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Abstract

Excess mortality, i.e., the difference between expected and observed mortality, is used
to quantify the death toll of mortality shocks, such as epidemics and pandemics of
infectious diseases. However, predictions of expected mortality are sensitive to model
assumptions. We analyse which specification of a Poisson regression for seasonal mor-
tality yields more accurate predictions. We compare the Poisson Serfling model with 1)
parametric effect for the trend and seasonality, 2) non-parametric effect for the trend
and parametric effect for the seasonality, and 3) non-parametric effect for the trend and
seasonality, also known as modulation model. Forecasting is achieved with P-splines
smoothing. Model 2) resulted in more accurate historical forecasts on the series of
monthly deaths from national statistical offices in 25 European countries. An appli-
cation to the COVID-19 pandemic years illustrates how excess death can be used to
evaluate the vulnerability of populations and aid public health planning.
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1. Introduction

Measuring the mortality burden related to natural and health shocks provides fun-
damental information to aid public health responses by guiding policy-making decisions.
It offers insights into the vulnerability of populations, the geographical gradient, and
the effect of the policies adopted in response to the shock. Excess mortality is a useful
indicator to assess the impact of influenza outbreaks (Mazick et al., 2012; Mølbak et al.,
2015; Nielsen et al., 2018), heat waves (Fouillet et al., 2006; Toulemon and Barbieri,
2008) and pandemics of infectious diseases, such as the 1918–1920 H1N1 influenza pan-
demic (Ansart et al., 2009) and the 2019 coronavirus pandemic (Kontis et al., 2020;
Islam et al., 2021).
Excess death is computed as the difference between the expected deaths and the re-
ported deaths in the same period. The expected deaths (or baseline mortality) are
predicted in a counterfactual scenario where no mortality shock had happened. The
mortality difference, ceteris paribus, can be considered as overall effect of the mortality
shock. The predictions of the expected deaths are usually obtained in the short term,
i.e., within an epidemic year to study the effect of the influenza season, or over a few
years in the case of several waves of new pandemics of infectious diseases.
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The methodological choices about how to forecast mortality are crucial, since differ-
ent models lead to varying estimates of excess death. Various models were proposed
for estimating the expected deaths, which show considerable seasonal variation, mostly
striking harder in winter than in summer in Europe. The first attempt to model a
“standard curve of expected seasonal mortality” accounting for long-time trends and
seasonal variation goes back to the contribution of Serfling (1963). This method is
based on a linear regression that models the deaths during an epidemiological year as
a linear function of time (long-time trend) and one or more sinusoidal terms (seasonal
variation). More recently employed models are Poisson Serfling regressions (Thompson
et al., 2009) considering the count nature of mortality data, and Quasi-Poisson Serfling
accounting for over-dispersion (EuroMOMO, 2017).
Although widely used, a limitation of the Poisson Serfling model is the assumption of
the linearity of the trend on the logarithmic scale, which can lead to the under or over-
estimation of excess mortality if the trend is not linear. Eilers et al. (2008) introduced
the modulation models that relax the linearity assumption by considering smooth long-
term trends and smooth seasonal effects over time. The models use regression splines,
specifically B-splines with penalties, known as P-splines (Eilers and Marx, 1996). The
regression with P-splines leads to a generalized linear model, which is fitted by penal-
ized likelihood. Our aim in this study is to extend the modulation models for seasonal
mortality forecasting purposes. We do so by following the approach by Currie et al.
(2004). The authors describe the approach within the scope of forecasting death rates
over extended periods, such as 50 years, or from a cohort perspective. This method in-
tegrates P-splines regression with a missing value approach. The same approach can be
used for forecasting seasonal mortality in the short term. Future values are considered
as missing values and estimated simultaneously with the fitting of the mortality model.
By modifying the weights in the penalization, forecasting is a natural consequence of
the smoothing process.
In this study, we consider the prediction of the baseline mortality when no mortality
shock happens. Our study builds on the works of Eilers et al. (2008) and Currie et al.
(2004). The modulation models are used as the basis to forecast baseline mortality in
the short term via P-splines with a missing value approach. The P-splines smoothing
is adapted to predict the expected mortality during one or more epidemiological year.
This yields the baseline mortality that is used in the estimation of excess deaths dur-
ing influenza outbreaks or mortality shocks. We compare the classical Poisson Serfling
model with two versions of the modulation models with 1) smooth long-term trends and
fixed seasonality and 2) smooth long-term trends and varying seasonal components. For
our application of the models, we retrieved from Eurostat the mortality and population
data on 25 European countries.
In Section 2, we describe our proposed forecasting strategy. We start by reviewing the
Poisson Serfling model, and then show the two variants of the modulation model, illus-
trating the estimation and forecasting strategy. In Section 3, we describe our data sets.
In Sections 4 and 5, we describe our choices for the models’ parameters, respectively for
mortality modelling and mortality forecasting. We show an application to the estima-
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tion of excess mortality during the COVID-19 pandemic. The paper concludes with a
critical discussion of our methodology and the findings for the excess death estimation.

2. Methods

This section first presents the model traditionally used in the literature to predict
seasonal mortality (subsection 2.1) and the proposed models with detailed description
of the regression matrix and penalty matrix (subsections 2.2 and 2.3). The method for
estimating and forecasting with P-splines is then adapted to seasonal data (subsection
2.4 and 2.5). Finally, we explain the measures that will be used to evaluate the goodness
of fit of the model and the accuracy of the forecasts (subsection 2.6).

2.1. Poisson Serfling (PS) model

Let Yt be a non-negative random variable denoting the death counts in a population
at the months t, with t = 1, ..., T . The realizations of Yt are the observed number of
deaths yt. We assume that the random variable Yt follows a Poisson distribution with
expected values µt.

Yt ∼ Poi(µt), µt = E[Yt]

The log link function relates the mean µt to the linear predictor log(µt) = ηt.
The first model that we consider is the Poisson Serfling model (Serfling, 1963), which
includes a linear trend and models the seasonality using sine and cosine functions.

log(µt) = β0 + β1t+ β3cos(wt) + β4sin(wt)

where t = 1, . . . , T , w = 2π/p, and p is the period. Analyses in this paper are performed
on monthly death counts and rates, so p = 12. Estimation of the regression coefficients
β̂ can be performed with the Iterated Weighted Least Squares (IWLS) for GLM models
(McCullagh and Nelder, 1989).
The model allow for exposures et, when the objective is to model death rates. The
Poisson Serfling (PS) with exposures is

log(µt) = log(et) + β0 + β1t+ β3cos(wt) + β4sin(wt).

2.2. Smooth trend and smooth seasonality (PS-STSS) model

Secondly, we propose to use the modulation models developed by Eilers et al. (2008)
and extend them to forecast the baseline mortality by adapting the P-splines approach
of Currie et al. (2004) to seasonal data. The modulation models introduce a smooth
trend function and time-varying coefficients. This gives a very general model for demo-
graphic seasonal time series. The structure is the following

log(µt) = υt + ftcos(wt) + gtsin(wt), (1)

where υt accounts for the smooth trend, ft and gt are smooth functions that describe
the local amplitudes of the cosine and sine waves, and w = 2π/p, with p the period (e.g.,
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p = 12 for monthly data). The smooth trend function and the modulation series ft
and gt are constructed by approximating B-splines basis. Specifically, υt =

∑
j αjBj(t),

ft =
∑

j βjBj(t) and gt =
∑

j γjBj(t), with B = [btj] = [Bj(t)] B-splines basis, t =
1, . . . , T the time index, and j = 1, . . . , J the B-splines index.
By introducing the matrices C = diag{cos(wt)} and S = diag{sin(wt)}, the model in
Equation 1 can be written in the matrix-vector notation

log(µ) = Bα+CBβ + SBγ = η

where υ = Bα, f = Bβ, g = Bγ. The linear predictor can then be re-arranged

η = [B|CB|SB][α′|β′|γ′] = B̆θ.1 (2)

When modelling death rates, the exposures et are included and the PS-STSS model
becomes

log(µt) = log(et) + υt + ftcos(wt) + gtsin(wt),

2.3. Smooth trend and fixed seasonality (PS-STFS) model

In addition to employing the Poisson Serfling model and the modulation model,
we propose an alternative approach to account for smooth trend component and fixed
seasonality (STFS). Specifically, we employ the same structure

log(µt) = υt + β1cos(wt) + β2sin(wt).

where υt accounts for the smooth trend, and the cosine and sine have constant coeffi-
cients β1 and β2 over time, and w = 2π/p. The smooth trend function is constructed by
approximating B-splines basis. Specifically, υt =

∑
j αjBj(t), with B = [btj] = [Bj(t)]

B-splines basis, t = 1, . . . , T the time index, and j = 1, . . . , J the B-splines index.
The linear predictor models the trend component with the B-splines matrix B and time
varying coefficients α, and the seasonal component with the vectors c = cos(wt) and
s = sin(wt) and the coefficients β1 and β2

η = [B|c′|s′][α′|β1|β2] = B̆θ. (3)

When modelling death rates, the exposures et are included and the PS-STFS model
becomes

log(µt) = log(et) + υt + β1cos(wt) + β2sin(wt).

