paradox is a phenomenon in probability and statistics in which a trend
appears in several groups of data but disappears or reverses when the groups are
combined ®

Total Men Women Proportions
Total 5233/12763 ∼ 41% 3714/8442 ∼ 44% 1512/4321 ∼ 35% 66%-34%
Top 6 1745/4526 ∼ 39% 1198/2691 ∼ 45% 557/1835 ∼ 30% 59%-41%

A 597/933 ∼ 64% 512/825 ∼ 62% 89/108 ∼ 82% 88%-12%
B 369/585 ∼ 63% 353/560 ∼ 63% 17/ 25 ∼ 68% 96%- 4%
C 321/918 ∼ 35% 120/325 ∼ 37% 202/593 ∼ 34% 35%-65%
D 269/792 ∼ 34% 138/417 ∼ 33% 131/375 ∼ 35% 53%-47%
E 146/584 ∼ 25% 53/191 ∼ 28% 94/393 ∼ 24% 33%-67%
F 43/714 ∼ 6% 22/373 ∼ 6% 24/341 ∼ 7% 52%-48%

Data from Bickel et al. (1975) (discussed as an illustration of ”Simpson’s paradox”)
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Transfer learning and heterogeneity (Xs ̸= Xt)

P[ Y = yes | S = men ] ≥ P[ Y = yes | S = women ]

overall admission

sensitivesensitive

P[ Y = yes | X = x , S = men ] ≤ P[ Y = yes | X = x , S = women ], ∀x .

conditional on program

“the bias in the aggregated data stems not from any pattern of discrimination
on the part of admissions committees, which seems quite fair on the whole, but
apparently from prior screening at earlier levels of the educational system.
Women are shunted by their socialization and education toward fields of
graduate study that are generally more crowded, less productive of completed
degrees, and less well funded, and that frequently offer poorer professional
employment prospects,” Bickel et al. (1975)
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Transfer learning and heterogeneity (Xs ̸= Xt)
Consider the following mortality rates in two hospitals (fake data)

Total Healthy Pre-condition Proportions
Hospital A 800/1000 = 80% 590/600 ∼ 98% 210/400 ∼ 53% 60%-40%
Hospital B 900/1000 = 90% 870/900 ∼ 97% 30/100 ∼ 30% 90%-10%

There is no mathematical ”paradox”, per se.
We could have

A
B ≥ a

b and C
D ≥ c

d

and at the same time
A + C
B + D ≤ a + c

b + d
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Transfer learning and heterogeneity (Xs ̸= Xt)

Overall mortality rate for women, 8.12‰ in Costa Rica, against 9.29‰ in Sweden.
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Transfer learning and heterogeneity (Xs ̸= Xt)
September 27, 2023, the Colorado Division of Insurance exposed a new proposed regula-
tion entitled Concerning Quantitative Testing of External Consumer Data and Informa-
tion Sources, Algorithms, and Predictive Models Used for Life Insurance Underwriting
for Unfairly Discriminatory Outcomes

– Section 5 (Estimating Race and Ethnicity) –

Insurers shall estimate the race or ethnicity of all proposed insureds that have
applied for coverage on or after the insurer’s initial adoption of the use of
ECDIS, or algorithms and predictive models that use ECDIS, including a third
party acting on behalf of the insurer that used ECDIS, or algorithms and pre-
dictive models that used ECDIS, in the underwriting decision-making process,
by utilizing: BIFSG and the insureds’ or proposed insureds’ name and geoloca-
tion (...)
Bayesian Improved First Name Surname Geocoding, or “BIFSG”
External Consumer Data and Information Source, or “ECDIS”
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Transfert learning and actuarial science, wrap-up

Finance
“Past performance is no guarantee of future returns,” Brain (2010)

Climate models
“The common investment advice that ‘past performance is no guarantee of
future returns’ and to ‘own a portfolio’ appears also to be relevant to climate
projections,” Reifen and Toumi (2009)

Use of proxies
“In practice, we often have limited data on the true predictive task of interest,
and must instead rely on more abundant data on a closely-related proxy
predictive task (...) hospitals often rely on medical risk scores trained on a
different patient population (proxy) rather than their own patient population
(true cohort of interest) to assign interventions. Yet, not accounting for the
bias in the proxy can lead to sub-optimal decisions.” Bastani (2021)
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Monge, G. (1781). Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie Royale

des Sciences de Paris.
Monteleoni, C. and Jaakkola, T. (2003). Online learning of non-stationary sequences. Advances in

Neural Information Processing Systems, 16.
Monteleoni, C., Schmidt, G. A., Saroha, S., and Asplund, E. (2011). Tracking climate models.

Statistical Analysis and Data Mining: The ASA Data Science Journal, 4(4):372–392.
Moodie, E. E. and Stephens, D. A. (2022). Causal inference: Critical developments, past and future.

Canadian Journal of Statistics, 50(4):1299–1320.

� @freakonometrics § freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, 2024 (KU Leuven) 129 / 135

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


References
Müller, A. (1997). Integral probability metrics and their generating classes of functions. Advances in

applied probability, 29(2):429–443.
Murphy, A. H. (1973). A new vector partition of the probability score. Journal of Applied Meteorology

and Climatology, 12(4):595–600.
Murray, W. and Sinnreich, R. H. (2006). The past as prologue: The importance of history to the

military profession. Cambridge University Press.
Neddermeyer, J. C. (2009). Computationally efficient nonparametric importance sampling. Journal of

the American Statistical Association, 104(486):788–802.
Olsen, J. R., Lambert, J. H., and Haimes, Y. Y. (1998). Risk of extreme events under nonstationary

conditions. Risk Analysis, 18(4):497–510.
Owen, A. B. (2013). Monte Carlo theory, methods and examples. Stanford Lectures Notes.
Pakdaman Naeini, M., Cooper, G., and Hauskrecht, M. (2015). Obtaining well calibrated probabilities

using bayesian binning. Proceedings of the AAAI Conference on Artificial Intelligence,
29(1):2901–2907.

Parthipan, R. and Wischik, D. J. (2022). Don’t waste data: Transfer learning to leverage all data for
machine-learnt climate model emulation. arXiv, 2210.04001.

� @freakonometrics § freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, 2024 (KU Leuven) 130 / 135

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


References
Pearl, J. and Mackenzie, D. (2018). The book of why: the new science of cause and effect. Basic

books.
Pielke, R. A. and Landsea, C. W. (1998). Normalized hurricane damages in the united states:

1925–95. Weather and forecasting, 13(3):621–631.
Pitacco, E., Denuit, M., Haberman, S., and Olivieri, A. (2009). Modelling longevity dynamics for

pensions and annuity business. Oxford University Press.
Quarg, G. and Mack, T. (2004). Munich chain ladder. Blätter der DGVFM, 26(4):597–630.
Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman, A.,

Shukla, J., Srinivasan, J., et al. (2007). Climate models and their evaluation. In Climate change
2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report
of the IPCC (FAR), pages 589–662. Cambridge University Press.

Read, L. K. and Vogel, R. M. (2015). Reliability, return periods, and risk under nonstationarity. Water
Resources Research, 51(8):6381–6398.

Reichler, T. and Kim, J. (2008). How well do coupled models simulate today’s climate? Bulletin of the
American Meteorological Society, 89(3):303–312.

Reifen, C. and Toumi, R. (2009). Climate projections: Past performance no guarantee of future skill?
Geophysical Research Letters, 36(13).

� @freakonometrics § freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, 2024 (KU Leuven) 131 / 135

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


References
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