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Abstract

We analyze capital allocation and risk sharing between a principal and many
agents, who privately observe their output. Incentive compatibility requires that
agents bear part of their idiosyncratic risk. The larger the agents’ risk expo-
sure, the larger the rents the principal can extract from them. The optimal
dynamic mechanism can be implemented by a market equilibrium with money
and taxes. Inflation affects agents’ portfolio choice between risky capital and
safe money. To implement the optimal mechanism, the principal sets the in-
flation rate so that agents’ risk exposure is the same in equilibrium as in the
optimal mechanism.
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Money and Taxes Implement Optimal Dynamic Mechanisms

1 Introduction

How should capital be allocated and risks shared in a dynamic economy without aggregate
risk? In the absence of informational frictions, the answer is clear: capital should be
allocated according to expected individual productivities and risks should be eliminated by
diversification. However, when information about individual outputs is private, one must
also take into account incentive compatibility constraints. This paper studies how these
constraints affect capital accumulation and risk sharing.

To address these issues, we consider an infinite horizon economy with a continuum of
risk averse agents and a single good that can be consumed or invested as capital, similar to
the economy studied in Angeletos (2007). Each agent operates a project whose output is
proportional to the amount of capital under her management and subject to idiosyncratic
shocks. Individual unit outputs are i.i.d. so that a version of the law of large numbers
applies, implying that aggregate output is deterministic.

We first show that, under symmetric information, in the optimal allocation agents fully
mutualize idiosyncratic risks, and consumption is deterministic. Moreover, since agents’
productivities are i.i.d. across agents and periods, capital allocation is not influenced by
past performance.

Next we consider the case in which agents privately observe their individual output
and can secretly consume some of it, as in Bolton and Scharfstein (1990). In contrast
with output, capital is observable. Applying the revelation principle, we study truthful
revelation mechanisms, in which agents truthfully report their output to the principal, who
then allocates consumption and capital according to the reports. Thus the dynamic optimal
mechanism allocates capital and consumption to maximize the principal’s utility, subject
to the participation and incentive constraints of the agents and the aggregate resource
constraint.

To provide agents with incentives not to divert output, the optimal contract specifies an
increase (resp. decrease) of consumption and capital for agents whose output is larger (resp.
smaller) than expected. Lucky agents (those that perform better in a given period) get more
capital to manage in the next period, not because they are more skilled (performance is
i.i.d. across agents and across periods) but because this provides incentives to report good
performance instead of diverting output. In contrast with the symmetric information case,
insurance is imperfect, because full insurance is not incentive compatible. So, the optimal
mechanism exposes agents to a fraction of their idiosyncratic risk.

From a mathematical viewpoint, finding the optimal mechanism is challenging, as we
need to extend to a continuum of agents the martingale techniques introduced by Sannikov
(2008) in the one agent case. With only one agent, the Bellman equation that characterizes
the optimal mechanism involves the partial derivatives of the value function with respect to
two state variables: aggregate capital and the continuation utility promised to the (single)
agent by the principal. In contrast, in our model with a continuum of agents, the state
variables are aggregate capital and the entire distribution of continuation utilities across
agents, which belongs to the space of probability distributions over R, which we endow
with the Wasserstein topology. So the value function of the principal solves a Bellman
equation in an infinite dimensional space. We first determine the shape of this Bellman
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equation, which involves the Gateaux derivative of the value function with respect to the
distribution of continuation utilities. Then, thanks to our log utility specification, we show
that the dimension of states variables can be reduced to two: aggregate capital and the
expectation of (a function of) agents’ continuation utilities. These are sufficient statistics for
the characterization of the optimal mechanism.2 Thanks to the reduction of the dimension
of the state space from infinity to two, we can fully characterize the dynamics of capital and
consumption allocations as well as the distribution of continuation utilities across agents.

The optimal direct mechanism is remarkably simple: consumption and capital are al-
located among agents proportionally to each agent’s equivalent permanent consumption,
defined as the constant lifetime stream of consumption giving the agent the same continua-
tion utility as the mechanism. The equivalent permanent consumption of each agent grows
at a constant rate in expectation, but is impacted by the agent’s idiosyncatic output shock.
The innovation in the growth rate of an agent’s consumption or capital is proportional,
by a constant x ∈ (0, 1), to the agent’s idiosyncratic output shock. x measures the extent
to which the agent is exposed to the risk of her idiosyncratic output shock. By raising x
the principal relaxes the incentive compatibility condition and can thus extract more rents
from the agent, but this reduces allocative efficiency by reducing insurance. Thus there is
a rent-efficiency tradeoff. We characterize the Pareto frontier of information-constrained
Pareto optimal allocations, each point of which corresponds to a different value of x, i.e.,
a different compromise between rents and effciency. Because agents are exposed to their
idiosyncratic shocks, inequality increases over time and agents become more and more het-
erogenous.3 Moreover, while aggregate capital and output grow over time, growth is lower
than under symmetric information. This is because incentive compatibility constrains how
much new capital can be delegated to agents.

The above presented direct revelation mechanism is centralized as all agents report to
the principal, who then reallocates consumption and capital among them. We show that
a more decentralized implementation is possible, in which agents exchange goods against
money in a market and the principal intervenes only via money issuance and taxation.
When trading in the market, agents face a dynamic portfolio problem à la Merton. They
choose how much to invest in capital and money, bearing in mind that the former has higher
expected return but is riskier than the latter. The principal manipulates this portfolio choice
by controlling the growth of money supply and thus inflation, which affects the excess rate
of return of risky capital over money, so that agents’ risk exposure is the same in equilibrium
as in the optimal mechanism. Different monetary and fiscal policies implement different
points on the incentive constrained Pareto frontier. In general the principal uses both
taxation and seigneurage to raise revenue and extract rents from the agent.

Our results can be contrasted with the classical welfare theorems. In a convex econ-
omy with complete markets and no frictions, all competitive equilibria are efficient (first
welfare theorem) and, converserly, all efficient allocations can be decentralized by a com-
petitive equilibrium after appropriate lump sum transfers between agents (second welfare
theorem). Other forms of taxations are distortive. The opposite is true in our economy
with asymmetric information and endogenously incomplete markets. In particular, the first
theorem does not hold: competitive equilibria without government intervention are con-

2Angeletos (2007) also avoids the “curse of dimensionality” with a log utility specification. A major
difference is that in Angeletos (2007) institutions and market incompleteness constraints are exogenous
while in our paper they are features of the endogenous optimal mechanism.

3More precisely, the coefficient of variation (standard deviation divided by the mean) of continuation
utilities across agents increases over time.
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strained inefficient. However, all constrained optimal allocations can be implemented as a
market equilibrium provided the government chooses appropriate monetary and taxation
policies. By setting the inflation rate and the tax rate in a particular way, the government
can impact individual behaviour so that market imperfections are corrected and redistribu-
tive objectives are met. This can be viewed as an extension of the second welfare theorem
to an economy with endogenously incomplete markets.

Literature: Our paper complements several strands of literature.
First, our analysis of dynamic contracting between one principal and many agents is re-

lated to the literature analyzing dynamic contracting between one principal and one agent,
in particular the seminal work of DeMarzo and Fishman (2007a, 2007b) and Sannikov
(2008), and the following analyses of Biais, Mariotti, Plantin, and Rochet (2007), DeMarzo
and Sannikov (2006), Feng and Westerfield (2021), and Di Tella and Sannikov (2021). As
in Biais, Mariotti, Rochet, and Villeneuve (2010) and DeMarzo, Fishman, He, and Wang
(2012), firm size is determined by the optimal contract and is useful to provide incentives.
However, in contrast with Biais, Mariotti, Rochet, Villeneuve (2010) and DeMarzo, Fish-
man, He and Wang (2012), in the present paper there are no capital adjustment costs. This
enhances tractability, and gives rise to continuous reallocation of capital. He (2009) offers
an interesting alternative approach in which firm size is affected by unobservable agent’s
effort. This differs from our model in which firm size is directly controlled by the principal,
and what is unobservable is output.

The major contribution of the present paper relative to that literature is to embed
the contracting problem in a general equilibrium context, with a population of agents and
aggregate resource constraints. Thus we shed light on the impact of incentive constraints
on the allocation of capital and consumption across agents. In particular, we show how
incentive constraints generate increasing inequality in the population of agents. Moreover,
we show how the dynamic optimal mechanism can be implemented by a market in which
agents trade goods for money, and inequality is regulated by optimal taxes.

Second, our analysis is related to the dynamic macrofinance literature analyzing risk
with exogenously incomplete markets (see Bewley, 1980, Aiyagari, 1994, Huggett, 1993,
1997, Krusell and Smith, 1998, Angeletos, 2007, Brunnermeier Sannikov, 2014, Gersbach,
Rochet, and Von Thadden, 2022, Di Tella, 2020, and Achdou et al 2022.)4

The major contribution of the present paper relative to that literature is to provide
microfoundations for market incompleteness.5 Thus, the institutions and constraints we
consider are endogenous features of the optimal dynamic mechanism. This helps clarify
the consequences of informational frictions. For example, we reconcile two effects which, as
explained by Angeletos (2007), had so far been viewed as distinct. While the literature in
line with Bernanke and Gertler (1989) emphasizes how wealth affects the ability to invest
in capital, Angeletos (2007) emphasizes how wealth affects the willingness to hold risky
capital. Our mechanism design approach clarifies the common origin of these two forces:
incentive compatibility constrains both how much capital agents are allocated and how
much of the corresponding idiosyncratic risk they must bear. Consequently, in contrast
with Angeletos (2007), in our analysis frictions unambiguously lower capital accumulation.

4Our focus on the distribution across agents and our reliance on mean field techniques are in line with
Achdou et al (2022).

5Another difference is that, while most of that literature studies labor income risk, our paper, like
Angeletos (2007) considers capital return risk.
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Third, our focus on money in the implementation of the optimal mechanism links our
paper to the new monetarist literature initiated by the seminal papers of Kiyotaki and
Wright (1989, 1993) and presented by Williamson and Wright (2011). A common theme
with that literature is that money arises endogenously, as a useful instrument, instead of
being a constraint as in cash in advance models or exogenous as in money-in-the-utility-
function models. Money in our implementation encodes the memory of past performance in
line with Kocherlakota (1998) and provides consumption insurance in line with Berentsen
and Rocheteau (2004).

There are important differences, however, between our analysis and the new monetarist
literature. First, instead of starting from a characterization of optimal allocations in a
setting with money, we characterize the optimal mechanism in a real economy with only
goods and no money, and then we introduce money as a tool to implement the optimal
mechanism. Second, while the new monetarist literature assumes large households (Shi,
1997) or the alternation of decentralized and centralized markets (Lagos and Wright, 2005)
so that at the beginning of each period all agents start with the same amount of money,
in our framework agents have endogenously heterogeneous money holdings, and we charac-
terize the dynamics of this heterogeneity. Third, in the new monetarist literature, agents
are homogenous at the beginning of each period, so that the optimal allocation is pinned
down by a static mechanism. In contrast, in our setting agents’ continuation utilities vary
stochastically over time and the optimal allocation is set by a dynamic mechanism.

Finally, we complement the mechanism design approach to optimal taxation pioneered
by Mirrlees (1971), Diamond and Mirrlees (1978), and Diamond (1998), and further devel-
oped by the new dynamic public finance literature (e.g., Golosov, Kocherlakota, Tsyvinski
(2003), Golosov, Tsyvinski (2007), and Fahri, Werning (2010)). A major difference is that,
in these papers, risk and information asymmetry are about wage earners’ skills, while, in
our paper, risk and information asymmetry are about managers’ capital returns. Corre-
spondingly, unlike in these papers, the dynamic of capital allocation plays a key role in our
analysis. Another major difference is that the optimal taxation literature focuses on one
policy tool, namely the tax system, while in our set-up, the government chooses also bud-
getary policy (the consumption of the principal) and monetary policy (how much money is
issued).

Structure of the paper: The complete analysis of the continuous time model under
asymmetric information is difficult and mathematically complex. In order to build intuition,
the next section presents a simple two period model, which illustrates some (but not all) of
the economic forces at play in our full model. Then, Section 3 introduces the continuous
time model, and solves the symmetric information case, which provides a useful benchmark
for the analysis of asymmetric information. Section 4 determines the Bellman equation
that characterizes the principal value function under asymmetric information. Then we
make a guess on the shape of the optimal policy, qualitatively close to that obtained under
symmetric information, and we show that this candidate policy is indeed the full solution
of our problem. Section 5 shows that the optimal direct mechanism can be implemented
with money and taxes. Section 6 points to the link between our results and optimal tax
theory. Section 7 offers a brief conclusion. Proofs not in the text are in Appendix A.
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2 The two-period case

To build intuition, we first present a simple version of the model with three dates and no dis-
counting. There is a single good which can be used for consumption or investment. Agents
can invest the good and generate returns whose distribution is i.i.d across agents. We first
characterize the symmetric first best allocation. Then we turn to the case in which agents
privately observe their returns. While the first best allocation is not incentive compatible,
we characterize the symmetric second best allocation and show it can be implemented with
money and taxes.

2.1 A simple two-period model

The investment technology has constant returns to scale. There is a mass 1 continuum
of agents, that are identical at time 0: each of them is endowed with one unit of capital
good. Time 1 unit returns, which are i.i.d. across agents, can be high (RH = 1+ σ) or low
(RL = 1− σ) with equal probability 1/2. 6 To ensure that returns are positive we assume
σ < 1. For simplicity we assume time 2 returns are deterministic and equal to 1.

Agents with high time 1 return are referred to as type s = H and agents with low time
1 return as type s = L. After time 1 output is realized, agents consume and are allocated
capital which, invested, generates output at time 2. This output is consumed by the agents
at time 2. The ex-ante utility of each agent is

E [U(Cs
1) + U(Cs

2)] ,

where the function U is strictly concave, increasing and differentiable.

2.2 The Symmetric First Best Allocation

Since agents are ex ante identical, we focus on the symmetric first best allocation, which is
characterized by the consumption profile {Cs

1 , C
s
2)}, s ∈ {L,H} maximizing

E [U(Cs
1) + U(Cs

2)] ,

subject to the intertemporal resource constraint:7

E [Cs
1 + Cs

2 ] ≤ 1.

We thus obtain our first proposition:

Proposition 1 In the symmetric first best allocation, Cs
t = 1

2 , ∀(t, s).

The intuition is straightforward. Because returns are i.i.d across agents, by the law of
large numbers there is no aggregate risk. Agents are only exposed to idiosyncratic shocks
and it is optimal to mutualize this idiosyncratic risk. Initially there is one unit of good,
which can be consumed or invested. Since the rate of return and the discount rate are
equal, half the endowment is consumed at time 1 (Cs

1 = 1
2) while the other half is invested

at time 1 and consumed at time 2 (Cs
2 = 1

2). Note that this allocation is characterized by
complete consumption smoothing over time, and complete insurance against output shocks.

6Thus, net average rates of returns are 0, like the discount rate. This is just for the sake of simplicity.
In the continuous time analysis below, average rates of returns and discount rates are strictly positive.

7The intertemporal resource constraint obtains by adding the time 1 resource constraint E [Cs
1 + ks

1] ≤ 1,
and the time 2 resource constraint E [Cs

2 ] ≤ E[ks
1].
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2.3 The Symmetric Second Best Allocation

Next turn to the case in which agents privately observe their time 1 return. By the revelation
principle, we can restrict attention to direct mechanisms, where agents report and transfer
their return to the principal, who then sets their consumption and capital allocation. When
an agent’s return is high she can pretend it is low, and secretly consume the difference (2σ).
When an agent’s return is low, she cannot pretend it is high: to do so she would have to
transfer high output to the principal, but such high output is not available to the agent.
Thus, there is only one incentive compatibility constraint:

U(CH
1 ) + U(CH

2 ) ≥ U(CL
1 + 2σ) + U(CL

2 ).

Clearly, the incentive compatibility constraint does not hold for the first best allocation,
in which CH

1 = CH
2 = CL

1 = CL
2 . Maximising agents’ expected utility under resource and

incentive constraints yields the properties of the second best allocation, stated in the next
proposition.

Proposition 2 In the symmetric second best allocation, consumptions are such that
CH
1 = CH

2 , CH
2 > CL

2 and CL
1 > CL

2 .

As in the first best allocation, high types have the same consumption at time 1 and
time 2. This is the standard “no distortion at the top” result. By contrast, consumption
smoothing is imperfect for low types: CL

1 > CL
2 . An agent with high return pretending

to have had low return secretly consumes an additional 2σ at time 1. This lowers his
time 1 marginal utility relative to his time 2 marginal utility. Consequently, giving time
1 consumption to the agent with low returns tightens the incentive constraint less than
giving time 2 consumption to that agent. Hence, it is optimal to set CL

1 > CL
2 , although

this is a distortion relative to the first best, in which agents have the same consumption at
the two periods. Moreover risk sharing is also imperfect: The intertemporal utility of high
types is strictly higher than that of low types. Low consumption after low output, although
suboptimal under symmetric information, is constrained-optimal under asymmetric infor-
mation, because it incentivizes truthful reporting. Thus with information asymmetry there
is imperfect insurance. Figure 1 plots, for σ = 0.3 and log utility, the time 1 and time 2
consumptions in the first and second best. In the logarithmic utility case, the second best
allocation can be computed (almost) explicitly.