2.4. Estimation

For both versions of the modulation model, the estimation of the models’ parameters
is achieved using penalized B-splines or P-splines to force them to vary more smoothly
(Eilers and Marx, 1996). The B-spline bases model the series v, f and g and an

1From here onward, B indicates the matrix of B-splines, while B̆ indicates the regression matrix.
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additional penalty on the B-spline coefficients optimizes their amount of smoothing.
We minimize the penalized Poisson deviance defined as

d∗(y;µ) = 2
T∑
t=1

log(yt/µt) + λ1 ∥Dα∥2 + λ2 ∥Dβ∥2 + λ2 ∥Dγ∥2

where the matrix D = ∆d constructs dth order differences of α, β and γ. For instance,
∆1 is a matrix (J − 1) × J of first differences and ∆1α is the vector with elements
αj+1 −αj , for j = 1, . . . , J − 1. By repeating this computation on ∆1α, we arrive at
higher differences like ∆2α, where ∆2 the (J−2)×J matrix of second-order differences
of a J-vector.
The linear re-expressions 2 and 3 allow all of the parameters associated with each
components to be estimated simultaneously as GLMs. Estimation of the coefficients is
performed via the penalized version of the Iterated Weighted Least Squares (IWLS)

(B̆′M̃ (t)B̆ + P )θ(t+1) = B̆′M̃ (t)B̆θ(t) + B̆′(y − µ̃), (4)

where B̆ is the regression matrix, M̃ = diag(µ) is the matrix of weights, and P =
ΛD′D is the penalty term. The positive penalty hyper-parameter Λ = diag(λ1, λ2, λ2)
balance smoothness against fit to the data and allows for different penalty for the trend
(λ1) and modulation functions (λ2). The penalty matrix can also be constructed to
consider differents order of the differences for the trend and modulation functions as
P = blockdiag(λ1D

′
1D1, λ2D

′
2D2, λ2D

′
2D2). For instance, Carballo et al. (2019) sug-

gests an order of differences of 2 and 1 for λ1 and λ2, respectively.
The modulation model presents some similarities with some other models in the lit-
erature. The smooth trend component υ can be seen as a generalized additive model
(GAM, Hastie and Tibshirani 1990) and the seasonal components f and g as a varying-
coefficient model (VCM, Hastie and Tibshirani 1993). The advantage of P-splines over
GAM and VCM is that they avoid both the backfitting algorithm and complex knot
selection schemes.

2.5. Forecasting with P-splines

Following Currie et al. (2004), the forecasting of future values can be treated as a
missing value problem and the fitted and forecast values can be estimated simultane-
ously. Consider observing the death counts y1 for n1 months and wanting to forecast n2

months into the future. Let us define a new time index t+ with t+ = 1, ..., n1, ..., n1+n2.
To obtain the fit and the forecast simultaneously, we extend for n1 + n2 months the
regression matrix B̆ and the penalty matrix P . The IWLS algorithm of Equation 4 is
adapted as follows:

(B̆′
+V M̃ (t)B̆+ + P+)θ

(t+1) = B̆′
+V M̃ (t)B̆+θ

(t) + B̆′
+V (y − µ̃),

where the matrix B̆+ = [B̆+|C+B+|S+B+] is the extended regression matrix and the
matrix P+ = blockdiag(λ1D

′
1+D1+, λ2D

′
2+D2+, λ2D

′
2+D2+) is the extended penalty
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matrix. It follows that B̆+ is the extended matrix of B-splines for the trend, C+ =
diag(cos(wt+)) and S+ = diag(sin(wt+)) are the extended matrices for the modulation
components, and D1+ and D2+ are the extended matrices of differences. Furthermore,
a matrix V = blockdiag(I;0) weights 1 the observations (I has size n1) and 0 the
forecasts (0 has size n2).
The confidence intervals for the fitted values and the prediction intervals (PI) for the
forecasts are computed simultaneously using the approximate variance of B̆+θ̂ given
by

V ar(B̆+θ̂) ≈ B̆+(B̆
′
+V+M̃B̆+ + P+)

−1B̆′
+.

2.6. Evaluation measures

To evaluate the model performance balancing the goodness of fit and the model
complexity, we will use the Bayesian Information Criterion BIC defined as (Schwarz,
1978)

BIC = 2Dev + log n Tr

where Dev is the deviance of the model, n is the number of observations, and Tr =
tr(H) is the effective dimension of the fitted model. The hat matrix is defined as H =

M̂
1/2

B̆(B̆
′
M̂B̆+P )−1B̆′M̂

1/2
and the trace is tr(H) = tr[B̆

′
M̂B̆(B̆′M̂B̆+P )−1].

To evaluate the forecasting accuracy, we will use the Root Mean Squared Error (RMSE)
and the Mean Absolute Percentage Error (MAPE). We consider y1, . . . , yN to fit the
model (training set) and yN+1, . . . , yT to check the forecasting accuracy (test set). The
forecasting error is defined as the difference between the observed values and the fore-
casts et = yt − ŷt, for t = N + 1, . . . , T

RMSE =
√

mean(e2t ) =
1

T −N

T∑
t=N+1

e2t .

The percentage error is defined as pt = 100et/yt, for t = 1, . . . , T

MAPE = mean(|pt|) =
1

T −N

T∑
t=N+1

|pt|.

3. Data

We retrieved the series of monthly death counts and population counts from Eu-
rostat2 for 25 countries (Austria, Bulgaria, Croatia, Czechia, Denmark, Estonia, Fin-
land, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Lithuania, Luxem-
bourg, Netherlands, Norway, Poland, Portugal, Romania, Slovenia, Spain, Sweden, and
Switzerland). We selected the countries for which we could access complete series of
monthly data that goes back at least to 1995 and extended through June 2022.

2https://ec.europa.eu/eurostat
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Figure 1: Death counts and death rates from 2010 to 2021 for Sweden. The period before the COVID-
19 pandemic is in grey (2009 to February 2020) and the period after the COVID-19 pandemic is in
red (March 2020 to 2021).

We use the yearly population counts to obtain the exposures as the mid-point between
populations on the 1st January of each year and divided by 12. The deaths and expo-
sure data are arranged respectively in vectors y and e indexed by month. The crude
death rates (CDRs) are then computed as y/e. CDRs measure the intensity of deaths
in a population and are used to project mortality in time and compute a baseline mor-
tality (Aburto et al., 2021; Basellini et al., 2021; Stokes et al., 2021).
Figure 1 shows for illustrative purposes the monthly total death counts and CDRs

for Sweden from 2000 to 2021. The series show a strong temporal trend and cyclical
behavior, also known as seasonal variation. The CDRs decrease over time, being in-
fluenced by improvements in living conditions and mortality. The seasonal variation
strikes harder in winter than in summer being driven by seasonal influenza in the older
population. The winter peak usually happens every year between December and March.
In February 2020, the COVID-19 pandemic struck in Europe disrupting mortality pat-
terns and increasing mortality outside the usual window of December to March. In
the two years after the first wave of COVID-19, mortality seems to follow the regular
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pattern of seasonal mortality.
Additionally, the series were retrieved disaggregated by sex and age at death from the
national statistical offices3 of the countries that made them available: Denmark (2007
to 2022), Italy (2003 to 2022), Spain (2009 to 2022), and Sweden (2000 to 2022). We
grouped the death counts by four age group (0-64, 65-74, 75-84, 85+) because it is the
finest age classification available. When comparing mortality across populations, con-
sidering the age-specific death rates (ASDRs) instead of the CDRs permits to reduce
the influence of the age composition of the population (Németh et al., 2021; Nepomu-
ceno et al., 2022). Age structures can change over time due for instance to population
aging (Preston et al., 2001; Djeundje et al., 2022; Missov et al., 2023).

4. The underlying models

The previous section set out the theory for modelling with P-splines. In this section,
we explain our choice of the various parameters in the modelling (subsection 4.1), We
then compare the performance of the three models (PS, PS-STSS, PS-STFS) in all
European countries on the period 1995 to 2019, i.e., in the absence of the mortality
schock caused by the COVID-19 pandemic (subsection 4.2).

