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Climate simulations to project compound events evolution
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Key points in January

▶ Events definition and API

▶ CDF-t (univariate bias correction)

▶ GPD modelling and declustering

▶ Copula (declustering, BIC, Gumbel
...)

▶ Return period formulas for
univariate and bivariate
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Remaining questions in January

▶ What are the best API parameters for the two events ? A study about the correlation
between the soil moisture and the API has been conducted for the German/Belgium
event, but how to proceed with the second event ?

▶ Introduction of MBC and comparison with uncorrected data and CDF-t

▶ How to extend the framework to more complex events (d > 2)? A new methodology,
Pareto processes, for bivariate modelling is proposed and will be compared to the
copula approach.

▶ The Pareto process approach implies the use of a new univariate modelling approach,
the extended GPD (EGPD) [1].

▶ How to account for the non-concommitance of the two univariate extremes in the
bivariate return period ?
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Work done since January

▶ Sensibility analysis on API parameters (2 weeks)

▶ Implementation of Multivariate Bias Correction (MBC) algorithms (3 weeks)

▶ Work on return periods for non-concordant events (1.5 month)

▶ Pareto process (1.5 month)

▶ Bivariate extremal index (1 week)

▶ English lessons and presentations (CSI and IMSC) (2 weeks)
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The Seine/Loire compound event

Spatial compound event
Huge floods of Seine and Loire in June 2016 [2]

The Antecedent Precipitation Index (API) [3]
is used to model the event:

APIj =
N∑
i=1

Precipj−i ∗ k i−1

with k = 0.88 and N = 17

Daily precipitation are averaged over the Seine
and the Loire watersheds for May and June
between 1992 and 2021 (on ERA5 1°x1° grid)
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The German/Belgium compound event

Preconditioned compound event
Extremely heavy precipitation after moderate
precipitation lead to a massive flood of the Ahr
river in July 2021 [4]

The daily precipitation (TP) and the API are used
to model the event. Here the API (with k = 0.9
and N = 30) is used as a proxy for soil moisture

Daily precipitation are averaged over the shown
area for June, July and August between 1992 and
2021 (on ERA5 1°x1° grid)
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Sensibility analysis over Xi

Selection of k = 0.88 and N = 17
10 / 34
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Data and materials

1. All the considered runs follow the ssp5-8.5 scenario

2. We define 4 climatic periods of 30 years each: 1992-2021, 2022-2051, 2041-2070,
2071-2100

3. We apply bias correction algorithms on a selection of 10 GCMs: BCC, CanESM5,
CNRM-CM6, CNRM-CM6-HR, CNRM-ESM2, INM-CM4, INM-CM5, IPSL, MIROC6,
MRI-ESM2

4. 6 bias correction methods are compared: no correction, CDF-t, dOTC, R2D2 v2
(with a bivariate pivot), R2D2 with a pivot on the first variable and R2D2 with a pivot
on the second variable
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Multivariate bias correction algorithms

1. R2D2 (rank resampling): First perform a univariate bias correction (CDF-t), then
associate, in the rank space, points from the simulated data to the reference data
(rank analogues) and replace the simulated values by the ones corresponding to the
rank of the analogues (Vrac and Thao, 2020 [5]). This rank analogy needs a reference,
which can be one variable, or several, in which case the euclidian distance is used to
find the closest analogue.

2. dOTC (optimal transport): multivariate optimal transport is calculated between the
reference data and the model data of the historic period, and between the model data
of the historic period and the projection period. This two projection plans are then
applied to correct the projected data of the model (Robin et al., 2019 [6])
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Models in high dimension

The copula modelling presents some interests like the decoupling of the univariate and the
dependence structure, the quantification of the nature of the dependence with the copula
family and the value of its parameters ... However, its generalisation in higher dimension is
complex, with either multivariate copulas or vine copulas.

We propose a new modelling which shall scale to higher dimensions more easily. It keeps the
decoupling of the univariate and the dependence structure and is non-parametric for the
multivariate part. The drawback is that a modelling of the whole univariate distribution is
needed, not only the tail.
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Extended GPD

Let’s consider X and Y , and note FX and FY their respective cdf, modelled with the
extended GPD from Naveau et al, (2016) [1].

EGPD (Naveau et al, (2016))

F (x) =

(
1−

(
1 + ξx

σ

)−1
ξ

)κ

Problem: in their paper, they developed the theory and the MLE estimator for ξ > 0. In our
case, we generally have negative ξ. In Legrand et al., (2023) [7], they affirm that the theory
still stands for negative ξ, but not the MLE estimator. For the moment, parameter
estimation is done with the gamlss R package.
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Pareto process (Delta modelling)

A transformation is applied to X and Y to get X e and Y e following an exponential
distribution.