Proposition 3 When U(c) = log c, the symmetric second best allocation is such that

CH
1 = CH

2 = (
1 + σ

2
)(1− µ2),

CL
2 = (

1 + σ

2
)(1− µ)2,

CL
1 = (

1 + σ

2
)(1 + µ)2 − 2σ,

where µ is the unique positive solution of the equation:

µ(1 + µ)2

1 + 3µ
=

σ

1 + σ
.

Moreover σ
1+σ

< µ < 1. Correspondingly, in the second best:
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1. At date 1, successful agents get more consumption than unsuccessful agents: CH
1 >

CL
1 .

2. At date 2, successful agents get more consumption than unsuccessful agents: CH
2 >

CL
2 .

3. Informational frictions reduce aggregate investment: CH
2 + CL

2 < 1.

4. Unsuccessful agents are partially insured by successful agents: (CL
2 + CL

1 ) > (CH
2 +

CH
1 )− 2σ.

Properties 1 and 2 imply that incentives are optimally provided when CH
1 > CL

1 and
CH
2 > CL

2 : higher consumption at both dates for successful agents. Property 3 shows
that informational frictions reduce investment. This will also be the case in the full model
presented below. Finally, Property 4 shows that some insurance can be achieved in spite of
informational frictions: agents with low output obtain larger consumption in the optimal
mechanism than in autarky.

2.4 Implementation with Money and Taxes

The optimal direct mechanism that we have characterized is completely centralized: all
agents report to the principal, who then allocates goods across agents. However, a more
decentralized implementation of the optimal allocation is possible, in which the good is
allocated by a competitive market.8 In this market the good is traded against fiat money
issued by the principal. This money has value because the principal levies taxes at date 1
and requires the agents to pay these taxes in money. At date 0 the principal allocates to
each agent m0 units of money, which can be used at time 1 to buy or sell capital ks1 at price
p = 1,9 and pay taxes contingent on wealth.10 Note that the principal does not intervene
in the good market. Since there is no market at date 2, time 2 consumption is equal to
output, Cs

2 = ks1.
At time 1, agent s has Rs units of good and m0 units of money. The goods can be used

for consumption Cs
1 or invested as productive capital ks1, and a quantity Ss of goods can be

sold for money. If Ss < 0, this means the agent is buying goods. So the budget constraint
of the agent regarding goods is

Cs
1 + ks1 + Ss ≤ Rs. (1)

After trading, the amount of money held by the agent is equal to her initial endowment
(m0) plus or minus the proceeds of her time 1 sales (Ss). The total wealth of the agent is
thus es = ks1 +m0 + Ss = m0 +Rs −Cs

1 . The agent uses her money to pay taxes τ(es). So
the budget constraint of the agent regarding money is

τ(m0 +Rs − Cs
1) ≤ m0 + Ss. (2)

8Note that a pure market solution (no taxes) cannot implement the second best allocation since there
are no gains from trade at date 1: successful agents are not willing to transfer resources to unsuccesful ones.
In contrast with Diamond Dybvig (1981), if a bond market was created at t = 1, it would be inactive since
in our model, agents have access to a storage technology at time 1.

9Price is indeterminate because taxes are in nominal terms. If the principal doubles the taxes and the
money holdings, the price doubles but the real allocations are unchanged. So we normalize the price to 1.

10Taxes can be paid either at date 1 or 2.
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This constraint must be binding for all agents, otherwise the value of money would be zero.
Fiat money has positive value in this finite horizon model because it is required to pay
taxes. At time 1, after observing her type, agent s chooses Cs

1 and Cs
2 to maximize

U(Cs
1) + U(Cs

2),

subject to the two constraints (1) and (2), which can be combined as

Cs
1 + Cs

2 + τ(m0 +Rs − Cs
1) ≤ Rs +m0.

That is expenses, equal to the sum of consumption at both dates and taxes, must be covered
by resources, equal to the initial money endowment plus output. We want the solution to
the agents’ maximization problem to coincide with the constrained optimal allocation. This
is satisfied when marginal tax rates for both agents are well chosen and when the goods
market clears: E [Ss] = 0. This second condition is satisfied when the aggregate money
stock equals aggregate taxes, which could be interpreted as a form of equilibrium condition:
money supply equals money demand. We obtain our next proposition.

Proposition 4 1. The principal can implement the optimal mechanism (Cs
1 , C

s
2)s∈{L,H}

by distributing an amount m0 of money to each agent and imposing a non linear wealth
tax τ(e) such that

∀s, τ ′(es) = 1−
U ′(Cs

1)

U ′(Cs
2)
, (3)

which implies τ ′(eH) = 0 and τ ′(eL) > 0.

2. The aggregate money stock equals the expected value of taxes:

m0 = E[τ(es)]. (4)

Equation (3) states that the marginal tax rate is the wedge between the intertemporal
marginal rate of substitution in the second best and the first best. τ ′(eH) = 0 reflects that
there is no distorsion at the top, while τ ′(eL) > 0 reflects the distortion at the bottom. The
intuition why money and taxes implement the optimal mechanism is the following:

First consider the agents with high time 1 output. They sell some of it, increasing
their money holdings, which enables them to pay more taxes. Since taxes are increasing in
capital, the ability to pay more taxes translates into the ability to hold more capital. And,
since at time 2 agents consume the output from their capital, more capital translates into
larger time 2 consumption, which implements the optimal mechanism. This is in line with
theories of money as a record of good performance entitling money holders to consumption,
i.e., “money as memory” (see Kocherlakota 1998).

Second consider the agents with low time 2 output. They can use some of their money
to buy goods, and thus obtain some consumption smoothing. But since they have low
money holdings, they cannot afford to pay large taxes, and therefore must have low capital
investment and low time 2 consumption, again in line with the optimal mechanism. That
unsuccessful agents use money to smooth the impact of shocks on consumption is in line
with theories of money as a safe store of value in intertemporal consumption investment
settings (see Merton 1969, 1971, and Berentsen and Rocheteau, 2002).

Taxation allows to create gains from trade between lucky (high types) and unlucky (low
types) agents. Since lucky agents want to keep more wealth in order to consume more than
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unlucky agents at date 2, taxing wealth forces them to sell some of the good to unlucky
agents, in order to get more money to pay their taxes. Unlucky agents buy the good because
they know they will have to pay less taxes. This allows them to consume more at date 1.

There are interesting similarities between our model and the Diamond-Dybvig (1981)
banking model: both models involve two periods, with consumption and investment. In
both models, agents are ex-ante identical, and subject to privately observable independent
shocks but there is no aggregate risk. However, the Diamond-Dybvig model involves time
preference shocks, while ours involves output shocks. As a consequence, in Diamond-Dybvig
there are gains from trade at the end of the first period, and opening a bond market improves
the autarkic allocation. In our model there are no gains from trade at the interim date, and
opening a bond market is useless. Taxation is used by the principal to create such gains
from trade. Finally, in Diamond-Dybvig the Pareto optimal allocation can be implemented
with private banks competing to offer demand deposits contracts while in our model some
public intervention is needed, in the form of money and taxes.11

Finally note that, since the horizon is finite, the reason why money has value cannot be
that it is a bubble. Here money has value because it is needed to pay taxes, in line with
chartalism (Knapp, 1924). In the infinite horizon analysis below, the above intuitions still
hold, but additional effects come into play. For some parameter values money has a bubble
component. Moreover, the inflation rate, which is controlled by the principal through
money issuance plays an important role in the implementation of the optimal mechanism.
Thus, in our continuous time infinite horizon model, there is an optimal level of inflation.

3 The infinite horizon case

We now extend the analysis to an infinite horizon model in continuous time. Idiosyncratic
shocks are captured by independent Brownian motions, which are easy to define when there
is a finite number N of agents, but more tricky with a continuum. We start therefore by
describing the model with N agents and then take the limit as N tends to infinity.

3.1 The Model

The principal faces N ex-ante identical agents indexed by i = 1, ...N . In order to keep their
total mass constant, we assume each of them has mass 1/N : each agent becomes smaller as
their number increases. All agents are infinitely lived with discount rate ρ and logarithmic
utility. There is a single good, which can be used for consumption or as capital input in a
constant return to scale technology operated by the agents. The total amount of capital Kt

is allocated to the agents: agent i invests kit/N units of the good in her production process.
The feasibility constraint is

Kt =
1

N

∑

i

kit. (5)

The output of agent i is

dY i
t =

kit
N

[µdt+ σdBi
t],

11Incidentally, when agents have log utilities, banks are not needed in Diamond Dybvig because the market
allocation is already Pareto optimal. In our model, even with log utilities the market equilibrium allocation
is not Pareto optimal: money and taxes are needed.
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where µ is the expected rate of return (net of depreciation) of the technology and Bi,
i = 1, ...N are independent Brownian motions, which can be interpreted as idiosyncratic
non persistent productivity shocks.

The law of motion of aggregate capital is

dKt =
1

N

∑

i

(

kit[µdt+ σdBi
t]− citdt

)

− cPt dt, (6)

where cit/N is the consumption flow of agent i, while cPt is the consumption flow of the
principal. This law of motion is a resource constraint stating that investment (left hand
side) is equal to total output net of depreciation minus consumption (right hand side).
With a finite number of agents, there is some residual aggregate risk:

var(dKt) =
σ2

N2

∑

i

[kit]
2dt. (7)

However when N tends to infinity, if the capital allocation kit is square Riemann integrable
in i, we can determine the limit behavior of the economy. The aggregate amount of capital
at date t converges to the Riemann integral12of kit

Kt =

∫ 1

0
kitdi, (8)

and its law of motion becomes deterministic:

dKt =

(

µKt −

∫ 1

0
citdi− cPt

)

dt, (9)

This is because 1
N

∑

i[k
i
t]
2 has a finite limit (

∫ 1
0 (k

i
t)
2di) and thus var(dKt) tends to zero

when N goes to infinity.

3.2 Optimal allocations under symmetric information

We first consider the case in which idiosyncratic shocks are observable. This serves as a
benchmark to which we then contrast the case in which agents privately observe shocks
and can secretly divert output.

3.2.1 The maximization problem

The simplest way to characterize the Pareto frontier of the economy without frictions is to
compute the maximum discounted expected utility that the principal can obtain, subject
to the resource constraint and the constraint that each agent i gets a given level of utility
ωi.13 When information is symmetric, since there is no aggregate risk, it is optimal not
to expose the agents to any risk. As shown below, this contrasts with the asymmetric
information case. Thus, under symmetric information, the consumption of agent i at date
t is a deterministic function of t, denoted cit. By construction, it satisfies

ωi =

∫ ∞

0
e−ρt log citdt, (10)

12Since the total mass of agents is 1, integrability of (ki
t)

2 implies that (ki
t) is also integrable.

13ωi can be interpreted as a reservation utility, reflecting an outside option.
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hereafter referred to as the promise keeping constraint. The objective of the principal is

∫ ∞

0
e−ρt log cPt dt, (11)

to be maximized subject to the promise keeping condition (10) for all i, and the law of
motion of capital:

K̇t = µKt −

∫ 1

0
citdi− cPt . (12)

Integrating (12) over time and using the transversality condition (limt→∞ e−µtKt = 0), we
obtain that the initial amount of capital is equal to the present value of future consumption,
discounted at the rate of return on capital:14

K =

∫ ∞

0
exp(−µt)[

∫ 1

0
citdi+ cPt ]dt. (13)

The optimal mechanism maximizes the objective of the principal (11) under the promise
keeping constraint (10) and the capital dynamics constraint (13).

3.2.2 Characterization of optimal allocations

The next proposition describes the solution of the maximization problem when information
is symmetric:

Proposition 5 Optimal allocations are such that:

1. Capital grows at constant rate µ− ρ:

Kt = Ke(µ−ρ)t.

2. At each date t, the principal consumes a constant fraction γP of capital, i.e.,

cPt = γPKt.

3. Agents’ continuation utilities grow linearly:

ωi
t = ωi + (

µ− ρ

ρ
)t.

4. At each date t, agent i consumes a constant fraction of exp(ρωi
t), i.e.,

cit = γAexp(ρωi
t),

where γA = exp[−µ−ρ
ρ

].

5. For all agents, the ratio
exp(ρωi

t)
Kt

is constant over time.

14This property also held in the simple two period model analyzed above. There the rate of return of
capital was equal to 0, so the initial aggregate endowment of capital good was equal to the sum of the future
aggregate consumptions.
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Property 1 states that aggregate capital grows at a constant rate, equal to productivity
µ minus the discount rate ρ. Correspondingly, the flow of aggregate consumption is a
fraction ρ of aggregate capital.

Property 2 states that the principal consumes a constant fraction of capital. This arises
because the principal has logarithmic utility. Properties 1 and 2, together with (12), imply
that the aggregate consumption of the agents is a constant fraction of capital.

Property 3 states that, starting from its initial level ω, an agents’ continuation utility
grows linearly with time, the trend being equal to the growth rate of capital divided by the
discount rate, which is the same for all agents. This implies that inequality across agents
does not grow over time, which will not be the case with asymmetric information.

Property 4 states that, at time t, an agent’s consumption is a constant fraction of
exp(ρω), which can be interpreted as the “equivalent permanent consumption” namely the
constant lifetime stream of consumption giving utility ω to an agent. Since the agent’s
utility function is logarithmic and her discount rate is ρ, the equivalent permanent con-
sumption corresponding to ω is exp(ρω). Combined with properties 1 and 3, it implies that
an agent’s consumption grows at the same rate as aggregate capital.

This yields Property 5, which states that the ratio of an agent’s equivalent permanent
consumption to aggregate capital is a constant, equal for all agents, which we denote by
z. Aggregating across agents, the ratio of aggregate equivalent permanent consumption to
capital is constant and equal to z:

∫

exp(ρωt)dP(ω)

Kt
= z.

We can now compute the value function of the principal:

V =

∫ ∞

0
e−ρt log cPt dt, (14)

The above proposition implies that this value function only depends on two state variables:
aggregate capital K and z, which summarizes all the necessary information on the prob-
ability distribution P of ω. This reduces the dimensionality of the problem from ∞ to 2.
The value function of the principal can be computed explicitly:

ρV = log(ρexp
µ− ρ

ρ
K − zK) (15)

The first term in the log on the right hand side of (15) is the total amount of constant cer-
tainty equivalent consumption that can be allocated among the principal and the agents.
It represents the present value of consuming a fraction ρ of capital K growing at rate µ−ρ.
The second term in the log on the right hand side of (15) is the aggregate equivalent per-
manent consumption

∫

exp ρωdP(ω) = zK of the agents, which cannot exceed [ρexpµ−ρ
ρ

]K.
Thus the value function of the principal can be written

V (K, z) =
logK

ρ
+ v(z),

where v(z) = log(ρexpµ−ρ
ρ

−z) is only defined for z in a bounded interval: 0 ≤ z ≤ ρexpµ−ρ
ρ

.
Similar properties will also hold in the asymmetric information case. Finally, the Pareto
frontier is linear in the space of equivalent permanent consumptions:

exp(ρV ) +

∫

exp(ρω)dP(ω) = [ρexp
µ− ρ

ρ
]K, (16)
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where the left-hand side is the sum of the principal’s equivalent permanent consumption
and the aggregate agents’ permanent consumption, while the right-hand side is the total
amount of equivalent permanent consumption to be allocated among the principal and the
agents. The Pareto frontier is depicted in Figure 2.

4 Optimal allocations under asymmetric information

We now turn to the case in which agents privately observe their individual output. By
the revelation principle, we consider revelation mechanisms. A mechanism is a mapping
from the realized output dY i

t , reported and delivered by agent i to the principal, into
consumption and capital allocations for the agent. Since agents privately observe output,
they can be tempted to divert a part of it and secretly consume it. To avoid this, the
mechanism must induce truthful revelation, i.e., it must be incentive compatible.

4.1 Incentive compatibility

Consider an agent who would want to divert resources and consume secretly. Assuming
the agent can only make absolutely continuous changes in the output process, the amount
diverted is denoted by δt dt. Defining

dB̂i
t = dBi

t − δt dt, (17)

the dynamics of reported output writes as

dŶ i
t = µkit dt+ σkitdB̂

i
t.

Since the agent cannot secretly store, diversion cannot be negative: δt ≥ 0 for every t. The
time 0 expected utility of an agent i who adopts a diversion strategy δt is

ωi
0 = sup

δ

E

[
∫ ∞

0
e−ρt log(cit + σkitδt)dt

]

.

To provide incentives for truthful revelation, the principal changes the continuation utility
of the agent as a function of her reports. Hence, by the martingale representation theorem,
the dynamics of the continuation utility of agent i is

dωi
t = (ρωi

t − log(cit)) dt+ σyitdB̂
i
t, (18)

where yit is a Bi
t-adapted process. On the equilibrium path we have

dωi
t = (ρωi

t − log(cit)) dt+ σyitdB
i
t. (19)

Intuitively, yit is the sensitivity of the agent’s continuation utility with respect to her report.
The principal must choose this sensitivity to incentivize the agent to report her output
truthfully. The state variable for agent i is her continuation utility ωi

t, so instead of denoting
her consumption by cit, we hereafter denote it by cAt (ω

i
t). An intuitive examination of the

incentive compatibility condition is the following. The incentive compatibility condition
states that the agent must be better off revealing dBt truthfully, and getting

log(cAt (ωt))dt+ σyt(ωt)dBt

14



than underreporting: dB̂t = dBt − δdt and getting

log(cAt (ωt) + σδkt(ωt))dt+ σyt(ωt)dB̂t

= log(cAt (ωt) + σδkt(ωt))dt+ σyt(ωt)(dBt − δdt).