4.1. Choice of the model’s parameters

The parameters to be chosen when fitting the modulation models are 1) the degree
of the splines, 2) the number of regions (or equivalently the number of knots) to divide
the domain and 3) the penalty hyper-parameters.
The spline’s degree controls the order of the polynomial included in the B-spline bases.
We used a basis of cubic B-splines (degree 3) for the modulation models. The chosen
number of regions to divide the domain is two per year. Therefore, the number of basis
depends on the number of years used to predict the baseline. The number of B-splines
is the number of divisions plus the degree of the splines. The relation can also be ex-
pressed as nbasis = nknots+ bdeg − 1, with nbasis number of basis functions, nknots
number of knots, and bdeg degree of the spline. For instance, let us fit the model on 10
years (from 2010 to 2019): the domain is divided in 20 regions by 21 knots (19 interior
knots and 2 knots at the boundaries of the domain) and uses 23 cubic B-splines.
Figure 2 illustrate the non-parametric fit of the trend function vt with B-splines for

Sweden. The results are presented on a logarithmic scale, because the Poisson regres-
sion models the logarithm of the expected value. The top panel shows a basis of 23
cubic B-splines. In the middle panel, the B-spline bases locally defined are scaled with
the estimated coefficients (e.g. negative coefficients lead to parabulas below zero; the
higher the coefficient, the higher the scaled parabula) to fit the monthly death rates

3Statistics Denmark, https://www.dst.dk/en, Istituto Nazionale di Statistica https://www.

istat.it/, Instituto Nacional de Estad́ıstica, https://www.ine.es/en/, Statistics Sweden, https:
//www.scb.se/en/
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Figure 2: Illustration of the fit (logarithmic scale) of the trend function υ = Bα with B-splines for
Sweden. The panels show: 23 cubic B-spline basis in the top panel, scaled B-spline basis in the middle
panel, sum of scaled B-spline basis function in the bottom panel.

(black line). The B-splines slightly widen from 2010 to 2019 to accomodate the decreas-
ing trend in the data. The scaled bases are then summed up to form the smooth trend
function vt that fits the data (light blue line) in the bottom panel. By construction,
the B-spline bases are then smoothly joined together.
The P-splines introduce an additional penalty term that prevents overfitting. In the
PS-STSS model, the penalty uses second order differences for the trend and first order
differences for the seasonal component (Carballo et al., 2019). In the the PS-STFS
model, we use second order differences for the trend. The tuning of the penalty hyper-
parameters λ1 for the trend and λ2 for the seasonal component was achieved through
MAPE minimization on a grid search. We will explain these choices in detail in sub-
section 5.1 because they influence the forecasts.
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Table 1: Mean BIC on death rates in 25 European countries for multiple fitting periods based on a
rolling-window scheme.

5 years series 10 years series

PS PS-STSS PS-STFS PS PS-STSS PS-STFS

Austria 1032 987 1013 2038 1971 2000

Bulgaria 1895 1836 1847 3809 3671 3722

Croatia 836 800 822 1641 1605 1633
Czechia 1322 1272 1295 2511 2352 2379

Denmark 648 642 653 1346 1305 1327

Estonia 243 252 253 487 488 490
Finland 597 597 608 1214 1203 1218

France 8099 7403 7867 17036 15934 16448

Germany 10556 9582 10099 21869 20058 20837
Greece 2646 2510 2576 5066 4871 4969

Hungary 2163 2056 2124 4143 4046 4090
Iceland 96 108 108 198 214 214

Ireland 686 679 694 1495 1384 1432

Italy 11248 10008 10556 22304 20579 21429
Lithuania 599 586 592 1463 1246 1254

Luxembourg 107 119 119 216 231 231

Netherlands 1853 1773 1813 3753 3596 3616
Norway 618 592 626 1248 1173 1240

Poland 4866 4501 4704 9776 8974 9457

Portugal 3529 3392 3489 6806 6691 6756

Romania 4199 3759 3861 9192 8172 8676

Slovenia 314 315 323 637 640 649

Spain 9435 8614 9026 19226 18056 18568

Sweden 1094 1067 1096 2218 2201 2225

Switzerland 813 783 814 1600 1590 1606

4 20 1 4 21 0

4.2. Performance of the fitted models

To compare their goodness of fit, the three models (PS, PS-STSS and PS-STFS)
were fitted on a rolling window and the model fit was measured with the BIC. We
used a 5-years rolling window because it is the standard choice in the literature and
10-years rolling window as a comparison. The three models were fitted on the common
period available for the death series, that is from 2010 to 2019. The series’ lengths
permit the computation of the BIC for a sufficient number of years for both the 5-years
rolling window (20 BICs) and the 10-years rolling window (15 BICs). Table 1 shows the
mean BIC values obtained by fitting the models on the CDRs. The mean BIC favours
the model PS-STSS, which allows for more flexibility of the trend and seasonality, in
almost all the countries (20 with 5-years and 21 with 10 years). Either using 5-years or
10-years for the rolling window, the model PS-STSS better fit the series than the PS
and the PS-STFS model. The results of fitting the three models to the death counts
are showed in the Appendix A (Table A.5) and are similar to the one for the CDRs.

Figure 3 shows the fit of the three models on the CDRs in the logarithmic scale
for Sweden (and also show forecasts, which will be discussed later in Section 5). The
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trend function v (dashed coloured line) and the fitted values µ̂ (solid coloured line) are
overlayed to the observed monthly death counts y (grey line). The results for all the
other countries are shown in the Supplementary Materials (Figures 1 to 7).

Figure 3: Modelling and forecasting of monthly deaths (logarithmic scale) for Sweden with the Poisson
Serfling model (PS) and modulation models (PS-STSS and PS-STFS). Trend function (dashed coloured
line), fitted values (solid coloured line).

11



Sweden has a declining trend of the CDRs according to the three models. However, the
trend estimated is linear for the PS model and non linear for the PS-STSS and PS-STFS
models with the slope of the regression line changing over time. Furthermore, the PS-
STSS and PS-STFS models better fit the mortality level during the summer, especially
in the last years of the fitting period before COVID-19. The difference between the
model PS-STSS and the model PS-STFS is that they assume respectively a varying
seasonality and a fixed seasonality. The fitted models PS-STSS and PS-STFS did not
seem to capture a noticeable change in the seasonality.
Our approach is similar to Eilers et al. (2008) because we are not interested in catching
the winter spikes. We do not want our model to overfit every year but rather to
estimate an average pattern. A small excess deaths can happen every year between
December and March due to seasonal influenza occurs. What we are interested in, is
the counterfactual forecast and the excess death during a mortality shock, that can
happen outside the typical period December-March. Our approach differ from the one
in Eilers et al. (2008) that ignores the months from December to March by giving them
zero weights. We keep these months in our fitting period because we want to use the
information on the location of the winter peak.
The amplitude of the seasonal variation, as described in Eilers et al. (2008), permits
further inspection and measurement of the changes of the seasonal component over
time. Figure 4 shows the amplitude of the seasonal component obtained with the PS-
STSS model in Sweden on the period 2010-2019. The grey line represents the detrended

Figure 4: Changes in the seasonal component over time for Sweden, with the modulation models PS-
STSS: detrended series (grey), modulated component (dashed black) and amplitude (dashed red).
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series, i.e., the ratio y/µ̂, the dashed black line is the modulated component given by
ftcos(wt) + gtsin(wt), and the red line its amplitude ρ =

√
(f2 + g2). The seasonal

amplitude remains constant over time in Sweden. Similar results can be observed for
the majority of the countries (Supplementary Materials, Figure 8 and 9).

5. Results on the forecasts

The models are applied to obtain out-of-sample predictions of the monthly deaths.
First, we explain our choice of the order of the penalty (5.1). We then present forecasting
accuracy of the three models (PS, PS-STSS, PS-STFS) on historical periods in the
absence of mortality shocks (5.2). Finally, we calculate the excess death during the
COVID-19 pandemic (5.3).

5.1. Choice of the order of the penalty

The forecasting method works by extrapolating the regression coefficients and the
penalty on the coefficients ensures their smoothness. The order of the penalty deter-
mines whether the coefficients are approximately constant (order 1), linear (order 2) or
quadratic (order 3). As a consequence, the smoothness of the forecasts also depends
on the order of the penalty. Figure 5 shows the effect of changing the order of the
penalty on the predictions of the trend. The second order for the trend, i.e., a linear
extrapolation, best approximate the mortality trend, while the first order penalty for
the modulation functions, gives more realistic predictions and 95% PI.

Figure 5: Effect of the order of the penality on the forecasts of the trend function (logarithmic scale),
in Sweden, with the model PS-STSS.
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Out-of-sample validation was used to chose the order of the penalty that provides better
forecasts. We compared the following penalties: first order for the trend and seasonal-
ity (T1S1), second order for both the trend and seasonality (T2S2), first order for the
trend and second order for the seasonality (T1S2), and second order for the trend and
first order for the seasonality (T2S1). The results are shown in Tables B.6 for the death
counts and B.7 for the death rates in Appendix B. The model with a second order
penalty for the trend and a first order penalty for the seasonality provided a better
forecasting accuracy and were then chosen.
The penalty hyper-parameters λ1 for the trend and λ2 for the seasonal component were
chosen through a rolling window on the estimation set. We used values from 104 to 107

to compute the predictions one year ahead and chose the hyper-parameters based on
the minimum mean MAPE. We decided to use the MAPE minimization instead of the
BIC minimization, as the focus of our analysis is on forecasting (rather than modelling).
This procedure was applied to both the PS-STSS model and the PS-STFS model.

