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2Universidad del Páıs Vasco/Euskal Herriko Unibertsitatea

SCOR chair on mortality research meeting, Paris

8 November 2024

Martin & Camarda (INED) SCOR Talk 8 November 2024 1 / 24



Motivation
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Figure: Observed mortality. Females, 2015. Left: London Metropolitan Area.
Center: single London borough. Right: single Lower layer Super Output Area.
Note: vertical bars at the bottom of the graphs indicate zero observed deaths.
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Motivation
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Figure: Life expectancy at birth by Lower layer Single Output Area calculated
from observed mortality. Females, 2015.
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The problem

Model mortality in a very large number of very small areas.

For example, 4835 sub-municipal small areas (Lower layer Super
Output Areas (LS0As)) in a metropolitan area (London) and 91 age
categories → 439.985 observations.
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Understanding fine-grain inequalities in mortality

Small populations lead to substantial fluctuations in observed death
counts, creating very noisy mortality signal.

At the same time, underlying mortality risk can differ substantially in
space.

Difficult to distinguish between real differences and random variation
in risk of death.
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Existing approaches

Bayesian “principal components” or “SVD (Singular Value
Decomposition)” model (Alexander, Zagheni, and Barbieri 2017):

Model area-specific mortality schedule as a linear combination of several
principal components of a matrix of standard mortality schedules (e.g.
mortality rates over age and time for the whole country).
Pool information with hierarchical structure (counties within a state in
US) or across space (autoregressive prior).

TOPALS model (Gonzaga and Schmertmann 2016; Schmertmann
and Gonzaga 2018):

Model area-specific mortality schedule as piecewise-linear deviations
from a standard schedule.
Difference penalty on coefficients of deviations to ensure stability of
estimates.

D-Splines (Schmertmann 2021):

Model area-specific mortality schedule as a linear combination of cubic
splines, penalized with a custom-made penalty derived from a standard
schedule of mortality.
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Drawbacks of existing approaches

Presence of a standard schedule that must be estimated from real
data, but uncertainty surrounding the estimation and incorporation of
the standard is not taken into account (Alexander, Zagheni, and
Barbieri 2017; Schmertmann and Gonzaga 2018; Gonzaga and
Schmertmann 2016).

Spatial structure of data is not exploited (Schmertmann and Gonzaga
2018; Gonzaga and Schmertmann 2016; Schmertmann 2021).
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The age-space model

Data requirements

Deaths and exposures for a single year for multiple spatial units.

Enough deaths in the sum of spatial units to distinguish a mortality
signal.

Model assumptions

Mortality in a single area:

resembles the mortality schedule of the total of all area being studied,
deviates from the standard schedule smoothly in age and space,
can show breaks from the overall smooth pattern in space.

Standard schedule and deviations from standard are estimated
simultaneously → uncertainty in standard is accounted for.

Spatial structure exploited to borrow strength across areas.
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Data structure

Figure: Data inputs
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(a) Data structure. (b) Centroids of GLA LSOAs.

Data: two m × n matrices, m ages, n spatial units: deaths Y,
exposures E. Centroids of territorial units serve as spatial information.
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Methodology

We model deaths in a Poisson setting:

lnE [y] = ln(e) + ln(µ) = ln(e) + η. (1)

Goal: model

η =



η0

η1

η2
...
ηj
...
ηn


= Xθ where


η0 a common age schedule,

ηj = η0 + δj + γj

= area j schedule

(2)

δj deviations from standard that vary smoothly in age and space
γj area-specific intercepts that allow for unsmooth variation.
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Building the model matrix

Smooth standard over age → Ba, m × ka, a rich cubic B-spline basis
over age (⌊m/5⌋ internal knots) adjusted for infant mortality
(Camarda 2019).

Smooth age-space deviations:

Bs , n × ks, basis over space:

Bs = Blat□Blon = (Blat ⊗ 1′klon)⊙ (1′klat ⊗ Blon), (3)

Blon, n × klon basis over longitude, Blat, n × klat basis over latitude.
B̆a, m × k̆a reduced basis over age (⌊m/10⌋ internal knots).
Bs ⊗ B̆a

Unsmooth area specific intercepts → In identity matrix.