So the incentive compatibility condition is

σyt ≥ sup
δ≥0

log((cAt (ωt) + σδkt(ωt))− log(cAt (ωt))

δ
=

σkt(ωt)

cAt (ωt)
.

This means that the sensitivity of continuation utility to performance has to be larger
than the product of the capital kt(ωt) managed by the agent by her marginal utility of
consumption. In the log utility case this writes as:

yt(ωt) ≥
kt(ωt)

cAt (ωt)
.

This leads to our next proposition.

Proposition 6 The incentive compatibility condition is equivalent to the inequality

∀t, yt(ωt) ≥
kt(ωt)

cAt (ωt)
. (20)

The incentive compatibility condition (20) implies that, in contrast with the symmet-
ric information case, agents cannot fully mutualize the risk of their idiosyncratic shocks.
Condition (20) also shows there is a tradeoff between risk-sharing and investment: provid-
ing more insurance to the agent, by reducing the sensitivity of her continuation value to
output shocks is possible only at the cost of reducing capital relative to consumption. This
is because increasing capital, and therefore output, increases the amount of resources the
agent can divert, which tightens the incentive constraint. This tradeoff is similar to that
arising in Biais, Mariotti, Rochet and Villeneuve (2010), where size of operation (similar
to capital in the present context) was limited by incentive compatibility.

The agents being risk averse, it is never optimal for the principal to expose them to more
risk than required by the incentive compatibility condition. In other words the incentive
constraint (20) is always binding and we can eliminate the capital allocation variable by
writing kit = yitc

i
t. Since µ > 0, it is optimal to fully allocate the capital stock to the agents,

implying that the aggregate capital constraint (8) writes as

∫

yt(ωt)c
A
t (ωt)c

A
t (ωt)dP(ωt) = Kt

4.2 The Hamilton-Jacobi-Bellman equation

As in the first best, the value function of the principal does not depend on the specific value
function of each individual, but on the distribution P of agents’ continuation pay offs. It
also does not depend on individual outputs or capital, but on aggregate capital, which is
deterministic, and on aggregate output which is linear in aggregate capital. So K and P are
the state variables of the principal’s maximization problem. That is, the principal problem
is a deterministic control problem in a space that is the product of R by the space of
probability measures on R, which we endow with the Wasserstein distance (see for example
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Villani 2009). We characterize the principal’s value function as the unique solution to the
dynamic programming Hamilton-Jacobi-Bellman (HJB) equation in that space.

The main difficulty for exploiting the dynamic programming principle is to differentiate
functionals defined on the Wasserstein space. There are various notions of derivatives with
respect to measures which have been developed in connection with the theory of optimal
transport and using Wasserstein metric on the space of probability measures, for details see
Villani (2009) and Appendix B of the present paper. For our purpose, we use the notion of
Gateaux differentiability that is presented in appendix. Following the traditional approach
for control problems, we first determine the shape of the HJB equation that the value
function of the principal must satisfy (necessary condition) and then establish a verification
theorem showing that regulation solutions of this HJB equation solve our control problem
(sufficient condition). To do so, consider the control problem of the principal

V (K,P) = sup
(cAt (.),cPt ,yt(.))∈K

∫ ∞

0
e−ρt log cPt dt, (21)

where the state equations are given by

K̇t = µKt − cPt −

∫

cAt (ω)dP(ω), (22)

dωt = (ρωt − log cAt (ω)dt+ σytdBt, (23)

and where the supremum is taken over the set K of admissible Markov controls (cA, cP , y)
such that

∫

yt(ω)c
A
t (ω)dP(ω) = Kt. (24)

Observe that the processKt is deterministic. A second difficulty is that this control problem
involves a constraint (24) that mixes control variables and state variables. To deal with this
constraint, we introduce a related, unconstrained, problem as follows: for each function λ
defined on the product of R by the space of probability measures on R, which we will call
from now on the Lagrange multiplier, consider the control problem

Vλ = sup
(cA,cP ,y)

∫ ∞

0
e−ρt

(

log cPt + λ(Kt,P)

(

Kt −

∫

yt(ω)c
A
t (ω)dP(ω)

))

dt.

We first state a result that establishes a link between the principal’s value V and Vλ.

Proposition 7 Suppose that for every Lagrange multiplier process, one can find an optimal
control uλ = (cAλ , c

P
λ , yλ) such that

Vλ =

∫ ∞

0
e−ρt

(

log cPλ,t + λ(Kt,P)

(

Kt −

∫

yλ,t(ω)c
A
λ,t(ω)dP(ω)

))

dt.

Moreover, suppose that there exists λ0(.) such that Kt =
∫

yλ0,t(ω)c
A
λ0,t

(ω)dP(ω), i.e. uλ0
∈

K. Then, V = Vλ0
and uλ0

solves the constrained principal problem.

We are now in a position to derive the HJB equation associated with the unconstrained
problem.
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Proposition 8 If the value function of the principal is sufficiently regular,15 it satisfies the
following HBJ equation:

ρV (K,P) = sup
cA()̇,cP ,y()̇

{

log cP + λ(K,P)

(

K −

∫

cA(ω)y(ω)dP(ω)

)

(25)

+VK(K,P)

(

µK − cP −

∫

cA(ω)dP(ω)

)

+

∫

∂ωδV [K,P](ω)(ρω − log cA(ω))dP(ω) +

∫

∂ωωδV [K,P](ω)
σ2

2
y2(ω)dP(ω)

}

,

where δV denotes the Gateaux gradient of V with respect to the measure P and ∂ω(respectively
∂ωω) denote its first (respectively second) partial derivative in ω, while λ denotes the La-
grange multiplier associated with the capital allocation constraint.

Inspired by classical verification theorems for stochastic control of diffusion processes,
we prove the following result, which is a consequence of the Itô formula given in appendix
for functions defined on the Wasserstein space.

Proposition 9 (Verification Theorem) Let λ(.) be a Lagrange multiplier, and vλ(K) be C1

with respect to K. Suppose that vλ is a solution to (25) with the transversality condition
limt→+∞ e−ρtvλ(Kt, Pω

µ
t
) = 0 and there exists a control u∗λ attaining the maximum in (25).

Then vλ = Vλ. Moreover, if there is a Lagrange multiplier λ0 such that u∗λ0
∈ K then

vλ0 = V .

4.3 A guess-and-verify approach

We now guess the form of the solution to the optimal control problem and show that the
corresponding value function satisfies the Hamilton-Jacobi-Bellman equation (25), so that
the guess is the actual solution of the problem.

4.3.1 A restricted control problem

Guided by the characterization of first-best allocations, we conjecture that optimal controls
satisfy

CP
t = γPKt, C

A
t (ω) = γA exp(ρωt), (26)

where γP and γA are positive constants. We also posit that yt(ω) ≡ y is constant. This
is what we call the restricted principal’s problem. In the restricted problem, the feasibility
constraint (24) gives for all t ≥ 0,

Kt = yγA
∫

exp(ρωt)dP(ω) = yγAZt,

where
Zt = E[exp(ρωt)]. (27)

15By this we mean that it is differentiable in K, Gateaux differentiable in P and that its Gateaux gradient
in P is twice differentiable with respect to ω.
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As a consequence, the ratio Zt

Kt
≡ z must be constant, and γA must be equal to the inverse

of yz. Substituting (26) into (22) and using γA = 1/(yz) and (27), we obtain the growth
rate of capital

g := µ− γP −
1

y
, (28)

Since the ratio Zt

Kt
is constant, the growth rates of Kt and Zt must be equal. Thus

dZt

Zt
= E[ρdωt] +

ρ2σ2y2

2
dt = gdt,

which implies the constraint:

µ− γP −
1

y
= −ρlogγA +

ρ2σ2y2

2
.

Thus the value function of the restricted problem can be computed as

V (K,P) =
logK

ρ
+ v(z). (29)

where the function v(z) satisfies

ρv(z) = sup
y,γP

[log γP +
µ− γP − 1

y

ρ
],

under the constraint:

µ− γP −
1

y
= ρlogyz +

ρ2σ2y2

2
.

We obtain the next proposition, whose proof is in the appendix:

Proposition 10 Let z =
∫
exp(ρω)dP(ω)

K
. For 0 < z < zmax, the value function of the

restricted principal’s problem writes as

V (K,P) =
logK

ρ
+ v(z). (30)

where the function v(z) satisfies

ρv(z) = sup
y
[log(µ−

1

y
− ρ log yz −

ρ2σ2y2

2
) + log yz +

ρσ2

2
y2]. (31)

The solution to this problem is denoted y(z). The corresponding propensities to consume
are

γP (z) = ρ−
1

y(z) + ρσ2y(z)3
, (32)

for the principal and γA(z) = 1
zy(z) for the agent.

In line with the incentive compatibility condition (20), which implies that y must be
strictly positive as long as agents hold strictly positive capital, inspection of (30) reveals that
the solution of the restricted principal’s problem involves y > 0: in the optimal allocation,
agents must bear some of their idiosyncratic risk.
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4.3.2 The general case

We now show that the value function of the restricted problem satisfies the Bellman equation
(25) and thus solves the complete problem. To do so, we substitute V (K,P) from (30) in
the HJB equation (25). We first compute the partial derivatives of order one:

VK =
1− ρzv′(z)

ρK
, δV = ρexp(ρω)

v′(z)

K

and then the derivatives of the Gateaux gradient of V :

∂ω(δV ) = ρδV, ∂ωω(δV ) = ρ2δV

The Bellman equation becomes

logK + ρv(z) = sup[log(γPK) + λ(K −

∫

γA(ω)y(ω)exp(ρω)dP)

+ [
1

ρ
− zv′(z)][µ− γP −

∫

γA(ω)exp(ρω)dP

K
] + v′(z)

∫

ρexp(ρω)(− log γA(ω) +
ρσ2

2
y2(ω))dP(ω)].

Note that all the terms involving γA(ω) and y(ω) are multiplied by the same function of
ω, namely the product of exp(ρω) by the density of P(ω). Thus the pointwise maximum
is attained for the same couple (y, γA), independently of ω. This implies that the solution
is the same as that of the restricted problem, where we have assumed y and γA constant.

Thus we can replace γA by 1
yz

and γP by (µ − 1
y
− ρ log yz − ρ2σ2y2

2 ) and the Bellman
equation simplifies into:

ρv(z) = sup
y
[log(µ−

1

y
− ρ log yz −

ρ2σ2y2

2
) + log yz +

ρσ2

2
y2],

which is the definition of the function v(z). Thus we have established that the value function
in (30) satisfies the Bellman equation of the full problem. Thus we have established the
main result of our paper:

Proposition 11 The value function of the full problem is

V (K,P) =
logK

ρ
+ v(z),

where z =
∫
exp(ρω)dP(ω)

K
) and the function v is defined by equation (82). The solution is

such that:

k(ω) =
exp(ρω)

z
, CA(ω) =

exp(ρω)

zy(z)
, γP = ρ−

1

y(z) + ρσ2y3(z)
,

where y(z) is the solution of (31).

4.4 Properties of second best allocations

Taking stock of the analysis above, the next proposition summarizes the properties of
optimal information constrained allocations. These properties are drastically simplified by
the fact that date t allocations only depend on two state variables, namely the capital stock

Kt and the ratio zt ≡
∫
exp(ρωt)dP(ω)

Kt
. Moreover, along the optimal trajectories, this ratio

is constant over time: zt ≡ z, and optimal controls can all be expressed as functions of
y = y(z), the solution of (31).
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Proposition 12 Second best optimal allocations are such that:

1. Capital grows at a constant rate

g = µ− ρ−
ρσ2y

1 + ρσ2y2
, (33)

which is lower that the first best growth rate µ− ρ.

2. Agents’ continuation utilities follow a drifted Brownian motion:

ωt = ω +

(

g

ρ
−

ρσ2y2

2

)

t+ σyBt. (34)

3. At each date t, the principal consumes a constant fraction of the capital stock: CP
t =

γPKt, where

γP = ρ−
1

y + ρσ2y3
. (35)

4. At each date t, an agent consumes a constant fraction of exp(ρωt): C
A
t (ω) = γAexp(ρωt),

where

γA = exp[−
µ− ρ

ρ
+

ρ2σ2y

1 + ρσ2y2
+

ρ2σ2y2

2
].

Property 1 shows that frictions reduce growth. This reflects incentive constraints, which
restrict investment. When σ = 0, there is no incentive problem and the growth rate is equal
to its first best level.

Property 2 implies that the cross section of agents’ continuation payoffs gets more
dispersed as time goes by. Even if all agents are ex ante identical, inequality necessarily
increases over time, due to incentive compatibility constraints. Moreover, there is a simple
relation between the continuation utility of an agent at date t and its performance over
(0, t). Indeed, the average productivity of the agent over (0, t) is just µ + σBt

t
. Optimal

compensation implies a simple, affine, relation between the continution utility ωt and this
performance measure, similarly to Holmstrom Milgrom (1985).

Finally, Properties 3 and 4 are similar to the first best case. This simplicity is due
to our assumption that utilities are logarithmic and aggregate productity is constant. A
characterization of optimal second best allocations in more general cases is probably much
more difficult.

The above properties are parametrized by the sensitivity of agent’s continuation utility
to performance, y. Varying y does not qualitatively alter these properties, but it generates
quantitative changes, e.g., in growth rates or principal’s share of consumption. Below, we
show how the information constrained Pareto frontier can be written as a function of y.

4.5 Information Constrained Pareto Frontier

The above analysis yields a characterization of the information constrained Pareto frontier
in the space of equivalent permanent consumptions. To facilitate its representation, we
focus on the case in which all agents start with the same continuation pay-off ω. We also
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take K = 1. In this case, V (K,P) in (30) simplifies to v(exp (ρω)). The continuation utility
of the agent is

ω = E[

∫ ∞

0
e−ρt log(CA

t )dt] =
log 1

y

ρ
+

µ− γP − 1
y

ρ2
−

σ2y2

2
,

while that of the principal is

v(exp (ρω)) =

∫ ∞

0
e−ρt log(CP

t )dt =
log γP

ρ
+

µ− γP − 1
y

ρ2
.

Substituting γP from (32) into ω and v(ω) enables us to parameterize the Pareto frontier as
a function of y alone. We obtain that the equivalent permanent consumption of the agent
is

exp(ρω) =
1

y
exp[

g

ρ
−

ρσ2y2

2
], (36)

where g is the growth rate given in (33), while the equivalent permanent consumption of
the principal is

exp ρv(exp (ρω)) = (ρ−
1

y + ρσ2y3
)exp[

g

ρ
]. (37)

(36) reflects that each agent consumes a fraction 1
y
of its capital under management, which

grows at average rate g, with volatility σy generating a risk premium, and is discounted
at rate ρ. Similarly (37) reflects that the principal consumes a fraction (ρ − 1

y+ρσ2y3
) of

the capital stock, but is not impacted by any risk, so that unlike in (36) there is no risk
premium. As mentioned above, when σ = 0 there is no incentive problem. Correspondingly
(36) and (37) reduce to

exp(ρω) + exp(ρv(exp (ρω))) = ρexp[
µ− ρ

ρ
],

the equation of the first best Pareto frontier (16), evaluated in the case in which all agents
have the same utility ω and K = 1. It reflects that the total surplus (ρexp[µ−ρ

ρ
]) must be

shared between the principal and the agents.

5 Implementation by money and taxes

The direct revelation mechanism characterized above is completely centralized: all agents
report to the principal, who then reallocates goods among agents. We now show that a
more decentralized implementation is possible, in which the allocation of goods results from
the equilibrium of a competitive market. In that implementation, the principal does not
intervene in the reallocation of goods among agents, and relies only on monetary policy
(via the inflation rate π) and fiscal policy (via the tax rate τ .)

Our analysis proceeds in two steps. First, we characterize the equilibrium allocation
arising for a given policy (π, τ). There we show how the choice of π and τ determines the
agents’ and principal’s equilibrium consumption processes, as well as the equilibrium growth
of output and money supply. Second, we we show that, for any second best allocation, i.e.,
agents’ and principal’s second best consumption processes, there exists a policy (π, τ) for
which this allocation is the equilibrium allocation. Thus, as explained below, we obtain a
form of second welfare theorem.
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5.1 Equilibrium

Our equilibrium analysis proceeds in three steps. First, we characterize the optimal con-
sumption and investment of an agent for a given public policy (π, τ). Second, we spell out
the market clearing condition, stating that, at each point in time, the supply of goods is
equal to the demand for goods. Third, we derive the equilibrium growth rate induced by
policy (τ, π) for output and money supply, as well as the equilibrium consumption share of
the principal.

5.1.1 Agent’s optimal policy

At t = 0, the principal endows each agent with money m0 and commits to constant inflation
rate π and tax rate τ . Normalizing p0 to 1, the price of the good in money at time t is
pt = exp(πt). Agents hold capital (kt) and money (mt), so an agent’s real wealth at time t
is

et = kt +
mt

pt
. (38)

The dynamics of the capital holdings kt of a given agent is given by:

dkt = kt(µdt+ σdBt)− ctdt− dst, (39)

where dst denotes the agent’s sales (purchases if negative) on the good market. Similarly,
the dynamics of the agent’s real money balances are

d(
mt

pt
) = dst − (π

mt

pt
+ τet)dt, (40)

Adding (39) and (40), dst cancels out and we obtain the dynamics of the agent’s wealth

det = kt(µdt+ σdBt)− [ct + τet + π(et − kt)]dt. (41)

Since there are no transaction costs, the agent can costlessly continuously rebalance her
portfolio of money and capital and the only constraint is the wealth constraint. So et is
the agent’s state variable, while kt and ct can be viewed as the control variables. Equation
(41) shows that the change in wealth of an agent is equal to output, minus consumption,
taxes, and the decline in the real value of money holdings due to inflation. The latter can
be interpreted as an inflation tax. Equation (41) and Ito’s lemma imply that the value
function u(e) of the agents satisfies the following Bellman equation

ρu(e) = Maxk,c[logc+ u′(e)[µk − c− τe− π(e− k)] +
σ2k2

2
u′′(e)]. (42)

The first order condition with respect to c is

1

c
= u′(e).