5.2. Forecasts’ evaluation

We evaluated the forecasting accuracy of the three models (PS, PS-STSS and PS-
STFS) via out-of-sample validation. A rolling window of 5 years and a rolling window
of 10 years were used to predict the deaths counts one year ahead. The accuracy of
the forecasts is measured based on the RMSE and MAPE. Like in the case of the BIC
comparisons, the series of death counts for the three countries permit to have a sufficient
number of years to evaluate the forecasts for both the 5-years rolling window and the
10-years rolling window.
Table 2 shows how well each model could have predicted the rates in the period before
the COVID-19 pandemic. When using 5 years as fitting period, the preferred model is
the PS for the majority of the countries. However, when using 10 years to fit the models,
the forecasting accuracy improves and the PS-STFS model becomes the preferred one.
According to the mean MAPE (and mean RMSE), the PS-STFS would have been more
accurate in predicting mortality one year ahead in 13 cases out of 25 (and 13 cases for
the RMSE) than the PS model (7 and 9 cases) and the PS-STSS model (4 and 3 cases).
Therefore, for those countries, the trend is better approximated by more flexible models
than a linear interpolation.
Figure 3 plots the model-specific forecasts of the trend function v and the predicted
values µ̂ using a second order penalty for the trend and a first order penalty for the
modulation functions. The observed monthly death counts y are overlaid in grey on the
fitting period (2011 to February 2020) and in red on the forecasting period (February
2020 to June 2022). The forecast of the trend is decreasing according to the three
models and the PI are generally wider with the PS-STSS and PS-STFS models than
the PS model. The forecast from March 2020 to December 2022 can be considered as
the counterfactual mortality had the health shock not occurred. The difference between
the forecasts and the observed mortality represents an estimate of the excess mortality
attributable to the health shock. Depending on the model, the baseline mortality might
differ and lead to different estimations of the excess death.
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Table 2: Mean RMSE and MAPE on death rates (x 1000) in 25 European countries for multiple
fitting periods based on a rolling-window scheme.

5 years series 10 years series

RMSE MAPE RMSE MAPE

PS STSS STFS PS STSS STFS PS STSS STFS PS STSS STFS

Austria 0.52 0.53 0.53 4.0767 4.1234 4.0596 0.51 0.51 0.50 4.0994 3.9255 3.9046

Bulgaria 0.98 1.01 1.01 4.9998 5.2385 5.1931 0.98 0.96 0.97 4.8537 4.8038 4.8285
Croatia 0.80 0.83 0.82 4.9332 5.1465 5.0552 0.77 0.78 0.78 4.2389 4.4063 4.4265

Czechia 0.56 0.56 0.55 3.8864 3.8202 3.6753 0.54 0.53 0.52 3.7092 3.6305 3.5899
Denmark 0.50 0.51 0.50 3.8477 3.8808 3.8473 0.48 0.48 0.47 3.7556 3.6365 3.5619

Estonia 0.71 0.72 0.72 4.3943 4.4731 4.4573 0.69 0.65 0.65 4.3286 4.1250 4.0721

Finland 0.49 0.50 0.50 3.8159 3.9007 3.9313 0.47 0.47 0.46 3.5913 3.5901 3.5618
France 0.52 0.54 0.53 4.1252 4.4582 4.3770 0.47 0.49 0.47 3.8077 4.0890 3.8456

Germany 0.59 0.61 0.59 3.8427 4.0639 3.9287 0.60 0.59 0.58 3.9127 3.6898 3.6180

Greece 0.76 0.76 0.75 5.3800 5.3538 5.2793 0.74 0.74 0.75 5.1226 5.2597 5.2708

Hungary 0.80 0.83 0.82 4.3044 4.5832 4.4575 0.74 0.74 0.74 3.7969 3.9475 3.9419

Iceland 0.65 0.65 0.65 8.0715 8.0906 8.0861 0.59 0.59 0.59 7.6200 7.5869 7.5903

Ireland 0.49 0.48 0.49 5.3619 5.3767 5.4646 0.46 0.40 0.40 5.4810 4.8639 4.8642
Italy 0.71 0.78 0.77 5.3338 5.8816 5.8434 0.68 0.73 0.72 4.9051 5.3539 5.2955

Lithuania 0.84 0.82 0.81 5.1975 4.9878 4.9635 1.02 0.87 0.87 6.2032 5.2079 5.2212

Luxembourg 0.63 0.64 0.64 6.8401 7.0285 7.0280 0.57 0.57 0.57 6.2410 6.2996 6.2990

Netherlands 0.47 0.48 0.48 3.9835 4.2002 4.1678 0.49 0.46 0.45 4.2544 3.8987 3.8529

Norway 0.52 0.50 0.51 4.8227 4.6813 4.8195 0.49 0.46 0.49 4.9574 4.4858 4.9652
Poland 0.53 0.57 0.55 3.7573 4.0273 3.9733 0.56 0.54 0.54 3.9593 3.7097 3.7087

Portugal 0.84 0.89 0.88 5.7897 6.3081 6.3158 0.82 0.84 0.83 5.5416 5.8212 5.7671

Romania 0.83 0.85 0.85 5.2372 5.3616 5.3515 0.73 0.76 0.78 4.2378 4.6758 4.7223
Slovenia 0.60 0.62 0.61 4.8876 4.9298 4.9272 0.58 0.58 0.58 4.3536 4.3581 4.3155

Spain 0.66 0.69 0.68 5.5342 5.6678 5.5563 0.64 0.62 0.62 5.3792 4.9982 4.9929

Sweden 0.51 0.51 0.50 3.8483 3.8712 3.8042 0.45 0.46 0.45 3.4682 3.5249 3.5009
Switzerland 0.45 0.46 0.46 4.0130 4.1636 4.1387 0.40 0.40 0.40 3.5831 3.5695 3.5038

17 2 6 18 1 6 7 4 14 9 3 13

In an epidemic year, a significant excess death (i.e., outside the PI) is usually recorded
in the months between December and March, when the winter peak occurs. In these
months, mortality might exceed the expected deaths with an intensity that depends
on the severity of the seasonal influenza. The excess mortality recorded during the
COVID-19 pandemic from March 2020 until 2022 is visibly larger than in the previous
years. Furthermore, the excess in 2020, corresponding to the first COVID-19 wave,
occurred outside the normal epidemic period. After the first wave, the excess death
throughout epidemic years 2020/2021 and 2021/2022 reaches a lower peak and follows
the seasonal behavior of the influenza deaths.

5.3. Excess death during the COVID-19 pandemic

The number of deaths in excess or deficit were obtained by subtracting the expected
deaths, had the COVID-19 pandemic not occurred, to the observed deaths. The ex-
pected deaths for the majority of the countries was obtained with the PS-STFS model.
We chose the baseline of the PS-STSS model for Ireland, Lithuania, Norway, Poland
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Table 3: All-cause excess death in Europe during three pandemic periods (first covid wave, and first
and second epidemic year after the shock). Baseline mortality is obtained with the Modulation Models
PS-STFS.

country March to June 2020 July 2020 to June 2021 July 2021 to June 2022

Austria -172 (-531 ; 183) 8873 (7574 ; 10152) 8154 (6016 ; 10238)
Bulgaria -1954 (-2237 ; -1673) 34015 (33203 ; 34822) 34863 (33787 ; 35928)
Croatia -320 (-647 ; 2) 11647 (10333 ; 12927) 13168 (10858 ; 15372)
Czechia -862 (-1418 ; -313) 35580 (33060 ; 38042) 9453 (4622 ; 14082)
Denmark -521 (-864 ; -182) 965 (-442 ; 2335) 5655 (3126 ; 8069)

Estonia -69 (-177 ; 37) 1934 (1627 ; 2236) 2504 (2096 ; 2901)
Finland 158 (-30 ; 344) 325 (-197 ; 842) 6077 (5413 ; 6734)
France 18054 (16906 ; 19196) 58582 (53817 ; 63310) 42477 (33881 ; 50952)
Germany -2855 (-4399 ; -1318) 69732 (63055 ; 76360) 84476 (72071 ; 96716)
Greece -2898 (-3511 ; -2292) 4018 (1153 ; 6819) 12820 (7130 ; 18276)

Hungary -629 (-1178 ; -85) 33175 (30842 ; 35462) 23410 (19193 ; 27483)
Iceland -37 (-71 ; -4) -77 (-164 ; 8) 143 (44 ; 239)
Ireland 1013 (828 ; 1196) 944 (350 ; 1527) 2362 (1479 ; 3222)
Italy 43900 (43046 ; 44752) 105750 (102981 ; 108506) 72607 (68461 ; 76726)
Lithuania 588 (374 ; 800) 9971 (9271 ; 10658) 10530 (9482 ; 11548)

Luxembourg -54 (-101 ; -8) 284 (163 ; 401) 34 (-104 ; 169)
Netherlands 6340 (5983 ; 6696) 10444 (9391 ; 11490) 13677 (12234 ; 15106)
Norway 281 (-77 ; 632) 410 (-769 ; 1555) 3633 (1717 ; 5461)
Poland -3688 (-4426 ; -2954) 121220 (118979 ; 123449) 60763 (57545 ; 63956)
Portugal 405 (109 ; 699) 15623 (14773 ; 16468) 6241 (5102 ; 7369)