Let’s consider a high quantile 0 < p < 1 (for example p = 0.95) and we define Z1 and Z2

by :

Z1 = X e − F−1
X e (p), Z2 = Y e − F−1

Y e (p))

According to Rootzén et al. (2018) [8], their exists a random vector T = (T1,T2) such that
Z = (Z1,Z2) and E + T−max(T) are equal in distribution, with E a unit exponential
random variable, independent from T.
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Delta in Legrand et al. (2023)

We define ∆ = Z1 − Z2 = T1 − T2 as in Legrand et al. (2023) [7].

In their paper, the modelling was applied to wave height at different time and location, and
their objective was to simulate data. With the multivariate decomposition of the extremes
in E and ∆, they simply generate independent and identically distributed variables, with
bootstrapping for ∆.

We propose to go further and use this modelling to compute exceedance probability.
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Delta in our modelling

We suppose that ∆ is continuous with density f∆. The decomposition of Z can be rewritten
in terms of ∆ :

Z1 = E +∆1∆<0, Z2 = E −∆1∆≥0

Let’s consider a x and a y (they will be the return levels). We define u and v by:

u = − log

(
1− FX (x)

p

)
, v = − log

(
1− FY (y)

p

)
We show that :

IP (X > x ,Y > y) = e−v

∫ +∞

(u−v)+

e−tF∆(t) dt − e−u

∫ (u−v)−

−∞
etF∆(t) dt
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Point selection for Delta
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Non-concomitant compound events

A compound event is defined as an exceedance over a threshold of both variables at a
relatively close time. For example, the Seine/Loire event can be considered a composed
event even if the floods are separated by a few days.

We define clusters and an event is the point-wise maximum of the cluster if both values also
exceed their respective threshold. With this construction, we get extreme points that can be
considered independent for the MLE estimation, and the probability that the point-wise
maximum of a cluster is above a bivariate threshold is the probability we are looking for to
get the return period.
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Point process

In Resnick (1987), we found a general setting to express return periods, scale the definition
with the dimensions, and the possibility to extrapolate.

We note Mn = maxi∈J1,nK(Xi )

Following Resnick (1987)[9], we define the two following point process:

η(x) = inf
n
(Mn > x)

and we have : {η(x) ≤ t} = {Mt > x}

IP [η(x) ≤ t] = IP [Mt > x ] = 1− IP [Mt ≤ x ] = 1− F θt(x)
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Point process and return period

We define η∗(x) = infn
(
maxj∈J1,nK(M(Jj)) > x

)
with Jj being the clusters defined earlier.

We have the same results as before with r , the size of the clusters.

In the univariate setting, defining T as the return period corresponding to the return level
xT , we have : IP

[
η∗(xT ) ≤ nT

r

]
≃ 1− e−1

For the bivariate case, we can do the same : η∗(x , y) = infn
(
maxj∈J1,nK(M(Jj)) > (x , y)

)
We define the bivariate return period by : IP

[
η∗(xT , yT ) ≤ nT

r

]
≃ 1− e−1
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Multivariate extremal index

In the calculus of the bivariate return period appears the bivariate extremal index, which
quantifies how the data clusters in the extreme.

However, the multivariate extremal index θ is a function, which requires a more complex
estimation scheme:

1. Reduce both variables to Fréchet margins (with the empirical cdf)

2. Select at each time step the maximum among the two values

3. Run the univariate estimator on the selected data
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Univariate data and declustering

The API is strongly auto-correlated
=⇒ declustering

Clusters are separated by 13 days,
corresponding to temporal
correlation < 0.10

The maximum of the cluster is
selected for the GPD parameter
estimation, but no declustering is
done for the EGPD parameter
estimation
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Bivariate data and copula selection

The bivariate data selection is
used for both the Copula
modelling and the Delta
modelling.
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Bivariate return periods for Seine/Loire event with Copula
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Bivariate return periods for Seine/Loire event with Delta
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Bivariate return periods for German/Belgium event with Copula
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Bivariate return periods for German/Belgium event with Delta
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Work done since January

1. Study of API sensibility and parameters selection

2. Implementation of MBCs

3. Development of a new bivariate modelling of extremes

4. Construction of a bivariate return period formula that take into account
non-concomitant compound events

5. Presentation at IMSC (International Meeting on Statistical Climatology) :
https://chaire-geolearning.org/
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Road map

1. Investigation of the difference in return periods for the GPD/Copula modelling and the
EGPD/Delta modelling

2. Redaction of an article : ”Projecting frequencies of extreme rainfall compound events
under climate change using bivariate extreme value modeling and bivariate bias
corrections”

3. Work on more complex compound event, like convective storms (change of resolution
needed)

4. Redaction of thesis manuscript, second article (adaptation of the present framework to
more complex compound events), PhD defence and international conference (EGU,
EVA ...)
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