The first order condition with respect to k is

k =
µ+ π

−u′′(e)
u′(e) σ

2
.
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Homogeneity implies that the value function is an affine transformation of log(e):

u(e) =
log(e)

ρ
+ u(1), (43)

which implies

u′(e) =
1

ρe
, u

′′

(e) = −
1

ρe2
. (44)

So the first order conditions yield
c = ρe, (45)

and

k =
µ+ π

σ2
e. (46)

That consumption and capital are constant fractions of wealth stems from the logarithmic
utility specification. Denoting

x :=
µ+ π

σ2
, (47)

the optimal portfolio choice of the agent is to invest a fraction x of her wealth in the risky
asset and a fraction 1− x in money, the safe asset. Condition (47) shows that the fraction
of her wealth an agents invests in the risky asset is increasing in the inflation rate π, which
determines the rate of return on money holdings.

5.1.2 Market clearing

Market clearing requires that the aggregate supply of goods by the agent be equal to the
consumption of goods by the principal

∫

i

(

dsit
)

di = cPt dt. (48)

First, consider the left-hand side of (48). Since optimality requires a constant ratio of
capital to wealth, each agent must buy or sell capital to equalize the growth rate of capital
to that of wealth:

dkt
kt

≡
det
et

.

The dynamics of an agent’s capital holdings (39) ct = ρet, and kt = xet imply

dkt
kt

= (µdt+ σdBt)−
ρ

x
dt−

dst
kt

.

The dynamics of an agent’s wealth, (41), combined with ct = ρet, and kt = xet imply

det
et

= x(µdt+ σdBt)− [ρ+ τ + π(1− x)]dt.

Equating the two yields

dst
kt

= (1− x)(µdt+ σdBt)−
ρ

x
dt+ [ρ+ τ + π(1− x)]dt,

which determines individual good sales dst

dst = [(µ−
ρ

x
+ π)(1− x) + τ ]ktdt+ σ(1− x)ktdBt,
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and aggregate sales

∫

(

dsit
)

di =
[

(µ−
ρ

x
+ π)(1− x) + τ

]

Ktdt. (49)

Second, turn to the right-hand side of (48), i.e., the consumption of the principal. By the
budget constraint of the principal, this consumption is equal to the sum of the seigneurage
and fiscal revenues, that is

cPt = gM

∫

i

(

mi
t

pt

)

di+ τ

∫

i

eitdi, (50)

where gM is the growth rate of the money supply. Now, by (38) and (46)

mt

pt
= et − kt = kt

1− x

x
.

Substituting in (50) we have

cPt dt =

(

gM
1− x

x
+

τ

x

)

Ktdt. (51)

Equating (49) and (51), the market clearing condition is

(µ−
ρ

x
+ π)(1− x) + τ = gM

1− x

x
+

τ

x
. (52)

By (47), µ+ π = xσ2. So (52) writes

(xσ2 −
ρ

x
)(1− x) = gM

1− x

x
+ τ

1− x

x
.

Simplifying, this yields the rate of growth of money supply which must prevail in equilibrium
when the government follows policy (τ, π).

gM = σ2x2 − ρ− τ. (53)

5.1.3 Equilibrium growth rate and principal’s consumption

By definition, the growth rate of money is gM = g+π. Equating this to (53) we obtain the
equilibrium growth rate obtaining for policy (τ, π).

g = σ2x2 − ρ− τ − π. (54)

By (51), the principal’s consumption share of capital is

γP = gM
1− x

x
+

τ

x
.

Substituting (53), we have

γP =
(

σ2x2 − ρ
) 1− x

x
+ τ. (55)

Summarizing the results derived above, we obtain the next proposition:
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Proposition 13 When the principal commits to a constant inflation rate π and a constant
tax rate τ , equilibrium is as follows:

� Each agent consumes a constant fraction ρ of her wealth.

� Each agent holds a constant fraction x = µ+π
σ2 of her wealth in the risky asset and the

complementary fraction in money.

� The growth rate of the money supply is gM = σ2x2 − ρ− τ.

� The growth rate of output is g = σ2x2 − ρ− τ − π, and

� The principal’s consumption share is γP =
(

σ2x2 − ρ
)

1−x
x

+ τ.

The proposition clarifies that for any couple of policy variables π and τ , there is a
unique stationary equilibrium allocation associated with the variables x, gM , g, and γP

characterized in the proposition.16 However, we show below that only a subset of equilib-
rium allocations correspond to information constrained optimal allocations, in particular
the laissez faire allocation with τ = 0 is not information constrained optimal.

5.2 Implementation

To implement a second best allocation we need to find τ and π such that i) the dynamics
of u(et) in equilibrium is equal to that of ωt in that second best allocation and ii) the
consumption of the principal in equilibrium is equal to the consumption of the principal in
that second best allocation. Let us look first at the identification of the utility of the agent
in the second best and in equilibrium. Proposition 12 implies that in the second best the
dynamics of an agent’s utility is

dωt =

(

g

ρ
−

ρσ2y2

2

)

dt+ σydBt, (56)

where

g = µ− ρ−
ρσ2y

1 + ρσ2y2
. (57)

Turning to the equilibrium, by Ito’s Lemma the dynamics of an agent’s utility is

du(e) = u′(e)de+
1

2
u′′(e) (de)2 .

By (41), (44), c = ρe, and k = xe, this is

du(e) =
1

ρ
[xµ− (ρ+ τ + π(1− x))] dt−

σ2x2

2ρ
dt+

σx

ρ
dBt. (58)

For the equilibrium to implement the second best, we need to identify (56) and (58). For
the Brownian term to be the same in the two equations, we need

x = ρy. (59)

16Instead of defining the principal’s policy in terms of monetary (π) and fiscal (τ) policies, one could have
equivalently defined it in terms of monetary (π) and budget (γP ) policy. Because of the principal’s budget
constraint, stating the principal’s consumption must be equal to the sum of seigneurage and tax revenues,
setting τ is equivalent to setting γP
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Substituting the value of x from (47) into (59) the equality becomes

µ+ π

σ2
= ρy.

So, to ensure that the equilibrium implements the second best allocation parametrized by
y, the principal must set inflation

π = σ2ρy − µ. (60)

Once the two Brownian terms are equal, to identify (56) and (58) we need to identify the
drifts, i.e., we must have

g

ρ
−

ρσ2y2

2
=

1

ρ
[xµ− (ρ+ τ + π(1− x))]−

σ2x2

2ρ
. (61)

After a few manipulations, explicited in the proof in the appendix, this is equivalent to

τ = σ2ρ2y2
(

1− σ2y(1− ρy)

1 + σ2ρy2

)

, (62)

which, as shown in the proof in the appendix, also implies that the consumption of the
principal is the same in equilibrium and in the second best. So we can state our next
proposition:

Proposition 14 Any second best allocation parametrized by y can be decentralized as the
competitive equilibrium associated with public policy (π, τ), where

π = σ2ρy − µ, (63)

and

τ = σ2ρ2y2
(

1− σ2y(1− ρy)

1 + σ2ρy2

)

, (64)

As noted after Proposition 10, the optimal allocation involves y > 0. By (64) this implies
that tax rates implementing second best allocations must be strictly positive. Thus, a
laissez-faire policy with τ = 0 cannot implement a second best allocation. That is non zero
taxes or subsidies are necessary to implement second best optimal allocations.

Proposition 14 is a form of second welfare theorem: For any Pareto optimal allocation,
there exists a tax and monetary policy such that the competitive equilibrium yields the
Pareto optimal allocation. But there are major differences between Proposition 14 and the
classical second welfare theorem: First, in the classical welfare theorem, markets are perfect
and complete. In contrast, in our analysis there are asymmetric information frictions,
implying that markets are endogenously incomplete. Second, the classical second welfare
theorem considers lumpsum taxes, which don’t distort agents’ behaviour. In contrast, in
our analysis taxes are linear in wealth, and in conjunction with inflation, optimally affect
agents’ behaviour.

A key step to obtain Proposition 14 is equation (59) which states that x = ρy. A
priori, y and x are conceptually different objects. The former is the exposure of agents to
their idiosyncratic risk in the optimal mechanism. The latter is the structure of agents’
portfolio in market equilibrium, which is affected by π since inflation determines the relative
attractiveness of the safe asset. To implement the optimal mechanism, inflation π must
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be set such that (59), because this ensures that agents have the same risk exposure in
equilibrium and in the optimal mechanism.

When gM is negative (monetary contraction), the principal uses taxes to finance his
consumption and to “pump out” money from agents. This case is similar to our two-
date model in that the value of money equals the sum of future taxes minus future public
expenditures (primary surpluses).17 However, for different parameter values, gM can also
be positive (monetary expansion), in which case the money stock grows without limit, and
the primary surplus is negative. Then money can be viewed as a bubble: its value is
positive, even though taxes are insufficient to cover the consumption of the principal. It
is even possible that τ be negative, implying that the principal subsidizes the agents by
distributing them part of the money he issues (helicopter money). This is sustainable when
growth rate is sufficiently high.

6 Link to Optimal Tax Theory

The recent literature on the New Dynamic Public Finance (see Kocherlakota 2009 and
Golosov et al. 2007) has shown that capital should be taxed in a dynamic economy when
individual labor productivities are not publicly observable and are hit by idosyncratic shocks
over time. We can show a similar result in our model, where it is capital income that is
not publicly observable. Following the standard approach in optimal tax theory, consider
the principal as a government selecting the tax scheme to maximizes intertemporal social
welfare, taking as given that public expenditures are fixed to a given fraction γP0 of the
capital stock. Note that here the consumption of the principal is exogenous while in our
analysis it is endogenous. Using the direct mechanism approach, we can see that this
problem amounts to finding the maximum ω0 that is feasible for a given initial capital K0 =
1 and a net expected productivity of capital µ−γP0 . Note another difference with traditional
tax theory: we allow the government to finance its deficits (or absorb its surpluses) by
adjusting its monetary policy: money issuance (which can be negative) is determined by
the difference between public expenditures and tax receipts. The problem then amounts to
finding the highest continuation pay-off for agents on the second best Pareto frontier when
µ is replaced by µ− γP0 . Adapting the above analysis, one obtains the next proposition:

Proposition 15 When government expenditures are a fixed fraction γp0 of the aggregate
capital stock, the optimal policy mix (fiscal+monetary policies) consists of:

1. A linear wealth tax at rate: τ = γP0 − (1 − x)(σ2x − ρ
x
), where x is the only positive

solution of the cubic equation σ2

ρ
x3 + x = 1,

2. A constant money issuance rate gM = σ2x− ρ
x
.

3. Moreover, the economy grows at a constant rate g = µ − γP0 − ρ
x
, and the inflation

rate is also constant π = σ2x− µ+ γP0 .

Note that taxes and inflation are an increasing function of government expenditures,
while the money issuance rate only depends on σ and ρ.

17There is no discounting as the interest rate on money is 0.
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7 Conclusion

In this paper we analyze capital allocation and risk sharing between a principal and many
agents. We assume that agents privately observe their individual output and can secretly
consume some of it, as in Bolton and Scharfstein (1990). To provide agents with incentives
to reveal truthfully their output, the optimal dynamic mechanism allocates more capital
and consumption to agents with better performance. Thus, while there is no aggregate risk,
incentive compatibility precludes perfect insurance. Assuming logarithmic utility enables
us to fully characterize the optimal dynamics of capital and consumption as well as the
distribution of continuation utilities across agents.

Moreover, we show that the optimal dynamic mechanism can be implemented by market
equilibrium with appropriatey chosen inflation and tax rates. Inflation determines the
attractiveness of the safe asset relative to the risky asset, and thus agents’ holdings of
the latter. An appropriately chosen inflation rate gives agents the same risk exposure in
equilibrium as in the optimal mechanism, so that the former implements the latter.

This implementation result is a form of second welfare theorem: For any Pareto optimal
allocation, there exists a fiscal and monetary policy implementing that allocation in equi-
librium. However, while in the classical welfare theorem, markets are perfect and complete,
in our analysis markets are endogenously incomplete because of information asymmetry.
Moreover, while in the classical second welfare theorem taxes are lumpsum so that they
don’t distort agents’ behaviour, in our analysis taxes depend on wealth and optimally affect
agents’ behaviour. Finally note that we don’t obtain a first theorem of welfare. Only a
subset of the equilibria arising in our setting are information constrained Pareto optimum.
In particular, the laissez-faire equilibrium, obtaining with zero taxation, is not information
constrained Pareto optimal.

28



Appendix A: Proofs

Proof of Proposition 1: The Lagrangian is

E [U(Cs
1) + U(Cs

2)] + λ (1− E [Cs
1 + Cs

2 ]) ,

where λ is the multiplier of the resource constraint. The first order condition with respect
to Cs

t is U ′(Cs
t ) = λ, ∀s, t. So consumption is constant across types s and periods. Binding

the resource constraint this yields Cs
1 = 1

2 .
QED

Proof of Proposition 2: The Lagrangian is

E [U(Cs
1) + U(Cs

2)] + λ (1− E [Cs
1 + Cs

2 ])

+ν
[

U(CH
1 ) + U(CH

2 )− U(CL
1 + 2σ)− U(CL

2 )
]

,

where λ is the multiplier of the resource constraint and ν the multiplier of the incentive
constraint. The first order condition with respect to CH

t is:

U ′(CH
t ) =

λ

1 + ν
, ∀t. (65)

So CH
1 = CH

2 . The first order condition with respect to CL
1 is:

U ′(CL
1 )− νU ′(CL

1 + 2σ) = λ. (66)

The first order condition with respect to CL
2 is:

U ′(CL
2 ) =

λ

1− ν
, (67)

which, with (65), implies CL
2 < CH

2 . Now, (66) rewrites as

(1− ν)U ′(CL
1 ) + ν

(

U ′(CL
1 )− U ′(CL

1 + 2σ)
)

= λ.

That is

U ′(CL
1 ) =

λ

1− ν
−

ν

1− ν

(

U ′(CL
1 )− U ′(CL

1 + 2σ)
)

,

which implies

U ′(CL
1 ) <

λ

1− ν
.

Together with (67) this implies CL
2 < CL

1 .
QED
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Proof of Proposition 3 Denoting by λ the multiplier of the resource constraint and
µ the one of the IC constraint, the first order conditions give CH

1 = CL
2 = 1+µ

λ
, CL

2 = 1−µ
λ

,
and

1

CL
1

−
µ

CL
1 + 2σ

= λ.

Since the IC constraint is binding we can write CL
1 + 2σ =

CH
1
CH

2

CL
2

= (1+µ)2)
λ(1−µ) . Similarly the

resource constraint is binding, giving CL
1 = 2− 3+µ

λ
By eliminating CL

1 between these two

equations, we obtain 1
λ
= (1+σ)(1−µ)

2 The expressions of CH
1 = CH

2 , CL
2 are immediately

deduced. Finally, the cubic equation in µ is obtained by plugging the expression of λ into
the first order condition with respect to CL

1 .
Now we turn to the proof of the 4 properties stated in the proposition:

1. CH
1 − CL

1 = 2σ − (1 + σ)µ(1 + µ) Using the equation defining µ we can write
µ(1 + µ) = 1+3µ

1+µ
σ

1+σ
. Since µ < 1, this is smaller than 2σ

1+σ
. This establishes

property 1.

2. CH
2 − CL

2 = (1 + σ)µ > 0.

3. CH
2 + CL

2 = (1 + σ)(1− µ) < 1 since µ > σ
1+σ

.

4. CH
2 + CH

1 = (1 + σ)(1− µ2) < 1 + σ.

This ends the proof of the proposition.
QED

Proof of Proposition 4: The Lagrangian of the maximization problem faced by
agent s is

U(Cs
1) + U(ks1) + λs [Rs +m0 − (Cs

1 + ks1 + τ(ks1))] .

The first order condition with respect to time 1 consumption is

U ′(Cs
1) = λs. (68)

The first order condition with respect to investment is

U ′(ks1) = λs
[

1 + τ ′(ks1)
]

. (69)

Substituting (68) in (69), and noting that Cs
2 = ks1, yields

U ′(Cs
2)

U ′(Cs
1)

=
[

1 + τ ′(ks1)
]

.

Since in the optimal mechanism CH
1 = CH

2 and CL
1 > CL

2 , in the implementation we must
have τ ′(kH1 ) = 0 and τ ′(kH1 ) > 0.

Binding the agent’s goods budget constraint (1) and aggregating across agents yields

E [Cs
1 + ks1 + Ss] = E [Rs] . (70)
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Now the binding time 1 resource constraint faced by the planner is

E [Cs
1 + ks1] = 1. (71)

(70) and (71) imply
E [Ss] = 0,

which means that the goods market clears at time 1.
QED

Proof of Proposition 5: Denoting by β the Lagrange multiplier associated to the
constraint on capital and λi the one associated to the promise keeping constraint for agent
i, the Lagrangian writes, up to a constant:

L =

∫ ∞

0
e−ρt log cPt dt+

∫ 1

0

∫ ∞

0
λie−ρt log citdtdi− β

∫ ∞

0
e−µt[

∫ 1

0
citdi+ cPt ]dt.