Romania -1545 (-2161 ; -932) 66455 (64286 ; 68604) 65471 (61995 ; 68901)
Slovenia -80 (-265 ; 101) 4259 (3578 ; 4918) 2179 (1036 ; 3261)
Spain 42043 (40909 ; 43171) 40576 (35226 ; 45855) 35654 (25204 ; 45842)
Sweden 5582 (5114 ; 6045) 5421 (3374 ; 7418) 5097 (1296 ; 8735)
Switzerland 579 (246 ; 907) 7589 (6344 ; 8812) 4386 (2288 ; 6421)

based on accuracy analysis. Furthermore, the seasonality is correctly modeled for Nor-
way only by the PS-STSS model (Supplementary Materials, Figure 3). We report the
number of excess deaths together with their 95% credible intervals in Table 3. The cred-
ible intervals represents the uncertainty in how many deaths would have occurred in
the absence of the pandemic. Some of the estimates and lower bounds of excess deaths
are negative. Negative values imply the saving of lives. For ease of interpretation, we
distinguished three phases of the COVID-19 pandemic: 1) the first wave (from March
2020 to June 2020), 2) the epidemic year 2020-21 (from July 2020 to June 2021), and
3) the epidemic year 2021-22 (from July 2021 to June 2022).
Taken all the 25 European countries together, 104,365 (95% credible interval, 92,740–
115,897) more people died from February through May 2020 than would have had
the pandemic not occurred. Among the European countries, France, Italy, Lituania,
Netherlands, Portugal, Spain, Sweden, and Switzerland were hit since the first wave
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Figure 6: Excess death rates (x 1000) in Europe during three pandemic periods (first covid wave, and
first and second epidemic year after the shock). Baseline obtained with the PS-STFS model.

and had excess death in the two following epidemic years, while the remaining countries
did not had excess or even avoided deaths in the first wave but were hit later on.
European countries have different sizes and death rates are better suited to com-

pare them. Figure 6 report the excess death rates together with their 95% credible
intervals. During the first COVID-19 wave, Spain and Italy experienced the largest
effect: an increase in the death rates of 10.59 (10.29–10.88) in Spain and 9.13 (8.96–
9.31) in Italy. Following Spain and Italy, a signifcant excess was registered in Sweden,
the Netherlands, France, Ireland, Lithuania, Switzerland and Finland. The remain-
ing countries experienced mortality changes that ranged from possible small declines
(Germany, Poland, Romania, Denmark, Estonia, Greece, Bulgaria) to non significant
increases or decreases (Norway, Portugal, Austria, Czechia, Slovenia, Hungary, Croatia,
Luxembourg, Iceland). The heterogeneous geographical effect of the COVID-19 pan-
demic on mortality can reflect the differences in preparedness of public health system
and the policy responses. The effects can be adverse, for instance if the system is not
able to handle the increase in hospitalizations from COVID-19 or different diseases, or
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Table 4: All-cause excess death in Denmark, Italy, Sweden, and Spain, by sex and age, during three
pandemic periods (first covid wave, and first and second epidemic year after the shock). Baseline
mortality is obtained with the Modulation Models PS-STFS.

Age Denmark Italy Spain Sweden

Men

March to June 2020
0-64 -119 (-195 ; -45) 1931 (1767 ; 2093) 1188 (986 ; 1387) 284 (230 ; 336)
65-74 -124 (-217 ; -34) 5141 (4854 ; 5424) 3149 (2858 ; 3435) 440 (332 ; 545)
75-84 -55 (-171 ; 57) 9214 (8873 ; 9551) 7265 (6882 ; 7641) 1089 (936 ; 1238)
85 -98 (-162 ; -34) 6823 (6419 ; 7225) 8440 (7978 ; 8896) 1127 (1014 ; 1239)

July 2020 to June 2021
0-64 -144 (-394 ; 94) 6660 (6203 ; 7112) 2835 (2186 ; 3473) 279 (143 ; 412)
65-74 -315 (-634 ; -12) 14079 (13022 ; 15114) 4305 (3102 ; 5471) 545 (170 ; 904)
75-84 250 (-163 ; 645) 20106 (18987 ; 21212) 8780 (7146 ; 10367) 1140 (562 ; 1695)
85 112 (-55 ; 275) 15182 (13758 ; 16589) 7257 (5179 ; 9279) 702 (365 ; 1032)

July 2021 to June 2022
0-64 108 (-271 ; 459) 3725 (3148 ; 4294) 2187 (1230 ; 3121) 200 (45 ; 351)
65-74 -19 (-522 ; 447) 5263 (3519 ; 6949) 3314 (1137 ; 5372) 45 (-544 ; 593)
75-84 975 (290 ; 1614) 9970 (8288 ; 11623) 6808 (3825 ; 9639) 926 (-63 ; 1854)
85 772 (574 ; 965) 8573 (6269 ; 10832) 7055 (3056 ; 10855) 520 (58 ; 969)

Women

March to June 2020
0-64 -14 (-50 ; 21) 423 (287 ; 557) 822 (687 ; 954) 26 (-16 ; 67)
65-74 -129 (-176 ; -83) 1928 (1698 ; 2153) 1324 (1207 ; 1439) 40 (-47 ; 125)
75-84 4 (-100 ; 104) 5368 (5093 ; 5641) 5656 (5339 ; 5968) 805 (687 ; 920)
85 -301 (-382 ; -222) 14478 (13644 ; 15304) 13658 (13022 ; 14286) 1504 (1298 ; 1705)

July 2020 to June 2021
0-64 63 (-26 ; 150) 2438 (2042 ; 2828) 816 (397 ; 1226) -56 (-162 ; 48)
65-74 -191 (-312 ; -74) 6760 (5896 ; 7600) 1727 (1396 ; 2053) 52 (-242 ; 333)
75-84 89 (-272 ; 434) 13651 (12822 ; 14472) 7383 (6089 ; 8638) 1050 (663 ; 1425)
85 -75 (-284 ; 130) 28322 (24138 ; 32409) 6772 (3732 ; 9735) 976 (190 ; 1734)

July 2021 to June 2022
0-64 191 (93 ; 285) 1390 (868 ; 1902) 981 (385 ; 1561) 5 (-114 ; 121)
65-74 -189 (-328 ; -54) 4043 (2596 ; 5425) 1386 (952 ; 1810) -97 (-549 ; 322)
75-84 987 (403 ; 1531) 9323 (8170 ; 10459) 6170 (3901 ; 8319) 1275 (684 ; 1838)
85 1007 (759 ; 1250) 27989 (19636 ; 35967) 8966 (2914 ; 14733) 1344 (13 ; 2599)

beneficial, when deaths are avoided because of lockdowns and hygenic measures.
Table 4 reports the excess deaths for men in the original scale of the data, obtained as
the difference between the observed and the expected deaths, together with the 95% PI
in parentheses. These measures are broken down by age groups and divided by three
pandemic phases as described above. No disadvantage was found between sexes in all
of the four countries, with the number of excess deaths were similar between men and
women. Of the excess deaths that occurred, 48% were in men and 52% were in women
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in Denmark, 48% in men and 52% in women in Italy, 53% in men and 47% in women
in Spain, and 51% in men and 49% in women in Spain.
Again, mortality rates are better suited for the comparison of sub-groups of the popu-
lation because they consider its age structure. Mortality rates consider the two forces
driving the death rates: the improvements in mortality on one side and the compo-
sitional changes on the other side. An increase in the deaths in one age group could
be the result of an increase in the number of people in that age group (compositional
change) rather than a real change in mortality (mortality improvements).
Figure 7 present the observed death rates (continuous line) and the expected death rates
(dashed line) together with the 95% PI (grey shaded area) on the period from March
2020 to June 2022 in Denmark, Italy, Spain, and Sweden, by sex and age groups. The
expected death rates and the 95% PI (in the absence of the coronavirus pandemic) are
estimated on a common period of the three countries (2010 to February 2020) using the
modulation model PS-STFS. The excess mortality outside of the PI is the red shaded
area, while the deficit mortality is the blue shaded area. The PI conveniently widen
moving away from the starting point of the forecasts, indicating that the uncertainty
increases with the forecasting horizon.
Spain and Italy shows a significant excess mortality for both sexes and all age groups
during the first COVID-19 wave from March to June 2020. The death rates remained
above the levels expected in the winter 2020/2021, and, to a lower extent, during the
winter 2021/2022. A summer peak is also visible in 2021. Instead, Danish and Swedish
men appear to have experienced several differences over time. Excess mortality in Swe-
den mainly occurred in 2020 and 2021 and returned to the expected levels in the absence
of the pandemic in 2022, whereas in Denmark it mainly took place in 2022.
The differences in the timing of the pandemic impact may reflect the differences in

the response policies to the pandemic, with Denmark imposing them in a timely way
in 2020 and lifting them in 2022, and Sweden imposing them later on. Denmark and
Sweden are very similar in terms of history, social and political systems, they witnessed
the spread of COVID-19 around the same time at the beginning of March. There-
fore, the differences in the timing of excess death can be attributed to the two radi-
cally different responses adopted. The results may also reflect the different vaccination
campaigns in the two countries, with Denmark reaching a higher vaccination cover-
age than Sweden (based on data from the European Centre for Disease Prevention and
Control, https://www.ecdc.europa.eu/en/publications-data/data-covid-19-vaccination-
eu-eea). In Denmark after the first COVID-19 wave, excess and deficit deaths evened
out in the broader age group 0-64, while a deficit of death prevails in the age group
65-74, and an excess in the age group 75-84 and above age 85. In Spain and Sweden,
during the whole pandemic period, excess deaths occurred for all the age groups and
most of the excess was concentrated in the higher age groups.
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Figure 7: Monthly number of deaths from February 2020 though June 2022 in Denmark,
Italy, Sweden, and Spain, by sex and age groups. The solid line shows the recorded deaths. The
dashed line shows the predictions of the expected deaths (obtained with the PS-STFS and PS-STSS
models) had the COVID-19 pandemic not occurred. The grey shaded area shows the 95% prediction
intervals around the mean prediction. The red shaded area shows the excess deaths and the blue
shaded area shows the deficit deaths.
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6. Discussion

