Refining cancer insurance pricing: Insights from semi-Markov modelling

Dr. Ayşe Arık

Department of Actuarial Mathematics and Statistics, Heriot-Watt University, and the Maxwell Institute for Mathematical Sciences, UK

joint work with Andrew Cairns, Erengul Dodd, Angus S Macdonald, Adam Shao, and George Streftaris

Funding from:

Estimating The Impact Of The COVID-19 Pandemic On Breast Cancer Deaths - An Application On Breast Cancer Life Insurance - SCOR Foundation for Science

Motivation

Cancer is

• a complex and heterogeneous pathology

A considerable progress in understanding this disease due to

medical research and data analysis

Better **options available** for people previously considered high-risk, e.g. women with breast cancer history

Examine existing models to see if they could lead to

• fairly priced, more inclusive coverage options

Particular focus on:

Breast cancer (BC) as it is

- the most common cancer diagnosed in women
- one of the leading causes of death for women
- one of the most common conditions amongst critical illness insurance (CII) claims, e.g. 44% of female CII claims in 2014 in the UK

BC incidence and mortality in England

Incidence (left) v. Mortality (right)

- A significant decline in BC incidence, as low as 25% at ages 60–64, in 2020 as compared to the same period in 2019
- An increase in BC mortality from ages 65+, as high as 7%, in 2020 as compared to the same period in 2019

An industry-based Markov model: M0

- Applied to CII by the insurance industry (Reynolds and Faye, 2016; Baione and Levantesi, 2018)
- ONLY account for observed BC cases
- Do not differentiate between different stages of BC

A semi-Markov model: M1

Duration dependence in 'Pre-metastatic Diagnosed' and 'Pre-metastatic Unobserved'

A special case of the semi-Markov model: M2

• NO duration dependence in 'Pre-metastatic Diagnosed' AND 'Pre-metastatic Unobserved'

Dr. Ayşe Arık

Models M0 – M2: key transition intensities

Age	$\mu_{\rm x}^{\rm 01}$ in M0	$\mu_{\rm x}^{\rm 01}$ in M1&M2	$\mu_{\rm x}^{02}$ in M0 $\mu_{\rm x}^{04}$ in M1&M2	μ_{x}^{13} in M0 μ_{x}^{35} in M1&M2
20.40	0.00100	0.00000	_ / A	
30–49	0.00106	0.00086	0.00084	0.16739
50-54	0.00277	0.00224	0.00228	0.24005
55-59	0.00287	0.00233	0.00363	0.24005
60-64	0.00349	0.00282	0.00588	0.28060
65-69	0.00393	0.00318	0.00952	0.28060
70-74	0.00345	0.00280	0.01643	0.36002
75-79	0.00384	0.00311	0.02987	0.40000
80-84	0.00417	0.00338	0.05496	0.49711
85-89	0.00447	0.00362	0.10112	0.50000

 $m{\Phi}$ μ_{x}^{01} : ONS/NHS Digital data, 81% of new BC registrations in M1&M2, England, 2001–2019

 $[\]bullet~~\mu_{_{\rm X}}^{02}$ or $\mu_{_{\rm X}}^{04}$: ONS data, deaths from other causes, England, 2001–2019

[•] $\mu_{\rm x}^{13}$ or $\mu_{\rm x}^{35}$: BC deaths by age within 12 months after Stage 4 BC diagnosis (Zhao et al., 2020)

Key transition intensities: a simple model

Generalised additive models to observed transition intensities, μ , as

$$g(E(\mu)) = \kappa + \sum_{p} s_{p}(x_{p})$$

- κ : intercept
- g(.): a smooth monotonic link function
- ullet μ : modelled as the sum of smooth functions, s(.), of covariate(s) x
- Maximum age is accepted to be 90
 i.e. a policy is in force for at most 40 years for a 50 year
 - ...i.e. a policy is in force for at most 40 years for a 50 year old insured

Critical illness and life insurance products

We consider

- single benefit in an insurance contract:
 - a specialised CII
 - OR
 - a specialised life insurance (LI)
- benefit to be payable at the time of
 - BC diagnosis or death from other causes in the CII contract
 - @ death from any causes in the LI contract; and
- the LI contract can be purchased
 - with pre-metastatic BC