We can derive the first order conditions:

e−ρt

cPt
= βe−µt,

with respect to cPt and
λi
te

−ρt

cit
= βe−µt,

with respect to cit. This yields cPt = exp(µ−ρ)t
β

and cit =
λiexp(µ−ρ)t

β
. Multiplying by ρ the

promise keeping condition, we obtain

ρωi = ρ

∫ ∞

0
e−ρt log citdt = log(

λi

β
) +

µ− ρ

ρ
.

Thus λi

β
= ci0 = γAexp(ρωi). Now, we can multiply by ρ the constraint on capital, giving

ρK = γPK + γA
∫ 1

0
exp(ρωi)di.

thus we can express γP as a function of the ratio of
∫ 1
0 exp(ρωi)di and K, which we denote

by z :

γP = ρ− γA
∫ 1
0 exp(ρωi)di

K
= ρ− γAz.

Total consumption is thus ρKe(µ−ρ)t. The dynamics of capital is:

K̇t = µKt − ρKe(µ−ρ)t,

which gives after integration Kt = Ke(µ−ρ)t. The optimal allocation is thus stationary:

individual consumptions and aggregate capital all grow at rate µ−ρ. Similarly ρ
dωi

t

dt
= µ−ρ.

QED
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Proof of Proposition 7: Let u = (cA, cP , y) be an admissible control, we will denote

Ju
λ =

∫ ∞

0
e−ρt

(

log cPt + λ(Kt,Pωt)

(

Kt −

∫

yt(ω)c
A
t (w)dPωt(ω)

))

dt,

and

Ju = E

[
∫ ∞

0
e−ρt log(cPt ) dt

]

=

∫ ∞

0
e−ρtĉPt dt

For every Lagrange multiplier λ, we have Vλ = Juλ

λ ≥ Ju
λ . In particular, for λ = λ0 and

u ∈ K, we have Juλ0 = J
uλ0

λ0
≥ Ju

λ0
= Ju and since uλ0

∈ K, the proof is complete.
QED

Proof of Proposition 9: Fix µ ∈ P2(R) and a Lagrange multiplier λ and consider
some arbitrary control u(Kt,Pωt , ωt). We apply Itô’s formula to vλ(Kt,Pω

µ
t
) between s = 0

and s = t for t > 0.

e−ρtvλ(Kt,Pω
µ
t
) = v(K,µ) +

∫ t

0
e−ρs

(

−ρvλ(Ks,Pω
µ
s
) + vK(Ks,Pω

µ
s
)

(

µK − cP −

∫

cA(ω)dPω
µ
s
(ω)

))

ds

+

∫ T

0
e−ρs

∫

∂ωδv
λ[Ks,Pω

µ
s
](ω)(ρω − log cA(ω))Pω

µ
s
(dω)

+

∫ t

0
e−ρs

∫

∂ωωδv
λ[(Ks,Pω

µ
s
](ω)

σ2

2
y2(ω)Pω

µ
s
(dω) ds.

We deduce from the Bellman equation (25) satisfied by vλ that

vλ(K,µ) ≥ e−ρtvλ(Kt,Pω
µ
t
)+

∫ t

0
e−ρs

(

log(cPλ,s) + λ(Ks,Pω
µ
s
)

(

Ks −

∫

yλ,s(ω)c
A
λ,s(ω)Pω

µ
s
(dω)

))

ds.

Letting t tend to +∞, we obtain using the transversality condition

vλ(K,µ) ≥

∫ ∞

0
e−ρs

(

log(cPλ,s) + λ(Ks,Pω
µ
s
)

(

Ks −

∫

yλ,s(ω)c
A
λ,s(w)dPω

µ
s
(ω)

))

ds = Ju
λ .

Since the control is arbitrary, we obtain

vλ(K,µ) ≥ Vλ.

On the other hand, let us apply the same Itô’s argument with the control u∗λ attaining the
maximum in (25), we obtain

vλ(K,µ) = J
u∗

λ

λ ≤ Vλ,

which yields that vλ = Vλ. We conclude the proof by applying Proposition 7.
QED

Proof of Proposition (10): To obtain the dynamics of Zt, we substitute γ
A = 1/(yz)

in CA
t (ω) = γA exp(ρωt), and then substitute the resulting expression into (23), which yields

dωt = log(yz)dt+ σy dBt. (72)

(72) and Zt = E[exp(ρωt)] yield

Zt = Z0E [exp(ρ (log(yz)t+ σyBt))] = Z0 exp

((

ρ log(yz) +
ρ2σ2y2

2

)

t

)

, (73)
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which gives
dZt

Zt
=

(

ρ log(yz) +
ρ2σ2y2

2

)

dt. (74)

By (28) and (74), equality of the growth rates of Kt and Zt means that

µ− γP −
1

y
= ρ log(yz) +

ρ2σ2y2

2
. (75)

The restricted principal’s problem is thus characterized by the following maximization
problem

V (K,P) = sup
γP ,y

∫ +∞

0
e−ρt log(γPKt)dt, (76)

under the constraint (75) and the dynamics of capital

Kt = Kexp((µ− γP −
1

y
)t). (77)

Substituting Kt from (77) into (76), the latter writes

V (K,P) = sup
γP ,y

∫ +∞

0
[e−ρt

(

log(γPK) + (µ− γP −
1

y
)t

)

]dt, s.t., (75). (78)

Easy computations then show that (78) can be rewritten as

ρV (K,P) = logK + sup
γP ,y

(

log γP +
µ− γP − 1

y

ρ

)

, s.t., (75). (79)

Using (75) we can express γP as a function of y and z

γP = µ−
1

y
− ρ

(

log(yz) +
ρσ2y2

2

)

.

Substituting the value of γP into (79), the latter writes as

ρV (K,P) = logK +sup
y

(

log

(

µ−
1

y
− ρ

(

log(yz) +
ρσ2y2

2

))

+ log(yz) +
ρσ2y2

2

)

. (80)

There exists a solution to (80) when the feasible set is non empty, i.e. when it is possible
to find values of y for which the argument of the first log is positive. This is equivalent to

z < zmax := max
y

1

y
exp[

µ

ρ
−

1

ρy
−

ρσ2y2

2
]. (81)

Taking the first order condition in (80) and denoting

v(z) :=
1

ρ
sup
y

(

log

(

µ−
1

y
− ρ

(

log(yz) +
ρσ2y2

2

))

+ log(yz) +
ρσ2y2

2

)

. (82)

QED
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Proof of Proposition 12: To prove Point 1 in Proposition 12 we start by observing
that (22) states that the growth rate of capital is

g = µ−

∫

cA(ω)dP(ω)

K
−

cP

K

and that (26) states that

cP = γPK, cA(ω) = γA exp(ρω).

Substituting the latter in the former, we have

g = µ−
γA
∫

exp(ρω)dP(ω)

K
− γP .

By (27), this is

g = µ− γA
Z

K
− γP . (83)

As explained in the analysis of the restricted problem, (26) and (27) imply Zt

Kt
is a constant,

denoted by z, and γA = 1
yz
. Substituting in (83) yields

g = µ−
1

y
− γP .

Substituting γP from (32), we obtain Point 1 in Proposition 12.
To prove Point 2 in Proposition 12, we start by recalling that (72) states

dω = log(yz)dt+ σydBt

and that (75) implies

log(yz) =
µ− γP − 1

y

ρ
−

ρσ2y2

2
.

Noting that the first term on the right-hand side is g
ρ
, we obtain Point 2 in Proposition 12.

Point 3 in Proposition 12 is just a restatement of (32), while Points 4 and 5 are estab-
lished at the beginning of the analysis of the restricted problem.

QED

Proof of Proposition 14: Replacing y by x
ρ
in the left-hand side, (61) becomes

g

ρ
−

σ2x2

2ρ
=

1

ρ
[xµ− (ρ+ τ + π(1− x))]−

σ2x2

2ρ
.

The second terms on both sides are the same and cancel out, so we are left with

g = xµ− (ρ+ τ + π(1− x)). (84)

Replacing y by x
ρ
in (57), the growth rate prevailing in the second best writes as

g = µ− ρ−
σ2x

1 + σ2

ρ
x2

. (85)
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Substituting π = xσ2 − µ (from the definition of x), the right-hand side of (84) is

µ− ρ− τ − xσ2(1− x).

So, (84) writes

µ− ρ−
σ2x

1 + σ2

ρ
x2

= µ− ρ− τ − σ2x(1− x),

which is equivalent to

τ = σ2x2

(

1− σ2

ρ
x(1− x)

1 + σ2

ρ
x2

)

,

which yields (62).
Implementation also requires that the equilibrium sale of goods by agents, which is equal

to the principal’s consumption in equilibrium, be equal to the principal’s consumption in
the second best

E[dst] = γPKtdt, (86)

where γP is given by (35) which substituting y = x/ρ is

γP = ρ−
1

x/ρ+ σ2x3/ρ2
. (87)

By (49), (86) is equivalent to

(µ−
ρ

x
+ π)(1− x) + τ = γP ,

that is
τ = γP − (1− x)(σ2x−

ρ

x
). (88)

Substituting in (88) the value of γP from Proposition 12, this yields

τ = ρ−
1

x/ρ+ σ2x3/ρ2
− (1− x)(σ2x−

ρ

x
),

which simplifies to

τ = σ2x2
1− σ2

ρ
x(1− x)

1 + σ2x/ρ
.

which, because x = ρy, is equivalent to (62).
QED

Appendix B: Differential calculus in the Wasserstein space

Consider a real-valued function F defined on P2(R) the set of probability measures on R

with finite second moment. To apply a verification argument for the principal problem, we
are interested in Itô’s formula for F to describe the dynamic t → F (Pwt). Itô’s formula for
F naturally requires differential calculus on the space of measures. We start by introducing
the first variation of F , which is a standard notion of Gateaux differentiability for functions
of measures relying on the convexity of P2(R).
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Definition 1 A function F admits a linear derivative at µ ∈ P2(R) if there exists a real-
valued and continuous function δF [µ] : R → R such that for all ν in P2(R), we have

lim
ε→0

1

ε
(F ((1− ε)µ+ εν)− F (µ)) =

∫

R

δF [µ](x) d(ν − µ)(x).

We will always assume that the linear derivative δF [µ] is twice continuously differen-
tiable on R and we will denote ∂xδF [µ] and ∂xxδF [µ] its first and second derivatives. We
will summarize these assumptions by saying that F is C2(P2). For a function F that is
C2(P2), Itô’s formula associated to the dynamic t → F (Pwt) takes the following form, see
[9], Chapter 5, Th. 5.99,

F (Pwt) = F (Pw0
) +

∫ t

0
E
[

∂xδF [Pws ](ws)(ρws − log cA(Ks,Pws , ws))
]

ds

+
1

2

∫ t

0
E
[

∂xxδF [Pws ](ws)σ
2y2(Ks,Pws , ws)

]

ds (89)

Example 16 Let φ a twice continuously differentiable function on R and v a continuously
differentiable function on R. We consider the function F defined on P2(R) by

F (µ) = v

(
∫

R

φ(x)µ(dx)

)

.

Then, F is C2(P2) with

δF [µ] = v′
(
∫

R

φ(x)µ(dx)

)

φ, ∂xδF [µ] = v′
(
∫

R

φ(x)µ(dx)

)

φ′ and ∂xxδF [µ] = v′
(
∫

R

φ(x)µ(dx)

)

φ′′.
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1 Introduction

On the vast majority of markets, nonexclusivity is the rule: agents can privately trade with

different parties, without having to inform each of them of these multiple relationships.

Fortunately, detailed knowledge of individual trades is generally useless for the involved

parties. Nor is it usually needed, moreover, to predict market outcomes: instead, by solely

relying on the aggregate equality of supply and demand, general-equilibrium theory elegantly

sidesteps the lack of such information to focus on the determination of equilibrium prices.

These prices in turn convey all the information agents need to know in order to formulate

their supplies and demands.

However, there are important cases in which information about the characteristics of the

goods for trade is not symmetrically distributed, though it directly matters to the parties

involved. The chief example is that of goods whose quality is privately known to a party but

unknown to his trading partners, including, for instance, the sale of shares in a firm with

different returns, the supply of labor services by workers with different productivities, or the

design of insurance contracts for consumers with different riskiness.

These common-value situations raise important difficulties for the performance of markets.

They also question the relevance of general-equilibrium theory, because, for instance, a buyer

may now try to infer the missing information from the seller’s behavior and not only from

prices. This gives rise to new phenomena such as adverse selection, reflecting that agents

who are more eager to trade are often endowed with goods of lower quality; moreover, these

inferences are made even more difficult when trade is nonexclusive. Game-theoretical tools

then become useful to precisely describe who trades with whom and how the distribution of

information impacts behaviors and outcomes.

This article surveys recent developments in the theory of competitive markets under

adverse selection and nonexclusivity. We are particularly interested in how price competition

and the threat of entry lead to sharp predictions for equilibrium outcomes, in spite of the

complexities associated with nonexclusive trading. We will show how different approaches

often lead to the same prediction, though we also emphasize difficulties for the existence of an

equilibrium, depending on the game studied and the solution concept adopted. These results

may be of interest for many financial and insurance markets, including over-the-counter,

life-insurance, and annuity markets; for labor markets such as the markets for professionals

or freelance workers; and, more generally, for many markets in goods or services whose

quality is the private information of agents on one side of the market.

Because this combination of adverse selection and nonexclusivity is the hallmark of the
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literature reviewed in this survey, it may be helpful to briefly recall how these two topics

have been addressed in now classical works.

On the one hand, adverse selection has so far been typically studied under exclusive

competition. This is by design in Akerlof’s (1970) example of a market for an indivisible good.

Subsequent works focusing on markets for perfectly divisible goods assume that exclusive

contracts are enforceable. In Rothschild and Stiglitz (1976), this allows an insurance company

to screen its customers by making low-risk consumers self-select into contracts with higher

deductibles. In Leland and Pyle (1977), this allows an entrepreneur to signal the profitability

of her project by retaining a greater or lesser equity share. In both cases, the observability

of agents’ aggregate trades is required to support equilibrium outcomes. Extensions by

Prescott and Townsend (1984), Kehoe, Levine, and Prescott (2002), Bisin and Gottardi

(2006), and Rustichini and Siconolfi (2008) of the standard existence and welfare theorems

of general-equilibrium theory to private-information economies similarly restrict feasible

allocations to those satisfying incentive-compatibility of individual trades on each market,

which again requires strong observability assumptions.

On the other hand, nonexclusive competition has so far been mostly studied in private-

values environments. As noticed above, in such cases, the functioning of Walrasian markets

is unaffected by private information. The side-trading literature, from the early works of

Hammond (1979, 1987), Allen (1985), and Jacklin (1987) to the more recent contributions

of Cole and Kocherlakota (2001), Golosov and Tsyvinski (2007), and Farhi, Golosov, and

Tsyvinski (2009), has accordingly investigated the limits that side trading on Walrasian

markets, outside of the central planner’s control, imposes on the set of allocations that can

be achieved in standard Mirrlees (1971) or Diamond and Dybvig (1983) economies, which

feature private information but not adverse selection.

By contrast, in common-values environments, assuming a priori that a Walrasian market

exists and perfectly balances supply and demand is too much to ask for; in fact, we shall see in

Section 2.2 that sellers on such a market, anticipating adverse selection, would like to reduce

their competitive supply and thus choose to ration demand. In addition, nonexclusivity

means that trades cannot be monitored, so that even a centralized market authority would

not be able to ensure that all agents trade at the same price. Instead, the recent literature

on nonexclusive markets under adverse selection assumes that contracting is bilateral, and

allows for general contracts.

We now present the main findings of this literature. In line with Riley (2001), we adopt

in this survey a strategic approach to the determination of market outcomes; in contrast with
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him, however, we exclusively focus on screening models.1 A market is, therefore, described

by a set of uninformed sellers competing through menus of contracts, or nonlinear tariffs,

to serve the demand emanating from privately informed buyers. Nonexclusivity is captured

by the assumption that, while each seller can monitor the trades each buyer conducts with

him—which is what makes nonlinear pricing possible—he can monitor none of the trades

this buyer makes with his competitors.

A useful entry point into the literature is to first abstract from the determination of

individual tariffs and, in a reduced-form way, to directly impose properties on the market

tariff that is obtained from them by aggregation. In line with Rothschild and Stiglitz (1976),

who characterize the set of exclusive contracts preventing an entrant from making a profit,

a desirable property of the market tariff is that it be entry-proof. Under nonexclusivity, this

property means that no entrant can make a profit by offering a menu of contracts, given

that each buyer is free to combine a contract offered by the entrant with a trade along

the market tariff. Restricting attention to entry-proof market tariffs allows us to identify

robust predictions for nonexclusive markets under adverse selection, which do not depend

on the details of a specific extensive-form game. Section 3 of this article is devoted to the

characterization of such tariffs.