Before the COVID-19 pandemic, short-term mortality forecasting during an epi-
demiological year was mainly studied in the domain of epidemiology. After the COVID-
19 pandemic, a collective effort to provide data and evidence on the health shock in-
creased interest and the number of publications on excess death from different fields.
Numerous estimates of excess mortality have been published using different approaches
to forecast the expected mortality without a shock (Kontis et al., 2020; Islam et al.,
2021). Among the studies using regression models, many used a Poisson Serfling regres-
sion (Serfling, 1963; EuroMOMO, 2017) or more flexible variants of the model assuming
smoothed effects (Aburto et al., 2021; Scortichini et al., 2020). However, comparisons
of these approaches are lacking. Few studies investigated the sensitivity of excess death
estimates, but did not study the accuracy in forecasting the expected deaths on histor-
ical periods (Nepomuceno et al., 2022) or did not consider smoothed effects for both
the trend and seasonal effects (Schöley, 2021). Our study considers the same family of
models and estimation procedure allowing for different degrees of flexibility: the Poisson
Serfling model with 1) parametric effect for the trend and seasonality, 2) non-parametric
effect for the trend and parametric effect for the seasonality, and 3) non-parametric ef-
fect for the trend and seasonality.
For all-cause mortality, the smoothness of the trend appeared to be a desirable feature
when forecasting in the short-term. The smoothness of the seasonal component might
be a useful assumption in other settings, for instance when the data show a trend of
decreasing or increasing seasonal amplitude. Progresses in mortality could lead to a de-
creasing seasonality which might be better captured with a smooth seasonal component.
This could be the case, for instance, of mortality declines in certain historical periods
(Ledberg, 2020) or for specific causes of death, such as infectious diseases (Schlüter
et al., 2020) or cardiovascular diseases (Crawford et al., 2003).
We illustrated how the PS-STFS model can be used to forecast mortality during the
coronavirus pandemic and analyse the vulnerability of a population during the health
shock. In order to compare the mortality experiences during the pandemic, one needs
to account for the different population sizes and age structures between countries. This
can be achieved by considering the exposure in each age group and modelling the mor-
tality rates. All models permit to include the exposures as an offset term and the
modulation model showed a competitive forecasting accuracy both for the death counts
and for death rates. Therefore, one couls also perform demographic comparisons using
modulation models on age-specific death rates or age standardized death rates.
One limitation of the modulation models for forecasting mortality is that the PI of the
forecasts increase rather quickly. Therefore, we advise the use of modulation models for
one to three years in the future to predict the baseline mortality and to detect excess
mortality. One year is usually used to monitor the severity of the influenza season,
while two to three years is the time window for pandemics of new infectious diseases to
extinguish themself.
Further work on short-term forecasting using modulation models could be to extend the
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model to forecast all age groups simultaneously. For instance, a bidimensional model
could forecast in the age and year directions simultaneously (Eilers et al., 2008; Currie
et al., 2004). Furthermore, modelling the median instead of the mean could better
capture the asymmetric shape of the seasonality, because mortality shows a percentage
increase during the winter greater than the percentage decrease during the summer.

7. Conclusion

The aim of this paper is to propose a new methodology to model and forecast the
baseline mortality that is more flexible compared to the widely used Poisson Serfling
model. Specifically, we compare the forecast of the Poisson Serfing model with the
modulation model assuming either fixed or smooth seasonal component. The results
show that the model with smooth trend and seasonal component (PS-STSS) better fit
the historical time series of death counts, followed by the model with smooth trend
and fixed seasonal component (PS-STFS). However, the model with smooth trend and
fixed seasonal component (PS-STFS) produces more accurate predictions of the ex-
pected deaths, indicating that a model with smooth seasonal component may overfit
the data. Therefore, accounting for demographic changes by considering smooth trends
over longer reference time periods and across age groups is important for reliable esti-
mates of expected deaths. Our short-term mortality predictions come with prediction
intervals, whose widths indicate the level of uncertainly associated with the forecast.
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Appendix A. Model performance

Table A.5 shows the mean BIC values obtained by fitting the three models (PS,
PS-STSS and PS-STFS) on the death counts from 2010 to 2019 on a rolling window of
5-years and 10-years. Table 1 The mean BIC favours the model PS-STSS in almost all
the countries (21 countries). Either using 5-years or 10-years for the rolling window,
the model PS-STSS better fit the series than the PS and the PS-STFS model.

Table A.5: Mean BIC on death counts in 25 European countries for multiple fitting periods based
on a rolling-window scheme.

5 years series 10 years series

PS PS-STSS PS-STFS PS PS-STSS PS-STFS

Austria 1040 994 1021 2047 1996 2019

Bulgaria 1885 1828 1839 3762 3662 3708
Croatia 838 796 817 1641 1605 1635
Czechia 1325 1273 1297 2510 2351 2382
Denmark 650 643 654 1357 1310 1332

Estonia 241 250 251 484 485 487

Finland 598 597 609 1219 1205 1219
France 8158 7492 7941 17074 16109 16605
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Germany 10617 9616 10153 21838 20120 20961
Greece 2644 2511 2576 5034 4864 4945

Hungary 2162 2056 2124 4140 4048 4083
Iceland 96 109 109 201 217 216

Ireland 698 691 706 1495 1411 1464

Italy 11279 10048 10592 22338 20633 21466
Lithuania 596 583 592 1452 1235 1246

Luxembourg 109 120 120 219 234 233

Netherlands 1862 1781 1820 3804 3610 3627
Norway 621 595 629 1262 1178 1244

Poland 4861 4488 4687 9811 8967 9451

Portugal 3535 3400 3496 6805 6705 6763

Romania 4165 3778 3881 8973 8142 8614

Slovenia 315 316 323 638 641 650
Spain 9554 8710 9125 19192 18237 18792

Sweden 1100 1074 1101 2225 2214 2234

Switzerland 826 795 826 1634 1613 1628

4 21 0 4 21 0
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Appendix B. Best model based on P-splines

Root mean square error (RMSE) and Mean Absolute Percentage Error (MAPE)
of predictions all-cause death counts series for men. A 5-years fitting period is used.
Four PS-STSS models are compared: with a first order penalty for both the trend
and seasonality (MM-T1S1), with a second order for both the trend and seasonality
(MM-T2S2), with a first order for the trend and a second order for the seasonality
(MM-T1S2), and with a second order for the trend and first order for the seasonality
(MM-T2S1).

Table B.6: Mean RMSE and MAPE on death counts in 25 European countries for four combinations
of penalties (on trend and seasonality) and for multiple fitting periods based on a rolling-window
scheme.