Model matrix: 1n ⊗ Ba : Bs ⊗ B̆a : In ⊗ 1m

Martin & Camarda (INED) SCOR Talk 8 November 2024 11 / 24



Model specification: ensuring identifiablility

Add sum of areas to ensure convergence → n + 1 spatial units.

Model matrix:

Xθ =

 1n+1 ⊗ Ba
0m,kaks+n

Bs ⊗ B̆a

∣∣∣ In ⊗ 1m

 θ . (4)
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Penalization

Second difference penalty on coefficients for η0 and δjs. Ridge
penalty for γj .

Four smoothing parameters (λa, λlon, λlat, λ̆a) and one ridge penalty
(κ).
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Model specification: penalty

Let Da, Dlon, Dlat D̆a be the difference penalties associated with the
age standard, longitude, latitude, and the second age basis.

Penalty matrix

P =

P1 0 0
0 P2 0
0 0 P3

 ,
where

P1 = λaD
′
aDa,

P3 = λlonIklat ⊗D′
lonDlon ⊗ Ik̆a+

λlatD
′
latDlat ⊗ Iklon ⊗ Ik̆a + λ̆aIklat ⊗ Iklon ⊗ D̆′

aD̆a,

P3 = κIn.
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Model specification and fitting

Model fitting: Iteratively re-Weighted Least Squares (IWLS) using
Generalized Linear Array Model (GLAM) (Currie, Durbán, and Eilers
2006) arithmetic:

(X′W̃X+ P)θ̂ = X′W̃z̃, (5)

θ̂ next iteration of coefficients to be estimated
W diagonal matrix of weights
z working dependent variable
Tilde (˜) current approximation.
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Greater London Authority Data

Data

n = 4835 Lower layer Super Output Areas (LS0As) in Greater London
Authority.

Deaths and mid-year population by m = 91 (0, 1, ..., 90+) ages.

Total female population between 298 and 4413.

One year: 2015

Model fitting

Smoothing parameters equal to 1, ridge penalty equal to 100.

7782 coefficients to estimate.

Effective dimension of 408.
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Estimated values of components
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Figure: Left: estimated standard schedule and observed mortality of total GLA.
Center: estimated values of δj . Right: estimated values of γj .
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Mapping components
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Figure: Average over age of δj and γj .
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Fitted values
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Legend 95% CI Fitted values

Figure: Fitted log-mortality schedule for four LSOAs. Females, 2015.
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Estimating sub-municipal life-expectancy

Life expectancy
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Figure: Estimated life expectancy at birth. Females, 2015.
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Smoothing parameter selection

Normally we would select the smoothing parameters through a grid
search to minimize either Aikaike Information Criterion (AIC) or
Bayesian Information Criterion (BIC).

However, BIC and AIC may be inadequate in the presence of under-
or over-dispersion.

We can correct AIC and BIC with ψ2:

ψ2 =
Dev

df
,

where Dev is the deviance of the model and df is the number of
observations with nonzero offset minus the effective dimension of the
model.
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Further extensions

Accounting for under- or over-dispersion.

Allowing the non-smooth effects to vary by age.

Incorporating time to model multiple years of data.

Incorporating hierarchical structure in the model.

Adjusting the distributional assumption to model prevalence of health
conditions to produce small-area health expectancy estimates.
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Extension: incorporating time

Now m ages, n spatial units, l years.

Construct Bt , l × ka, basis over time.

Possible model matrices (omitting zeros and sum for identifiablility):

Bt ⊗ 1n ⊗ Ba : Bt ⊗ Bs ⊗ B̆a : Il ⊗ In ⊗ 1m

or
Bt ⊗ 1n ⊗ Ba : Bt ⊗ Bs ⊗ B̆a : 1l ⊗ In ⊗ 1m.

Multiple years of data may give enough strength to be able to
abandon the standard:

Bt ⊗ Bs ⊗ Ba : Il ⊗ In ⊗ 1m.
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Conclusion

Our model borrows strength across age and space in order to produce
mortality estimates in data-sparse contexts.

Our modeling approach can be used to identify spatial patterns in
mortality, as well as localized breaks from the general spatial pattern.

Further work needed for selecting smoothing parameters and
modeling multiple years of data.

Contact: jacob.martin@ined.fr
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