The following insights emerge from the analysis (AMS (2020, 2021)).2 First, neither the

Rothschild and Stiglitz (1976) allocation, nor any of the second-best allocations characterized

by Prescott and Townsend (1984) and Crocker and Snow (1985) can be implemented by an

entry-proof market tariff. Second, entry-proofness, along with budget-feasibility, singles out

a unique market tariff, which generally turns out to be nonlinear. The defining features of

this tariff are that each marginal quantity is priced at the expected cost of serving the buyer

types who optimally choose to trade it, and that gains from trade are exhausted subject

to this constraint. For instance, in the two-type case, the low-cost type purchases her

demand at a price equal to the expected cost, while the high-cost type in addition trades the

quantity she prefers at a price that equals her own cost. The corresponding allocation, first

described by Jaynes (1978), Hellwig (1988), and Glosten (1994)—and henceforth referred to

as the JHG allocation—can thus be interpreted as a marginal version of the Akerlof (1970)

competitive-equilibrium allocation, and stands out as a focal prediction for nonexclusive

competitive markets under adverse selection. The entry-proofness criterion can also be

seen as an external constraint imposed on the decisions of a central planner. AMS (2020)

1Extending the theory of signaling or, more generally, the informed-principal paradigm of Myerson (1983)
to nonexclusive markets is a fascinating task for future research.

2To avoid repetitions, AMS hereafter stands for Attar, Mariotti, and F. Salanié.
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emphasize that this constraint is so strong so as to limit the planner’s feasible policies to a

unique policy, which is not second-best. The social costs of side trading thus appear to be

particularly severe under common values.

In line with the program outlined by Wilson (1989), a natural question is whether

the JHG allocation can be implemented as an—ideally, unique—equilibrium outcome of a

decentralized trading protocol. The contributions reviewed in Section 4 focus on competitive-

screening games in which offers are simultaneously made by the uninformed sellers; they thus

bring to bear insights and methods from the common-agency literature, in which several

uninformed principals compete by posting menus of contracts to deal with a privately

informed agent. While, as surveyed by Martimort (2006), common-agency games have

mainly been used to tackle issues in industrial organization, public economics, and in the

theory of organizations—from vertical contracting and the internal structure of the firm

to lobbying and the relationships between governments and regulatory agencies—they have

also provided, following the seminal contribution of Biais, Martimort, and Rochet (2000), a

powerful tool for modeling competition under common values.

The results of this approach, however, are mixed. The only case in which the JHG

allocation can be robustly implemented through a competitive-screening game is when the

buyer’s preferences are linear, subject to a capacity constraint. The JHG allocation then

coincides with the Akerlof (1970) competitive-equilibrium allocation that maximizes the

gains from trade, and it is the unique candidate-equilibrium allocation; moreover, there

always exists an equilibrium in which sellers posts linear tariffs (AMS (2011)). These

positive results thus extend the conclusions of Akerlof (1970) to the case of a divisible good.

However, when the buyer has strictly convex preferences, the results crucially depend on fine

modeling details such as the cardinality of the set of types. When the distribution of types

is continuous, Biais, Martimort, and Rochet (2000) construct an equilibrium in which sellers

posts strictly convex tariffs, and such that the resulting aggregate equilibrium allocation

converges to the JHG allocation as the number of sellers grows large; however, as we show

in Section 4.4, their existence result requires that some types be excluded from trade. When

the distribution of types is discrete, exclusion is even more extreme, as an equilibrium exists

only in the degenerate case where all types except possibly the highest-cost one do not trade

in the JHG allocation (AMS (2014, 2019a)).

Section 5 provides more positive results, by exploring alternative extensive forms whereby

uninformed sellers sequentially receive information about previously signed contracts or

previously made offers. The bottom line is that transparency makes it easier for sellers
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to directly punish deviators, in contrast with competitive-screening games in which the

burden of punishments entirely falls on the buyer. In this spirit, Beaudry and Poitevin

(1995) and AMS (2021) implement the JHG allocation in a repeated game of signalling and

in an ascending discriminatory auction with frequent offers, respectively. We also survey

contributions by Jaynes (1978, 2011), Hellwig (1988), and Stiglitz, Yun, and Kosenko (2020)

that allow for endogenous information disclosure.

Section 6 concludes on the empirical perspectives, in particular about tests for the

presence of private information.

2 The Economy

We study a simple economy in which a single buyer (she) trades a divisible good with

multiple, identical sellers (he). The buyer is endowed with private information about, for

instance, the quality of the traded good. As usual, the buyer/sellers convention can be

inverted thanks to a change of variables, so as to encompass a broad variety of situations:

• Insurance companies sell coverage to a consumer: Rothschild and Stiglitz (1976),

Prescott and Townsend (1984), Crocker and Snow (1985), Hendren (2013).

• Market makers provide liquidity to an insider: Glosten (1989, 1994), Biais, Martimort,

and Rochet (2000), Back and Baruch (2013).

• Investors purchase securities issued by a firm: Leland and Pyle (1977), Myers and

Majluf (1984), DeMarzo and Duffie (1999), Biais and Mariotti (2005).

• Firms hire the services of a worker: Spence (1973), Miyazaki (1977).

In these situations, the private information of the buyer is directly relevant to the sellers,

because it determines their production costs or their opportunity costs of selling. It is this

common-value component that may generate adverse selection, as we now discuss in more

formal terms.

2.1 The Model

Unless stated otherwise, the following assumptions are maintained throughout this article.

The Buyer The buyer’s private information is represented by a type i = 1, . . . , I that

takes a finite number of values with strictly positive probabilities mi. Type i’s preferences

are represented by a utility function ui(Q, T ) that is continuous and weakly quasiconcave in
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(Q, T ) and strictly decreasing in T , with the interpretation thatQ is the nonnegative quantity

of the good she purchases and T is the payment she makes in return. To define marginal

rates of substitution without assuming differentiability, we let τi(Q, T ) be the supremum of

the set of prices p such that

ui(Q, T ) < max{ui(Q+ q, T + pq) : q ≥ 0}.

Thus τi(Q, T ) is the slope of type i’s indifference curve at the right of (Q, T ). Quasiconcavity

ensures that τi(Q, T ) is finite, except possibly at Q = 0, and that it is nonincreasing along

an indifference curve of type i. For all i and p > 0, we also define the demand Di(p) of type

i as the set of quantities Q that maximize ui(Q, pQ). These demands are well-defined under

the following Inada condition:

For all i, (Q, T ), and p > 0, argmax{ui(Q+ q, T + pq) : q ≥ 0} < ∞, (1)

or if the domain of admissible quantities is compact. Types are ordered according to the weak

single-crossing condition (Milgrom and Shannon (1994)), which states that higher types are

at least as willing to increase their purchases as lower types are:

For all i < j, Q < Q′, T , and T ′, ui(Q, T ) ≤(<) ui(Q
′, T ′) implies uj(Q, T ) ≤(<) uj(Q

′, T ′).

Weak single-crossing implies that τi(Q, T ) and Di(p) are weakly increasing in i. For future

reference, we also state the slightly stronger, strict single-crossing condition:

For all i < j, Q < Q′, T , and T ′, ui(Q, T ) ≤ ui(Q
′, T ′) implies uj(Q, T ) < uj(Q

′, T ′).

We shall occasionally make additional assumptions. Theorems 1 and 3, for instance, require

that higher endowments of the good reduce the buyer’s marginal rate of substitution:

Assumption 1 For all i and T, τi(Q, T ) is nonincreasing in Q.

Our assumptions on the buyer’s preferences hold, for instance, in a Rothschild and Stiglitz

(1976) insurance economy in which the loss L is the same for all types: then i indexes the

buyer’s riskiness, Q is the amount of coverage she purchases, and T is the premium she pays

in return. AMS (2021, Online Appendix C) show that these assumptions also hold in more

general insurance economies, allowing for multiple loss levels or various forms of nonexpected

utility. But our framework is relevant beyond insurance; in particular, first-best quantities

may differ across types.
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The Sellers On the supply side, sellers are identical, risk-neutral, and use the same linear

technology. We denote by ci > 0 the unit cost of serving type i, and by ci the corresponding

upper-tail conditional expectation of unit costs,

ci ≡ E[cj |j ≥ i] =

∑

j≥i mjcj
∑

j≥i mj

.

Adverse selection occurs if the unit cost ci is nondecreasing in i. This case is the least

conducive to trade, as types who are more willing to trade are also more costly to serve. In

this article, we only rely on a slightly weaker assumption, namely, that ci be nondecreasing

in i. This weak adverse-selection condition is exactly equivalent to

For all j ≤ i, cj ≤ ci. (2)

Contracts A contract (q, t) between a seller and the buyer specifies a nonnegative quantity

to be delivered by the seller and a transfer to be made in return by the buyer. Under

nonexclusivity, two contracts (q, t) and (q′, t′) offered by different sellers can be added to

form a trade (q + q′, t+ t′). In this article, we consider two different settings in turn.

• We first study when a nonexclusive market is entry-proof. We then only rely on the

existence of a market tariff T , where T (Q) is defined as the minimum transfer that

allows the buyer to obtain a quantity Q. If an entrant proposes additional contracts,

then the buyer can pick one of them, say (q, t), together with a trade (Q, T (Q)) along

the market tariff, ending up with utility ui(Q+ q, T (Q) + t).

• We next study competition in menus of nonexclusive contracts among K ≥ 2 sellers.

We then have to precisely specify the menus that are offered by the sellers k = 1, . . . , K.

We impose that each seller must always propose at least the null contract (0, 0), so

that the buyer may be seen as trading one contract (qk, tk) with each seller k, ending

up with aggregate trade (Q, T ) ≡ (
∑

k q
k,
∑

k t
k) and utility ui(Q, T ).

Let us emphasize that we focus on situations in which trade is not anonymous. Our view

of nonexclusivity is thus that a seller can monitor the trades the buyer makes with him,

though he cannot monitor the trades the buyer makes with the other sellers. This is a

natural assumption to make in insurance markets, because an insurance contract must name

a beneficiary. Preventing the buyer from making concealed repeat purchases from the same

seller enables each seller to price the quantities he sells in a nonlinear way, charging different

prices for different marginal units.
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Our analysis and results extend to the case of multiple buyers, provided contracting is

bilateral and the buyers’ types are independent and identically distributed. Contracting is

bilateral if trade between a seller and a buyer is only contingent on the information reported

by the buyer to the seller, and not on the information this seller may obtain from other

buyers.3 Together with the linearity of costs, the independence of types across buyers then

implies that the interactions between a seller and each of his potential customers can be

studied separately. Finally, if the buyers’ types are identically distributed, we can assume,

using a symmetry argument, that each seller offers the same contracts to each buyer and

that each type of each buyer facing the same choices behaves in the same way. In this way,

the analysis of the multiple-buyer case can be reduced to that of the single-buyer case.

2.2 Benchmarks

The general question addressed in this article is how to define a notion of competitive

allocation for the above-described economy. This section discusses a few benchmarks, with

the purpose of introducing the main effects and difficulties.

The complete-information benchmark assumes that the buyer’s type is made public before

sellers make their supply decisions, so that information is symmetric about this collective

risk (Malinvaud (1972)). The interpretation is that the good for trade comes in I observable

varieties, each representing a different quality. When this quality i is revealed, the sellers

learn their cost ci; competition then implies that type i purchases her demand Di(ci) at price

ci and that sellers make zero profits. Therefore, equilibria exist and are efficient.

When information becomes asymmetric, the now privately informed buyer optimally

channels her demand to the market with the lowest price p ≡ mini ci. But then aggregate

profits E[(p− ci)Di(p)] are typically negative, except when unit costs are independent of the

buyer’s type, that is, ci ≡ c for all i. In this private-value case, sellers know their costs, while

the tastes of the buyer are her private information. Nevertheless, a competitive market still

plays its allocative role: in equilibrium, every type i purchases her demand Di(c) at price c,

and sellers make zero profits. Once more, equilibria exist and are efficient.

We allow for private values as a limiting case, but our main focus is on the common-value

case where the sellers’ unit costs depend on the buyer’s type. Proceeding as in Akerlof (1970),

Pauly (1974) studies the case where linear pricing is imposed, independently of the quantity

traded; that is, sellers stand ready to supply any quantity at the going price. Then an

3Under multilateral contracting, we enter the realm of multi-principal multi-agents models, in which
unrestricted communication can be exploited to support many equilibrium allocations; see, for instance,
Yamashita (2010).
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equilibrium exists as soon as demand functions are continuous. Because equilibrium profits

must be zero under constant returns to scale, the equilibrium price satisfies the equality

p = E

[

ci
Di(p)

E[Dj(p)]

]

. (3)

This formula is widely used in the annuity literature (Sheshinski (2008), Hosseini (2015),

Rothschild (2015)). When the good is indivisible, each demand term in (3) is either zero or

one, and we are back to the classical Akerlof (1970) formula that states that the price is equal

to the expected unit cost of active types. With a divisible good, the formula in addition

weighs the unit cost of serving each type by her demand. Because higher types have higher

demands, it generally follows that the equilibrium price must lie above the expected unit

cost of active types. Accordingly, the active types with the lowest costs subsidize the higher

types, who are more costly to serve.

However, there exists a simple way to reduce the risk of having to sell too much to a high

type at the going price: to this end, a seller need only post a limit order (p, q) specifying

the maximum quantity q he is ready to sell at price p. Such limit orders are commonly used

on financial markets, and this may indeed be because they allow sellers to hedge against the

risk of a high demand.4 A well-chosen limit order, with a price just below p, is profitable

because it reduces the loss-making sales to high types while preserving the profits from

selling to low-cost types.5 This, incidentally, shows that the Pauly (1974) outcome is not

a competitive equilibrium: anticipating adverse selection, sellers would like to reduce their

competitive supply, thereby collectively rationing demand.

We conclude that the linear-pricing construction is rather fragile under adverse selection.

A natural step forward is to consider a competitive game in which sellers are allowed to post

limit orders.6 Notice that a collection of limit orders gives rise to a convex market tariff

and, conversely, that any convex market tariff can be decomposed into a (possibly infinite)

collection of (possibly infinitesimal) limit orders. In what follows, we sometimes impose that

tariffs be convex, but we also explore cases where tariffs can be arbitrary.

4We follow the literature in using the term “limit order,” although the maximum quantity q is here
understood to apply to a single buyer, whereas a limit order on a financial market specifies the maximum
aggregate quantity one is ready to sell to a set of traders.

5AMS (2019a, Lemma 4) formalize this intuition and show that, under adverse selection, such a limit
order allows a seller to approximate the maximum profit he can earn when competing with a linear tariff.

6The game in which sellers compete by posting a single limit order implements the efficient competitive
equilibria when information is symmetric and cost functions are weakly convex. In the present model with
asymmetric information and linear cost functions, AMS (2018, pp. 1013–1014) show that this game has a
pure-strategy equilibrium only in limiting cases where costs or demands do not depend on the buyer’s type.
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3 Entry-Proofness

The idea of using entry-proofness as a solution concept first originates in an attempt at

simplicity, because this avoids the need to precisely describe the supply side of the economy

or to fully specify the details of an extensive form. Moreover, entry-proof allocations, when

they exist, are widely considered as capturing the idea of perfect competition.7 We begin

by studying when inactive markets are entry-proof. We then turn to active markets, for

which the distinction between exclusive and nonexclusive competition becomes relevant,

and we formulate a definition of entry-proofness consistent with nonexclusivity. We show

in particular that entry-proofness selects a unique budget-balanced allocation, which exists

under very general conditions. This requirement is thus more fruitful under nonexclusivity

than under exclusivity.

3.1 Entry-Proofness in Inactive Markets

In this section, we describe the circumstances under which private information impedes trade

altogether. We say that a market is inactive if the market tariff reduces to a single point,

given by T (0) = 0, or, equivalently, if only the null contract (0, 0) is available. Our goal is

to find conditions ensuring that no entrant can make an offer leading to profitable trades.

Accordingly, we say that an inactive market is entry-proof if, for any menu of contracts

offered by an entrant, the buyer has a best response such that the entrant earns at most zero

expected profit.

To characterize the inactive markets that are entry-proof, we first study the simplest case

where the entrant offers a single contract. The key argument here is that, if this contract

strictly attracts a type i, then it must also attract all types j > i: this is a simple consequence

of weak single-crossing. Hence, from the entrant’s viewpoint, the relevant unit cost is not the

individual cost ci of serving type i, but, rather, the expected cost ci of serving types j ≥ i.

Notice that some other types j < i may also be attracted by the entrant’s offer, but the weak

adverse-selection condition (2) ensures that this can only reduce the entrant’s expected unit

cost. This shows that the following condition is necessary for entry to be unprofitable.

Condition EP For each i, τi(0, 0) ≤ ci.

Notice that Condition EP does not rule out gains from trade, in the usual first-best sense

of the term; that is, it may well be that τi(0, 0) > ci for some i. AMS (2021, Theorem

7As argued by Rothschild and Stiglitz (1976, p. 642): “The basic idea underlying competitive markets
involves free entry and noncollusive behavior among the participants in the market.”
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1) show that this necessary condition for entry-proofness is sufficient even when menus of

contracts are allowed:

Theorem 1 Under Assumption 1, an inactive market is entry-proof if and only if Condition

EP is satisfied.

The intuition is as follows. If the entrant offers an arbitrary menu of contracts, then,

by weak single-crossing, the buyer has a best response with nondecreasing quantities, which

we denote by (qi, ti)
I
i=1. Suppose that qi > qi−1 for some type i, and let us first locate the

contract (qi−1, ti−1). We can safely assume that ti−1 is positive, as the entrant’s profit can

only be reduced by giving away costly production. We also know that type i − 1 weakly

prefers this contract to the null contract; by weak single-crossing again, so does type i.

Therefore, the point (qi−1, ti−1) must lie in the north-east quadrant in Figure 1, at the right

of the indifference curve of type i that goes through the origin.