5 years series 10 years series

RMSE MAPE RMSE MAPE

t1s1 t2s2 t1s2 t2s1 t1s1 t2s2 t1s2 t2s1 t1s1 t2s2 t1s2 t2s1 t1s1 t2s2 t1s2 t2s1

Austria 381 396 400 375 4 4 4 4 400 377 410 358 4 4 4 4

Bulgaria 591 642 616 619 5 5 5 5 551 574 560 561 5 5 5 5

Croatia 276 312 291 295 5 5 5 5 262 280 274 269 4 5 4 4

Czechia 485 536 530 489 4 4 4 4 467 501 496 469 4 4 4 4

Denmark 240 252 254 235 4 4 4 4 255 239 266 225 5 4 5 4

Estonia 89 84 93 80 5 5 6 4 102 74 105 73 7 4 7 4

Finland 232 240 247 223 4 4 4 4 247 222 255 211 4 4 4 4

France 2812 3163 3111 2906 4 5 5 4 2796 2877 2971 2642 4 4 5 4
Germany 4110 4815 4665 4213 4 5 5 4 4045 4529 4473 4033 4 4 4 4

Greece 681 735 721 688 5 6 6 5 716 697 730 674 5 6 6 5

Hungary 681 747 728 691 5 5 5 5 635 643 662 610 4 4 5 4
Iceland 17 18 18 17 8 9 9 8 19 17 19 16 9 8 9 8

Ireland 179 180 185 177 5 6 6 5 171 160 179 156 5 5 5 5

Italy 3500 4207 3896 3805 5 7 6 6 3421 3878 3655 3633 5 6 5 5
Lithuania 223 226 237 212 5 5 6 5 222 222 225 219 5 5 5 5

Luxembourg 26 29 28 27 7 7 7 7 28 26 28 26 7 6 7 6
Netherlands 678 702 709 670 4 5 5 4 718 682 744 643 4 4 5 4

Norway 207 214 219 203 5 5 5 5 196 197 201 191 5 5 5 5

Poland 1741 1986 1898 1805 4 5 4 4 1766 1862 1876 1724 4 4 4 4
Portugal 734 845 814 773 6 7 6 6 732 756 757 729 6 6 6 6

Romania 1343 1487 1399 1457 5 5 5 5 1254 1333 1308 1287 4 5 5 5

Slovenia 103 111 109 104 5 5 5 5 104 104 108 99 5 5 5 4
Spain 2455 2797 2673 2581 5 6 6 6 2413 2626 2597 2416 5 5 5 5

Sweden 394 424 424 395 4 4 4 4 369 395 395 368 4 4 4 4

Switzerland 298 332 329 302 4 5 5 4 286 286 299 272 4 4 4 4

16 0 0 9 15 0 0 10 6 0 0 19 7 0 1 17
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Table B.7: Mean RMSE and MAPE on death rates (x 1000) in 25 European countries for four
combinations of penalties (on trend and seasonality) and for multiple fitting periods based on a rolling-
window scheme.

5 years series 10 years series

RMSE MAPE RMSE MAPE

t1s1 t2s2 t1s2 t2s1 t1s1 t2s2 t1s2 t2s1 t1s1 t2s2 t1s2 t2s1 t1s1 t2s2 t1s2 t2s1

Austria 0.54 0.57 0.57 0.53 4.29 4.50 4.55 4.12 0.54 0.54 0.56 0.51 4.28 4.18 4.44 3.93

Bulgaria 0.97 1.05 1.01 1.01 4.77 5.37 5.02 5.24 1.05 0.98 1.07 0.96 5.10 4.99 5.24 4.80
Croatia 0.79 0.88 0.83 0.83 4.58 5.45 4.86 5.15 0.84 0.82 0.87 0.78 4.56 4.58 4.78 4.41

Czechia 0.55 0.62 0.61 0.56 3.78 4.34 4.26 3.82 0.52 0.56 0.56 0.53 3.60 3.91 3.88 3.63
Denmark 0.55 0.54 0.58 0.51 4.52 4.18 4.79 3.88 0.63 0.51 0.65 0.48 5.63 3.87 5.69 3.64

Estonia 0.75 0.75 0.79 0.72 4.93 4.74 5.22 4.47 0.79 0.67 0.81 0.65 5.46 4.26 5.63 4.13

Finland 0.50 0.54 0.54 0.50 3.89 4.24 4.29 3.90 0.50 0.49 0.52 0.47 3.88 3.85 4.09 3.59
France 0.53 0.59 0.59 0.54 4.40 4.87 5.04 4.46 0.49 0.53 0.54 0.49 4.09 4.57 4.56 4.09

Germany 0.60 0.70 0.69 0.61 4.05 4.80 4.79 4.06 0.60 0.66 0.66 0.59 3.85 4.27 4.44 3.69

Greece 0.75 0.81 0.80 0.76 5.18 5.77 5.57 5.35 0.79 0.77 0.81 0.74 5.44 5.52 5.64 5.26

Hungary 0.80 0.90 0.86 0.83 4.34 5.03 4.81 4.58 0.75 0.78 0.78 0.74 4.04 4.24 4.31 3.95

Iceland 0.64 0.68 0.68 0.65 8.54 8.53 8.87 8.09 0.59 0.61 0.61 0.59 7.66 7.86 8.00 7.59

Ireland 0.57 0.49 0.58 0.48 6.71 5.57 6.90 5.38 0.53 0.42 0.57 0.40 7.07 5.06 7.19 4.86
Italy 0.71 0.86 0.79 0.78 5.25 6.56 6.03 5.88 0.68 0.78 0.73 0.73 4.92 5.73 5.33 5.35

Lithuania 0.89 0.85 0.93 0.82 5.34 5.17 5.59 4.99 0.95 0.88 0.96 0.87 5.61 5.19 5.60 5.21

Luxembourg 0.66 0.68 0.70 0.64 7.47 7.37 7.81 7.03 0.79 0.58 0.80 0.57 9.61 6.43 9.67 6.30

Netherlands 0.49 0.50 0.51 0.48 4.25 4.48 4.59 4.20 0.50 0.49 0.52 0.46 4.39 4.22 4.63 3.90

Norway 0.57 0.53 0.61 0.50 5.53 4.90 5.77 4.68 0.61 0.47 0.62 0.46 6.38 4.51 6.42 4.49
Poland 0.55 0.62 0.60 0.57 3.85 4.52 4.27 4.03 0.56 0.59 0.60 0.54 3.86 4.07 4.21 3.71

Portugal 0.86 0.96 0.94 0.89 5.96 6.91 6.52 6.31 0.87 0.87 0.90 0.84 6.03 6.01 6.11 5.82

Romania 0.77 0.87 0.80 0.85 4.65 5.44 4.81 5.36 0.74 0.79 0.77 0.76 4.36 4.90 4.60 4.68
Slovenia 0.60 0.66 0.64 0.62 4.69 5.18 4.99 4.93 0.61 0.61 0.64 0.58 4.64 4.68 4.93 4.36

Spain 0.66 0.74 0.72 0.69 5.45 6.38 6.12 5.67 0.64 0.67 0.68 0.62 5.30 5.38 5.63 5.00

Sweden 0.54 0.54 0.58 0.51 4.24 4.23 4.60 3.87 0.61 0.49 0.64 0.46 5.52 3.93 5.68 3.52
Switzerland 0.45 0.50 0.50 0.46 4.32 4.68 4.82 4.16 0.45 0.42 0.47 0.40 4.41 3.79 4.63 3.57

15 0 0 10 12 0 0 13 6 0 0 19 3 1 0 21
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Appendix C. Accuracy of the forecasts

Table C.8: Mean RMSE and MAPE on death counts in 25 European countries for multiple fitting
periods based on a rolling-window scheme.

5 years series 10 years series

RMSE MAPE RMSE MAPE

PS STSS STFS PS STSS STFS PS STSS STFS PS STSS STFS

Austria 368 375 370 4.06 4.12 4.06 363 358 356 3.98 3.85 3.84

Bulgaria 600 619 616 4.97 5.19 5.15 570 561 567 4.73 4.73 4.72
Croatia 285 295 289 4.98 5.20 5.10 269 269 266 4.35 4.37 4.39

Czechia 486 489 478 3.87 3.85 3.70 467 469 461 3.74 3.70 3.62

Denmark 233 235 231 3.88 3.90 3.86 227 225 219 3.82 3.65 3.59

Estonia 79 80 80 4.34 4.43 4.42 77 73 73 4.34 4.15 4.10

Finland 220 223 223 3.84 3.89 3.94 215 211 210 3.66 3.62 3.60

France 2757 2906 2855 4.11 4.43 4.35 2531 2642 2537 3.75 4.00 3.78
Germany 4050 4213 4090 3.88 4.09 3.97 3962 4033 3926 3.65 3.67 3.57

Greece 689 688 681 5.36 5.35 5.28 660 674 678 5.08 5.26 5.24

Hungary 662 691 680 4.29 4.58 4.46 606 610 612 3.80 3.94 3.94

Iceland 17 17 17 8.10 8.12 8.12 16 16 16 7.63 7.71 7.71

Ireland 178 177 179 5.33 5.35 5.47 164 156 156 4.99 4.76 4.81
Italy 3500 3805 3767 5.33 5.84 5.79 3389 3633 3574 4.99 5.36 5.27

Lithuania 216 212 207 5.08 4.94 4.81 259 219 219 6.20 5.15 5.16

Luxembourg 27 27 27 6.85 7.03 7.03 26 26 26 6.28 6.34 6.37
Netherlands 651 670 667 4.02 4.22 4.19 696 643 636 4.40 3.91 3.89

Norway 210 203 209 4.83 4.66 4.80 211 191 207 5.06 4.52 5.00

Poland 1698 1805 1771 3.79 4.06 4.04 1780 1724 1705 4.00 3.71 3.72
Portugal 731 773 771 5.81 6.32 6.36 708 729 721 5.58 5.86 5.80

Romania 1396 1457 1458 5.06 5.30 5.30 1244 1287 1304 4.27 4.68 4.68
Slovenia 102 104 104 4.88 4.91 4.92 99 99 99 4.36 4.36 4.32