Net single premiums: whole life insurance

Whole life insurance contracts for i=4% when $\alpha=0.6$ and $\beta=1/7$

- Premiums, no BC, CII > Premiums, no BC, LI
- \bullet Premiums, diagnosed with pre-metastatic BC at the time of purchase, LI > Premiums, no BC, LI
- Premiums, diagnosed with pre-metastatic BC at the time of purchase, LI > Premiums, diagnosed with pre-metastatic BC 5 years before purchase, LI (Impact of duration or time spent with pre-metastatic BC? Vulnerability?)

Dr. Ayşe Arık

What insights we gain from different models

- Differences across the models due to
 - number of departures from 'No BC'
 - definition of rates of transition μ_x^{01}
- Duration dependence in the semi-Markov model, M1, enables
 - a more flexible pricing methodology
 - results aligned with medical literature
- The post-cancer mortality from BC under the industry-based model,
 M0, linked to the risk of dying from metastatic BC
 - leading to very high LI prices for a woman with BC
 - suggesting sensitivity to this assumption

Whole life insurance premiums per £1000 : No BC

Aged 35, i = 4% (left) v. Aged 60, i = 4% (right)

- Change in α :
 - -10% \Rightarrow a health system with notably poor BC diagnosis
 - $-90\% \Rightarrow high BC diagnosis$
- Change in β :
 - $-1/2 \Rightarrow$ a higher-level access to BC treatment
 - $-1/10 \Rightarrow$ a lower-level access to BC treatment
- \bullet Greater sensitivity in the model results in extreme cases, e.g. $\alpha <$ 0.4 or $1/\beta > 5$

4 = > 4 = >

Post-cancer mortality from BC: M0 v. M2

BC survival under M0 (left) v. Pre-metastatic BC under M2 (right)

- Baseline scenario in M2 is carried out when $\alpha = 0.6$ and $\beta = \frac{1}{7}$
- Net Survival: ONLY consider 'Dead, BC' as cause of death AFTER BC diagnosis
- An unusual age pattern in pre-metastatic BC net survival
- The risk of death from BC under M0 to be similar to a woman with early BC diagnosis
 - NOT capturing the age pattern in BC net survival as expected

Summary

- New medical technologies improve cancer survival
- Flexible models are relevant to medical underwriting of related insurance contracts
- A valuable model relating to delays in the provision of BC diagnostic and treatment services
 - also relevant to meet the needs of women with medical history of BC
- Duration dependence matters in actuarial applications
- Smaller differences across premiums under different models with an increasing age and a longer time to maturity
- Measuring parameter and model uncertainty?
- Accounting for time trend in cancer incidence, type-specific mortality, and the risk of developing metastatic BC?

More details in:

- Arık, A., Cairns, A., Dodd, E., Macdonald, A.S., Shao, A., Streftaris, G. Insurance pricing for breast cancer under different multiple state models, https://arxiv.org/abs/2311.15975.
- Arık, A., Cairns, A., Dodd, E., Macdonald, A.S., Streftaris, G. The effect of the COVID-19 health disruptions on breast cancer mortality for older women: A semi-Markov modelling approach, Scandinavian Actuarial Journal, 2024.
- Arık, A., Cairns, A., Dodd, E., Macdonald, A.S., Streftaris, G. Estimating the impact of the COVID-19 pandemic on breast cancer deaths among older women, Living to 100 Research Symposium, 16 February 2023, conference monograph.
- Arık, A., Dodd, E., Cairns, A., Streftaris, G. Socioeconomic disparities in cancer incidence and mortality in England and the impact of age-at-diagnosis on cancer mortality, PLOS ONE, 2021.
- Arık, A., Dodd, E., Streftaris, G. Cancer morbidity trends and regional differences in England - a Bayesian Analysis, PLOS ONE, 2020.

Thank You!

Questions?

E: A.ARIK@hw.ac.uk

W: https://researchportal.hw.ac.uk/en/persons/ayse-arik