Now, to be willing to trade the contract (qi, ti), it must be that type i, having already

traded the contract (qi−1, ti−1), is willing to trade the additional layer (qi−qi−1, ti−ti−1). To

evaluate her marginal rate of substitution at (qi−1, ti−1), we can use, in turn, the concavity

of the indifference curve of type i, then Assumption 1, and finally Condition EP to obtain

the following inequalities:

τi(qi−1, ti−1) ≤ τi(qi, 0) ≤ τi(0, 0) ≤ ci. (4)

This implies that type i is not ready to pay more than ci(qi−qi−1) for the additional quantity

qi − qi−1. Therefore,

ti − ti−1 ≤ ci(qi − qi−1).

Summing these inequalities over i with appropriate weights yields

∑

i

(

∑

j≥i

mj

)

[ti − ti−1 − ci(qi − qi−1)] ≤ 0.

Finally, rearranging terms in the spirit of Wilson (1993), we obtain

∑

i

mi(ti − ciqi) ≤ 0,

which shows that entry cannot be profitable.

A noticeable feature of this proof is that it does not consider each contract (qi, ti) in

isolation. Instead, the key role is played by layers of the form (qi − qi−1, ti − ti−1). Under
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Figure 1: A graphical illustration of (4).

weak single-crossing, optimal quantities can be assumed to be nondecreasing in the buyer’s

type, so that the ith layer can be thought of as traded by all types j ≥ i, and thus has

expected unit cost ci. Condition EP implies that, at this price, type i is not strictly willing

to trade, so that each layer must yield a nonpositive expected profit. By contrast, some

of the contracts proposed in a menu may yield positive profits. For instance, although the

condition t1 ≤ c1q1 ensures that the expected profit on the first layer (q1, t1) is nonpositive,

it may well be that t1 > c1q1.

AMS (2021) show that the assumptions of Theorem 1 can be weakened in several ways;

however, the weak single-crossing condition and the seemingly innocuous Assumption 1 are

tight. They also provide a result characterizing market breakdown, defined as a situation in

which any menu of contracts that strictly attracts at least some type yields a strictly negative

expected profit, even if the buyer’s best response is most favorable to the entrant. Condition

EP clearly remains necessary for this stronger concept, and it also remains sufficient under

slightly stronger conditions on preferences. Earlier results were obtained by Mailath and

Nöldeke (2008) for an economy in which the buyer has quadratic quasilinear preferences,

and by Hendren (2013) for a Rothschild and Stiglitz (1976) insurance economy.

3.2 Entry-Proofness in Active Markets: The Two-Type Case

We now turn to active markets, on which nonnull contracts are available. In line with

Rothschild and Stiglitz (1976), our goal is to characterize when entry on such a market is
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unprofitable, given the contracts available; in contrast with them, we suppose that the buyer

can trade with several sellers. To this end, the proper object of study is the market tariff,

which describes the frontier of the set of aggregate trades that can be achieved by trading

on the market.

A market tariff specifies the minimum aggregate transfer T (Q) required to purchase an

aggregate quantity Q, with T (Q) ≡ ∞ if this is impossible; notice that we obviously have

T (0) = 0. By assuming that T is lower semicontinuous, with a compact domain, we ensure

that, for every type i, the problem of maximizing ui(Q, T (Q)) admits a solution Qi. We then

say that the allocation (Qi, T (Qi))
I
i=1 is implemented by the tariff T . We assume that types

are ordered according to the strict single-crossing condition, so that the optimal quantities

Qi are nondecreasing in i. Moreover, this allocation is budget-feasible if

∑

i

mi[T (Qi)− ciQi] ≥ 0. (5)

Now, suppose an entrant can propose additional trades to the buyer, in the form of a menu

of contracts that complement the market tariff. We say that the tariff T is entry-proof if,

for any menu of contracts offered by an entrant, the buyer has a best response such that the

entrant earns at most zero expected profit, given that the buyer is free to combine any contract

offered by the entrant with a trade along the tariff T . The last clause of this definition is

crucial, and captures the nonexclusivity of trade.

Our goal is to characterize the set of budget-feasible allocations that are implemented

by entry-proof market tariffs. In this section, we focus on the two-type case I = 2, which

is simple enough to allow for a precise discussion of the proof to the main result; the weak

adverse-selection condition (2) then amounts to c1 ≤ c2.

Thus consider an allocation (Qi, Ti)
2
i=1 that is implemented by some market tariff T .

Because this allocation is incentive-compatible, it satisfies Q2 ≥ Q1 by strict single-crossing.

Moreover, if T is entry-proof, then we must have

u1(Q1, T1) ≥ max{u1(q, c1q) : q ≥ 0}. (6)

Otherwise, an entrant can offer a contract with unit price slightly above c1 that profitably

attracts type 1, and remains profitable even if type 2 is attracted—recall that, by definition,

c1 = m1c1 +m2c2. Similarly, we must have

u2(Q2, T2) ≥ max{u2(Q1 + q, T1 + c2q) : q ≥ 0}. (7)

Otherwise, an entrant can offer a contract with unit price slightly above c2 that profitably

attracts type 2 along with the contract (Q1, T1), and is even more profitable if type 1 is
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also attracted; notice that this second type of entry is specific to the nonexclusive case.8 It

follows from (6) that

T1 ≤ c1Q1. (8)

Similarly, it follows from (7) that

T2 ≤ T1 + c2(Q2 −Q1). (9)

However, rearranging terms in the spirit of Wilson (1993), the budget-feasibility constraint

(5) can be rewritten as

T1 − c1Q1 +m2[T2 − T1 − c2(Q2 −Q1)] ≥ 0. (10)

Thus, in light of (10), the equalities (8)–(9) are in fact equalities. That is, profits are zero

on the first layer (Q1, T1), which is traded by both types; similarly, profits are zero on the

second layer (Q2 −Q1, T2 − T1), which is traded by type 2 only. This, in turn, implies that

the inequalities (6)–(7) are also equalities. Overall, the four resulting equalities pin down

the set of candidates for a budget-feasible allocation that is implemented by an entry-proof

tariff. AMS (2020, Theorem 2) show that these necessary conditions for entry-proofness are

sufficient even when menus of contracts are allowed:

Theorem 2 Any budget-feasible allocation (Q∗
i , T

∗
i )

2
i=1 that is implemented by an entry-proof

market tariff satisfies

Q∗
1 ∈ argmax{u1(Q, c1Q) : Q ≥ 0}, (11)

T ∗
1 = c1Q

∗
1, (12)

Q∗
2 −Q∗

1 ∈ argmax{u2(Q
∗
1 + q, T ∗

1 + c2q) : q ≥ 0}, (13)

T ∗
2 − T ∗

1 = c2(Q
∗
2 −Q∗

1). (14)

Conversely, any allocation that satisfies (11)–(14) can be implemented by the piecewise-linear

convex market tariff

T ∗(Q) ≡ 1{Q≤Q∗

1
}c1Q+ 1{Q∗

1
<Q≤Q∗

2
}[c1Q

∗
1 + c2(Q−Q∗

1)], (15)

and this tariff is entry-proof.

8In a Rothschild and Stiglitz (1976) insurance economy, Stiglitz, Yun, and Kosenko (2020, Definition 1)
base their analysis on the assumption that additional coverage is available without limits at price c2, which
implies an inequality similar to (7). They do not, however, state the first inequality (6).
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Figure 2: Blocking cream-skimming deviations.

When u1 and u2 are strictly quasiconcave—and also, generically, when they are only

weakly quasiconcave—conditions (11)–(14) characterize a unique allocation. Notice that,

because the low-cost type 1 obtains her demand at a price equal to the average cost c1, she

subsidizes the high-cost type 2, though to a lesser degree than in the linear-pricing candidate

with price (3) discussed in Section 2.2.

Concerning the second part of Theorem 2, it should be noted that the natural two-point

tariff obtained by restricting the market tariff (15) to the quantities Q∗
1 and Q∗

2 does not

generally resist entry, as an entrant may cream-skim type 1 and make a profit. To deter

entry, we have to ensure that any such offer would also attract type 2. This is exactly what

the convex tariff (15) achieves, by enabling type 2 to purchase any fraction of the first layer

at price c1 and any additional quantity at price c2. This ensures that any entrant’s contract

that would attract type 1, such as D in Figure 2, would also attract type 2, because type

2 can complement this contract by latent contracts made available by the market tariff and

thereby reach aggregate trades that she strictly prefers to (Q∗
2, T

∗
2 ). The need for latent

contracts to block attempts at cream-skimming contrasts with the exclusive-competition

case, where the revelation principle ensures that there is no need to distinguish a market

tariff from the allocation it implements.

In summary, in the two-type case, entry-proofness singles out a generically unique budget-

balanced allocation; moreover, the existence problem emphasized by Rothschild and Stiglitz

(1976) under exclusive competition no longer arises, whatever the distribution of types.
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The generality of this conclusion is striking: single-crossing is only used to ensure that the

inequality Q2 ≥ Q1 holds, Assumption 1 is not needed, and preferences and candidate tariffs

can be arbitrary as long as the maximization problems in (6)–(7) admit a solution.

3.3 Entry-Proofness in Active Markets: The Convex-Tariff Case

We now extend these results to the case of an arbitrary number of types. We will see that

this raises a subtle new difficulty; to deal with it, the key restriction we impose in this

section is that the market tariff be convex. A case in point is when each seller k posts a

convex tariff tk such that tk(0) = 0. An intuitive rationale is that this allows sellers to

hedge against the risk of attracting high-cost types buying large quantities; for instance, in

the market-microstructure literature, convex tariffs are often used to model collections of

limit orders placed by strategic market makers and executed in order of price priority by

an informed insider.9 Then the market tariff T (Q) ≡ min{
∑

k t
k(qk) :

∑

k q
k = Q}, which

incorporates the possibility of trading with several sellers on the market, is indeed a convex

function of the aggregate quantity Q.10

For a seller contemplating entering on a market where existing trading opportunities are

summarized by the market tariff T , everything is as if the market were inactive and every

type i’s preferences were represented by the indirect utility function

uT
i (q, t) ≡ max{ui(Q+ q, T (Q) + t) : Q ≥ 0}. (16)

Convexity of the market tariff ensures that, if the primitive utility functions (ui)
I
i=1 satisfy

the strict single-crossing property, then the indirect utility functions (uT
i )

I
i=1 satisfy the weak

single-crossing property. This allows AMS (2021, Theorem 2) to rely on Theorem 1, which

deals with inactive markets, to tackle the case of an active market.

Theorem 3 Under Assumption 1, an allocation (Q∗
i , T (Q

∗
i ))

I
i=1 is budget-feasible and is

implemented by an entry-proof convex market tariff T ∗ with domain [0, Q∗
I ] if and only if

they jointly satisfy the following recursive system:

(i) (Q∗
0, T

∗(Q∗
0)) ≡ (0, 0);

(ii) for each i, Q∗
i −Q∗

i−1 ∈ argmax{ui(Q
∗
i−1 + q, T ∗(Q∗

i−1) + ciq) : q ≥ 0};

(iii) for each i, if Q∗
i−1 < Q∗

i , then T ∗ is affine with slope ci over the interval [Q∗
i−1, Q

∗
i ].

9See, for instance, Biais, Martimort, and Rochet (2000, 2013), Back and Baruch (2013), AMS (2019a),
and Baruch and Glosten (2019).

10This is because T is the infimal convolution of the convex tariffs tk (Rockafellar (1970, Theorem 5.4)).
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In particular, any such allocation is budget-balanced.

This result generalizes Theorem 2 to more than two types. While item (i) is merely a

convention, (ii)–(iii) are substantial, and indicate how to recursively build a complete family

of quantities, as well as the corresponding market tariff; by construction, this tariff is convex,

because the upper-tail conditional expectation of unit costs is nondecreasing in the buyer’s

type. The proof parallels the argument provided in Section 3.2 for the two-type case: at

each step, the entrant must be deterred from supplying a well-chosen quantity at a price

slightly above ci. By single-crossing, if such an offer attracts type i, then it must also attract

all types j ≥ i, so that the offer is profitable as soon as type i is attracted. Therefore,

entry-proofness implies the following inequalities:

For each i, ui(Q
∗
i , T

∗(Q∗
i )) ≥ max{ui(Q

∗
i−1 + q, T (Q∗

i−1) + ciq) : q ≥ 0}. (17)

It follows that no layer can be profitable,

For each i, T ∗(Q∗
i )− T ∗(Q∗

i−1) ≤ ci(Q
∗
i −Q∗

i−1). (18)

Summing these inequalities as in Section 3.2, we obtain that the allocation (Q∗
i , T (Q

∗
i ))

I
i=1

is budget-balanced, so that the inequalities (18) are in fact equalities. Notice that these

equalities can be interpreted as a marginal version of Akerlof (1970) pricing: each layer is

priced at the expected cost of serving the types who trade it. As a result, the constraints

(17) must all be binding, and the result follows.

Theorem 3 generalizes a similar but weaker entry-proofness result due to Glosten (1994,

Proposition 7). His analysis of limit-order markets requires that the buyer’s preferences be

quasilinear, and that the entrant’s tariff satisfy a property he dubs single-crossing and that

captures a convexity requirement. By allowing for general preferences, Theorem 3 makes the

result relevant for insurance markets, in which wealth effects may be significant.

Existence of an entry-proof convex market tariff obtains because each maximization

problem in (ii) admits a solution under the Inada condition (1).11 Hence budget-feasibility

and entry-proofness are not conflicting requirements under nonexclusivity, in contrast with

the pervasive nonexistence problems arising under exclusivity (Rothschild and Stiglitz (1976)).

The difference is that, when competition is exclusive, the buyer’s indirect utility functions

no longer satisfy single-crossing: by offering a cream-skimming contract, the entrant can

attract a type i without attracting types j > i, which allows him to target type i without

worrying about adverse selection. The nonexistence of an entry-proof tariff is then arguably

11Or, when the buyer’s preferences are linear, because of the imposition of a capacity constraint.
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Figure 3: The JHG allocation and the JHG tariff for I = 3.

not due to private information or entry-proofness per se, but rather to this violation of

single-crossing—or, to put it more provocatively, to the fact that the exclusive model does

not capture the full extent of adverse selection.

Uniqueness of an entry-proof convex market tariff also follows if the solution to each

maximization problem in (ii) is unique. This is the case if the buyer’s preferences are strictly

convex. If they are only weakly convex, multiple solutions may appear if the marginal rate

of substitution of some type i is equal to ci over a whole interval of quantities, but this is

clearly a nongeneric phenomenon.

Theorem 3 thus characterizes an essentially unique allocation. Following AMS (2014,

2019a, 2021), we label this allocation, which was originally introduced in different contexts

by Jaynes (1978), Hellwig (1988), and Glosten (1994), the JHG allocation.12 Similarly, the

JHG tariff T ∗ consists of a sequence of layers with unit prices ci, and features an upward

kink at any quantity Q∗
i ∈ (0, Q∗

I) such that Q∗
i+1 > Q∗

i and ci+1 > ci. This sequence of

layers can be interpreted as a family of limit orders with maximum quantities Q∗
i −Q∗

i−1 and

unit prices ci. The JHG allocation and the JHG tariff are illustrated in Figure 3 in the case

of three types with strictly convex preferences.

As an application, consider linear utility functions ui(Q, T ) ≡ viQ − T , subject to a

capacity constraint Q ∈ [0, 1]. Such linear preferences generalize those in Akerlof (1970) to

the case of a divisible good; strict single-crossing requires that vi be strictly increasing in

12The contributions of Jaynes (1978) and Hellwig (1988) are discussed in Section 5.3.
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i. Each problem in (ii) admits a unique solution if vi 6= ci for all i, which we will assume

for simplicity. To determine the JHG allocation and the JHG allocation, we apply (ii) in

Theorem 3 recursively. By convention, Q∗
0 = 0; then, beginning with type 1, Q∗

i remains zero

as long as vi < ci. If this inequality holds for all types, then the market is inactive; in that

case, according to (iii), the essentially unique entry-proof convex market tariff is only defined

at zero, with T (0) = 0. Otherwise, let i∗ be the lowest type such that vi > ci. Applying (ii)

at i∗ implies that type i∗ trades up to capacity at unit price ci∗ ; moreover, types i > i∗ must

also trade Q∗
i = 1, as the capacity constraint is binding in (ii). Finally, according to (iii),

the unique entry-proof convex market tariff is linear, with T (Q) = ci∗Q for all Q ∈ [0, 1].

The upshot from this discussion is that, when the buyer’s preferences are linear, the JHG

allocation generically features a single layer, and corresponds to the competitive-equilibrium

allocation in Akerlof (1970) that maximizes the gains from trade.

The property that the indirect utility functions (uT
i )

I
i=1 be ordered according to the weak

single-crossing condition plays a key role in the above analysis. This property itself results

from the two assumptions that the primitive utility functions (ui)
I
i=1 be ordered according

to the strict single-crossing condition, and that the market tariff be convex. Because this

second assumption effectively constrains market outcomes, it is natural to ask whether it can

be dispensed with. The answer is positive in the following three settings. In the two-type

case, the proof of Theorem 2 follows from a direct argument that does not require that the

market tariff be convex. When the buyer has linear preferences, as above, AMS (2011, p.

1888) also offers a direct proof. Finally, AMS (2021, Online Appendix F) show that the JHG

allocation turns out to be the only budget-feasible allocation implemented by an entry-proof

market tariff that is first convex and then concave. The general case raises however a difficult

issue: in the absence of single-crossing, we do not know for sure whether a contract that

attracts type i also attracts all types j ≥ i, or only a subset of those with a more or less

favorable expected cost; as a result, the entry-proofness constraint (17) need not hold. While

entry-proofness per se selects a convex tariff in a large class of admissible tariffs allowing for

quantity discounts, the general problem thus remains open.