Spain 2447 2581 2525 5.42 5.70 5.52 2339 2416 2358 4.93 5.01 4.90

Sweden 398 395 391 3.85 3.86 3.80 364 368 365 3.46 3.53 3.52
Switzerland 293 302 297 4.06 4.24 4.16 273 272 269 3.73 3.63 3.57

17 3 5 19 0 6 8 6 11 10 4 11
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Appendix D. Excess death during the COVID-19 pandemic

Table D.9: All-cause excess death rates (x 1000) in Europe during three pandemic periods (first covid
wave, and first and second epidemic year after the shock). Baseline mortality is obtained with the
Modulation Models PS-STFS.

country March to June 2020 July 2020 to June 2021 July 2021 to June 2022

Austria -0.19 (-0.8 ; 0.41) 11.8 (9.17 ; 14.37) 7.34 (5.28 ; 9.33)
Bulgaria -3.76 (-4.29 ; -3.23) 61.45 (59.88 ; 63.01) 45.59 (44.64 ; 46.53)
Croatia -0.99 (-2.03 ; 0.04) 35.84 (31.49 ; 40.07) 25.67 (22.35 ; 28.85)
Czechia -0.56 (-1.21 ; 0.08) 42.04 (38.98 ; 45.02) 9.96 (7.47 ; 12.36)
Denmark -0.96 (-1.7 ; -0.24) 2.2 (-0.9 ; 5.2) 6.97 (4.59 ; 9.25)

Estonia -0.97 (-1.8 ; -0.15) 16.61 (14.42 ; 18.75) 14.12 (12.93 ; 15.29)
Finland 0.52 (0.11 ; 0.94) 1.15 (-0.02 ; 2.31) 6.74 (6.05 ; 7.42)
France 2.92 (2.76 ; 3.07) 9.36 (8.84 ; 9.87) 3.41 (3.06 ; 3.76)
Germany -0.34 (-0.58 ; -0.11) 10.2 (9.11 ; 11.28) 8.45 (7.59 ; 9.31)
Greece -3.36 (-4.07 ; -2.65) 4.97 (1.49 ; 8.37) 11.86 (8.96 ; 14.66)

Hungary -0.62 (-1.33 ; 0.08) 42.17 (39.07 ; 45.21) 20.19 (17.78 ; 22.53)
Iceland -1.22 (-2.58 ; 0.08) -2.25 (-6.12 ; 1.44) -0.35 (-2.67 ; 1.83)
Ireland 2.39 (1.88 ; 2.89) 2.14 (0.36 ; 3.87) 3.33 (2.1 ; 4.51)
Italy 9.13 (8.96 ; 9.31) 22.28 (21.69 ; 22.87) 7.39 (7.01 ; 7.78)
Lithuania 2.11 (1.13 ; 3.07) 41.56 (38.26 ; 44.8) 28.14 (25.91 ; 30.3)

Luxembourg -1.03 (-2.09 ; 0) 5.46 (2.5 ; 8.31) 1.94 (0.22 ; 3.59)
Netherlands 4.83 (4.44 ; 5.22) 8.59 (7.03 ; 10.13) 8.39 (7.22 ; 9.54)
Norway 0.66 (-0.19 ; 1.48) 1.01 (-1.88 ; 3.81) 1.55 (-0.47 ; 3.48)
Poland -0.58 (-0.82 ; -0.34) 41.48 (40.73 ; 42.22) 16.25 (15.77 ; 16.72)
Portugal 0.08 (-0.27 ; 0.43) 16.96 (15.93 ; 17.99) 2.97 (2.35 ; 3.58)

Romania -0.86 (-1.26 ; -0.47) 42.05 (40.61 ; 43.47) 33.38 (32.37 ; 34.37)
Slovenia -0.59 (-1.66 ; 0.45) 24.23 (20.27 ; 28.06) 8.75 (5.91 ; 11.45)
Spain 10.59 (10.29 ; 10.88) 10.26 (8.8 ; 11.7) 5.03 (3.84 ; 6.19)
Sweden 6.55 (5.98 ; 7.1) 6.45 (3.92 ; 8.93) 3.1 (1.08 ; 5.04)
Switzerland 0.86 (0.34 ; 1.37) 10.62 (8.53 ; 12.66) 4.14 (2.55 ; 5.67)
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Table D.10: All-cause excess death in Denmark, Italy, Sweden, and Spain, by sex and age, during
three pandemic periods (first covid wave, and first and second epidemic year after the shock). Baseline
mortality is obtained with the Modulation Models PS-STFS.

Age Denmark Italy Spain Sweden

Men

March to June 2020
0-64 -0.6 (-0.9 ; -0.2) 1.1 (1 ; 1.2) 0.7 (0.6 ; 0.8) 0.8 (0.7 ; 1)
65-74 -2.8 (-6.3 ; 0.6) 18.5 (17.6 ; 19.5) 17.8 (16.2 ; 19.3) 9.8 (8.4 ; 11.3)
75-84 -7.4 (-13.4 ; -1.5) 56.1 (54.1 ; 58) 65.5 (62 ; 68.9) 36 (33 ; 39)
85 -34.2 (-51.7 ; -17.1) 112.7 (107.2 ; 118.1) 205.3 (195.2 ; 215.3) 139.2 (123.9 ; 154.2)

July 2020 to June 2021
0-64 -0.6 (-1.9 ; 0.5) 3.7 (3.4 ; 3.9) 1.9 (1.6 ; 2.1) 0.9 (0.5 ; 1.3)
65-74 -7 (-18.8 ; 4.2) 51 (47.6 ; 54.3) 24.4 (18.1 ; 30.5) 9.7 (5.9 ; 13.4)
75-84 4.9 (-13 ; 22.3) 120.4 (113.8 ; 126.9) 78.7 (64.2 ; 92.7) 40.4 (32.6 ; 48.1)
85 -2 (-46.5 ; 41.5) 253.5 (237 ; 269.8) 210.1 (166.2 ; 252.9) 69.8 (22.3 ; 116.2)

July 2021 to June 2022
0-64 0.5 (-0.3 ; 1.2) 1.1 (0.9 ; 1.2) 1 (0.8 ; 1.1) 0.3 (0.1 ; 0.5)
65-74 5.2 (-2.9 ; 12.8) 8.8 (6.5 ; 11.1) 9.6 (4.9 ; 14.2) -1.8 (-3.9 ; 0.2)
75-84 26.2 (15.2 ; 36.8) 25.4 (21 ; 29.7) 32.7 (21.9 ; 43.1) 16.3 (12.1 ; 20.5)
85 113.7 (90.2 ; 136.6) 68.4 (58.3 ; 78.5) 110.6 (77.1 ; 142.7) 18.3 (-11.7 ; 47.3)

Women

March to June 2020
0-64 -0.1 (-0.3 ; 0.1) 0.2 (0.2 ; 0.3) 0.5 (0.4 ; 0.6) 0.1 (0 ; 0.2)
65-74 -2.5 (-5 ; 0) 6 (5.3 ; 6.7) 6.9 (6.4 ; 7.4) 0.3 (-0.9 ; 1.5)
75-84 -2.6 (-8.2 ; 3) 25.2 (24.1 ; 26.3) 37.7 (35.5 ; 39.8) 22.8 (19.1 ; 26.4)
85 -52.3 (-64.2 ; -40.6) 105.7 (102.2 ; 109.2) 166.3 (159.2 ; 173.3) 103.4 (89.1 ; 117.5)

July 2020 to June 2021
0-64 0.3 (-0.1 ; 0.8) 1.4 (1.2 ; 1.5) 0.5 (0.3 ; 0.7) -0.1 (-0.4 ; 0.2)
65-74 -0.4 (-8.7 ; 7.5) 21.6 (19 ; 24.1) 9.7 (8.3 ; 11.2) -2.1 (-5.2 ; 0.9)
75-84 -1.3 (-20.4 ; 16.9) 62.1 (59.1 ; 65.1) 48.2 (39.5 ; 56.5) 30.6 (18.3 ; 42.4)
85 -40.7 (-71.4 ; -10.6) 177.2 (166.8 ; 187.5) 105.9 (73.1 ; 138) 49.8 (-4.4 ; 102.2)

July 2021 to June 2022
0-64 0.7 (0.5 ; 1) 0.5 (0.4 ; 0.6) 0.3 (0.2 ; 0.4) 0.1 (0 ; 0.3)
65-74 1.2 (-4.4 ; 6.4) 6.2 (4.4 ; 7.9) 4.6 (3.7 ; 5.4) -2.8 (-4.5 ; -1.2)
75-84 30.1 (17.4 ; 42.1) 19.9 (18.1 ; 21.6) 21.6 (15.3 ; 27.6) 20.4 (12.3 ; 28.1)
85 84.3 (67.9 ; 100.5) 70.9 (64.5 ; 77.2) 78.9 (53.2 ; 103.6) 36.1 (-2.6 ; 72.8)
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