3.4 Discussion

A noticeable feature of the JHG allocation is the relationship between demand and supply

on each layer. On the first layer, the price is the expected cost of serving all types, and the

quantity supplied is exactly the demand of the first type at this price. Indeed, supplying less

would inefficiently ration demand, while supplying more would entail losses on the excess
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quantity. On the second layer, the first type is no longer active, and the same reasoning

applies: the price is the expected cost of serving all types except the first, and the quantity

supplied is exactly the residual demand of the second type at this price—and so on. Overall,

the quantity supplied on each layer matches the residual demand of the marginal type, at

a price equal to expected cost. On each layer but the last one, relatively low-cost types

thus subsidize relatively high-cost ones, in contrast with the absence of cross-subsidies that

characterizes candidate entry-proof allocations under exclusive competition.

It should also be noted that the JHG allocation typically allows for marginal rates of

substitution to differ across types. For instance, in the two-type case under adverse selection,

we have τ1(Q
∗
1, T

∗
1 ) = c1 < c2 = τ2(Q

∗
2, T

∗
2 ) when this allocation is interior and separating.

This contrasts with private-value models where side trades take place on Walrasian markets,

which calls for an equalization of marginal rates of substitution (Hammond (1979, 1987)).

Yet, this difference does not create any opportunities for side trading, because the goods

under consideration are not the same: for instance, in a Rothschild and Stiglitz (1976)

insurance economy, insurance for a low-risk consumer is not the same good as insurance for

a high-risk consumer. Indeed, supposing that consumers have access to the same constant-

return-to-scale technology as firms, the opportunity cost for type 1 of selling additional

coverage to type 2 is c2, and at this price type 2 is not willing to buy. Similarly, the

opportunity cost of selling coverage to type 1 is only c1, but at this price all types would

be attracted; hence the relevant unit cost is c1, and at this price type 1 is not willing to

buy. The JHG allocation thus exhausts the incentive-compatible gains from trade. Together

with entry-proofness, these features support the idea that the JHG allocation is a natural

candidate for a competitive allocation.

Alternatively, AMS (2020) propose to reconsider this economy from the viewpoint of

a social planner endowed with the same linear technology as the buyers and acting under

asymmetric information. As in the classical setting of Harris and Townsend (1981), the

planner is able to control all communication among the buyers, and in fact he optimally

chooses to prohibit all forms of communication apart from a report each agent privately

sends to him. Then the only constraints he faces are the incentive-compatibility constraints

For all i and j, ui(Qi, Ti) ≥ ui(Qj, Tj) (19)

and the budget constraint (5). This leads to the classical definition of second-best allocations

as Pareto-optima in the set of budget-feasible and incentive-compatible allocations. In

general, such allocations form a non-degenerate continuum, according to the weight put
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on each type; moreover, under single-crossing, either the downward or the upward local

incentive-compatibility constraints must be binding, apart from special cases.13

Let us now assume that the planner cannot monitor side trades between different buyers

nor prevent the entry of a seller with the same technology. For simplicity, consider the

two-type case, and suppose that preferences are strictly convex and satisfy strict single-

crossing. Two consequences then follow for the set of allocations that the planner can

implement. First, according to Theorem 2, this set collapses to a single allocation, namely,

the JHG allocation. It is thus impossible for the planner to redistribute between types:

both quantities and transfers are uniquely defined. Second, in general, this allocation

is not second-best efficient, in the sense given above. Indeed, the incentive-compatibility

constraints (19) are superseded by the entry-proofness constraints (17), which turn out to

be necessary and sufficient to characterize the JHG allocation. When Q∗
2 > Q∗

1, (17) implies

that the local incentive-compatibility constraints do not bind, so that the JHG allocation is

not second-best.

Overall, the uniqueness of the budget-balanced allocation robust to side trading contrasts

with the multiplicity of second-best allocations, which form a nondegenerate frontier. The

planner is thus severely constrained by his inability to monitor trades. As discussed in

AMS (2020), this result has consequences for actual policies, because the possibility of

side trading may undo their effects. For instance, the only possibility for public health

insurance is to propose a single basic coverage, sold at average cost, and chosen so as to

maximize the utility of low-risk consumers at that price. Private insurers can then compete

to provide complementary coverage at price c2. Another example is provided by bailout

policies on financial markets. Under exclusivity, they aim at attracting only the least

profitable borrowers, either through direct lending (Philippon and Skreta (2012)), or through

the repurchasing of low-quality assets (Tirole (2012)). By contrast, when the borrower can

complement a public program with private funds, the only possibility is to provide the same

loan Q∗
1 to all projects at expected cost, while the riskiest borrowers in addition turn to a

competitive market for additional funding at price c2.

4 Competitive Screening

Entry-proofness provides a parsimonious and tractable way of modeling perfect competition,

which is relatively insensitive to the details of market interactions; for that reason, the

13See, for instance, Prescott and Townsend (1984) and Crocker and Snow (1985) for characterizations of
second-best allocations in Rothschild and Stiglitz (1976) insurance economies.
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JHG allocation characterized in Section 3 is arguably a natural and robust candidate for

a competitive-equilibrium allocation of a nonexclusive market subject to adverse selection.

Yet, by design, this approach does not shed light on how this allocation may be decentralized;

a valuable complement to this approach would thus be to implement the JHG allocation as

the unique equilibrium outcome of an extensive-form game in which strategic sellers compete

to serve privately informed buyers.

To start with, and by way of comparison, we should observe that decentralization is

easy to achieve in the standard case of exclusive competition. Indeed, in this context, the

unique entry-proof allocation characterized in the insurance setting of Rothschild and Stiglitz

(1976) or in the more general setting of Riley (1979) can be easily supported—as long as it

exists—in a pure-strategy equilibrium of a competitive-screening game in which sellers first

simultaneously post menus of contracts, from which the buyer then choose a single contract

according to her type; specifically, there exists an equilibrium of this game in which two

sellers offer a menu consisting of the trades comprised in this allocation. Therefore, the

existence problem under exclusivity is not tied to decentralization per se, but to the fact

that an entry-proof allocation may robustly fail to exist.14

By contrast, under nonexclusivity, we know that an entry-proof tariff exists, but its

decentralization is much more delicate, because the buyer is now free to combine contracts

issued by different sellers. As we shall now see, this generates novel strategic effects, which

make it more difficult—indeed, in general, impossible—to implement the JHG allocation via

competitive-screening games.

4.1 The Competitive-Screening Game

To clarify this issue, let us consider a general setting in which a finite number K of sellers

simultaneously contract with a single buyer. We throughout assume that types are ordered

according to the strict single-crossing condition and, when types are continuously distributed,

that the mapping (i, q, t) 7→ ui(q, t) is continuous. As discussed in Section 2.1, trade is

nonanonymous and contracting is bilateral, in the sense that trade between a seller and a

buyer can only be made contingent on the information reported by the buyer to this seller.

In these situations, the menu theorems of Peters (2001), Martimort and Stole (2002), and

Page and Monteiro (2003) allow us to restrict, with no loss of generality, to competition

14 While the existence issue has been addressed by considering mixed strategy-equilibria (Rosenthal and
Weiss (1984), Dasgupta and Maskin (1986), Farinha Luz (2017)) or by considering alternative extensive
forms (Miyazaki (1977), Wilson (1977), Spence (1978), Riley (1979), Engers and Fernandez (1987), Netzer
and Scheuer (2014), Mimra and Wambach (2019)), the corresponding equilibrium allocations typically do
not coincide with the Rothschild and Stiglitz (1976) allocation; see Mimra and Wambach (2014) for a survey.
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in menus or nonlinear tariffs. The corresponding extensive-form game, which we denote by

GCS, unfolds in two stages:

1. Each seller k offers a compact menu of contracts Ck ⊂ R+ × R that contains at least

the null trade (0, 0).

2. After privately learning her type, the buyer selects a contract from each of the menus

Ck offered by the sellers.

A pure strategy for type i is a function that maps every menu profile (C1, . . . , CK) into

a contract profile ((q1, t1), . . . , (qK , tK)) ∈ C1 × . . . × CK . The compactness of the sellers’

menus ensures that every type i’s utility-maximization problem

max

{

ui

(

∑

k

qk,
∑

k

tk

)

: (qk, tk) ∈ Ck for each k

}

always has a solution. The solution concept for GCS is pure-strategy subgame-perfect Nash

equilibrium. For future reference, we let

T (Q) ≡ min

{

∑

k

tk : (qk, tk) ∈ Ck for each k and
∑

k

qk = Q

}

be the market tariff associated to the equilibrium menus Ck, and we let, for each i,

Ui ≡ max{ui(Q, T (Q)) : Q ≥ 0}

be the equilibrium utility of type i.

It should be noted that the set of strategies for the sellers in GCS is the same as in a

standard competitive-screening game under exclusivity. Yet the assumption that the buyer

can simultaneously trade with several sellers has two implications for the set of potentially

profitable contracts any seller may offer. On the one hand, it tends to expand this set, as

this seller may choose to complement his competitors’ offers by proposing additional trades

to the buyer. On the other hand, it also gives his competitors more instruments to block

his deviations, compared to when competition is exclusive; indeed, contracts that are not

traded on the equilibrium path may become relevant in case a seller deviates, and in fact

equilibria often require the presence of such latent contracts, as we shall now see.

4.2 Linear Preferences

Let us first assume that the buyer has linear preferences, subject to a capacity constraint.

In this scenario, which extends Akerlof (1970) to the case of a divisible good, the JHG
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allocation features a single layer, and corresponds to the competitive-equilibrium allocation

that maximizes the gains from trade. The following result, due to AMS (2011), shows that

this allocation is uniquely supported in any equilibrium of GCS:

Theorem 4 Let ui(Q, T ) ≡ viQ − T for Q ∈ [0, 1] and suppose that vi ≥ ci for all i.

Then, generically, any equilibrium of GCS implements the JHG allocation, and there exists

a linear-pricing equilibrium with price ci∗ , where i∗ is the first type i such that vi > ci.

In equilibrium, all the buyer types with valuations vi > ci∗ trade up to capacity, while all

the buyer types with valuations vi < ci∗ do not trade at all. Sellers thus earn zero expected

profits, and none of them is indispensable to serve any buyer type. Finally, all trades take

place at the same price in equilibrium, despite the fact that sellers can propose arbitrary

nonlinear tariffs. Thus Theorem 4 provides a game-theoretic foundation for Akerlof’s (1970)

predictions in a setting where the traded good is divisible and, besides nonexclusivity, few

restrictions on feasible trades or instruments are imposed. In particular, low-valuation types

such that ci < vi < ci∗ are excluded from trade in equilibrium, unlike what would happen

under exclusive competition. The existence and uniqueness of the equilibrium allocation

described in Theorem 4 paves the way for many applications—notably in finance, where the

divisibility assumption is natural.15

The driving intuition for these results is that the unobservability of the buyer’s aggregate

purchases limits the sellers’ ability to screen types and thereby the effectiveness of cream-

skimming deviations. Suppose, for instance, that the equilibrium price is high, so that

low-valuation, and hence on average low-cost types are not served. A cream-skimming

deviation targeted at these types must involve trading a relatively small quantity q at a

relatively low price. However, this contract becomes also attractive to high-valuation, and

hence on average high-cost types if, along with it, they can trade the additional quantity

1− q at the equilibrium price; this is exactly what the linear tariff allows for.

This reasoning illustrates the fact that deviations are blocked by latent contracts, that

is, contracts that are not traded on the equilibrium path, but which the buyer may want to

trade at the deviation stage.16 In general, many such contracts are needed to support the

equilibrium allocation. This is particularly striking when the distribution of types is discrete,

because then only finitely many contracts are effectively traded, while infinitely many latent

15A case in point is the security-design model of DeMarzo and Duffie (1999), to which Theorem 4 directly
applies; see Biais and Mariotti (2005) for an early result along these lines.

16The role of latent contracts has originally been stressed in moral-hazard environments; see, for instance,
Hellwig (1983), Arnott and Stiglitz (1991), Bisin and Guaitoli (2004), and Attar and Chassagnon (2009).
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contracts must be issued. In particular, no equilibrium can in this case be sustained through

direct mechanisms, which provides a concrete example of a failure of the revelation principle

in common-agency games (Peters (2001), Martimort and Stole (2002)).

4.3 Cournot-Convergence under Strictly Convex Preferences

Although Theorem 4 holds for general distributions of types,17 it does not generally extend

to the case of strictly convex preferences for the buyer. In a seminal article, Biais, Martimort,

and Rochet (2000) consider a situation in which strategic market-makers (sellers) compete

to serve a risk-averse insider (buyer) who has private but imperfect information about the

value of an asset, and thus has both informational and hedging motives for trade. Assuming

that the buyer has constant absolute risk-aversion α and faces residual Gaussian risk with

variance σ2, they show the following result:

Theorem 5 Let ui(Q, T ) ≡ viQ − ασ2

2
Q2 − T and let the buyer’s type be continuously

distributed. Then, under regularity conditions, GCS admits a symmetric equilibrium in which

sellers post the same strictly convex tariff and earn strictly positive expected profits. The

equilibrium market tariff converges to the JHG tariff as the number K of sellers grows large.

This equilibrium exhibits the Cournot-like feature that each seller is indispensable to

serve any buyer type who trades a nonzero quantity in equilibrium. Specifically, the strict

convexity and symmetry of the equilibrium tariffs implies that any such type has a unique

best response that consists in evenly splitting her total purchases between the sellers. This

contrasts with the equilibria that obtain in the linear case, in which no seller is indispensable

and thus any buyer type who trades up to capacity has multiple best responses that involve

trading with different sellers. Because sellers earn strictly positive expected profits in

equilibrium, the aggregate equilibrium allocation does not coincide with the JHG allocation;

yet, in analogy with classical Cournot-convergence theorems, it converges to the competitive

JHG allocation as the number of sellers grows large.

The assumption in Theorem 5 that the buyer’s type be continuously distributed is key

to ensure that, despite being indispensable, a single seller cannot profitably raise his tariff.

To illustrate this point, suppose that a seller deviates by replacing a portion of his strictly

convex equilibrium tariff by the corresponding chord. This would increase his expected profit

if the buyer’s behavior remained the same. But such a change raises (lowers) the marginal

price for relatively low-cost (high-cost) types who would choose trades in this portion of

17Specifically, it holds for any distribution for which vi ≥ ci at any atom.
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the tariff. As a result, under adverse selection, trades change in an unfavorable way for the

deviating market maker. This effect is reinforced by the fact that the buyer simultaneously

trades with several sellers, as any increase in the quantity she purchases from a seller is

compensated by a reduction in the quantity she purchases from his competitors.

4.4 Exclusion

We now argue that, in any game GCS, exclusion is a robust feature of any equilibrium

that shares two key properties of the Biais, Martimort, and Rochet (2000) equilibrium. To

formulate these properties, we let, for each k,

T−k(Q) ≡ min

{

∑

l 6=k

tl : (ql, tl) ∈ C l for each l 6= k and
∑

l 6=k

ql = Q

}

be the submarket tariff associated to the equilibrium menus C l, l 6= k, and we let, for all i

and k,

z−k
i (q, t) ≡ max

{

ui(q +Q−k, t+ T−k(Q−k)) : Q−k =
∑

l 6=k

ql for some (ql, tl) ∈ C l, l 6= k

}

be type i’s indirect utility from trading (q, t) with seller k. The two properties we wish to

emphasize can now be stated as follows.

P1 For each k, there exists i such that Ui = z−k
i (0, 0).

An equilibrium satisfies P1 if, for each seller, there exists at least one type for whom trading

with this seller is not indispensable for her to obtain her equilibrium utility; this reflects the

relatively weak requirement that, in equilibrium, the buyer’s individual-rationality constraint

in her dealings with each seller must bind for at least one type.

P2 For all k and Q > 0, T (Q) < T−k(Q).

An equilibrium satisfies P2 if trading with each seller is indispensable for each type who

purchases a nonzero aggregate quantity.

The symmetric equilibrium characterized by Biais, Martimort, and Rochet (2000) satisfies

both P1 and P2 because all sellers offer the same strictly convex tariff. Indeed, this implies

that each seller is indispensable to minimize the cost of purchasing any strictly positive

aggregate quantity, whence P2. This also implies that the indirect utility functions z−k
i

satisfy the strict single-crossing condition for all k, so that any seller k for whom the
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individual-rationality constraint were not binding could raise his tariff without affecting

the buyer’s incentives, whence P1.

The following theorem, a formal proof of which is provided in the appendix, abstracts

from the parametric assumptions of Biais, Martimort, and Rochet (2000) to show that

exclusion must more generally take place in any equilibrium of any game GCS that satisfies

P1–P2:

Theorem 6 Consider an equilibrium of a game GCS that satisfies P1–P2. Then there exists

some type i1 such that, in equilibrium, every type i ≤ i1 trades qki = 0 with every seller k

and obtains utility Ui = ui(0, 0).

In light of this result, it is worth noticing that Biais, Martimort, and Rochet (2000)

assume that the continuous support of the buyer’s type distribution includes an interior

type i0 such that τi0(0, 0) = ci0 and thus for which there are no gains from trade.18 This in

turns ensures that there exists an interval of types at the bottom of the type distribution

who are excluded from trade in equilibrium, as requested by Theorem 6. However, this

assumption is fairly restrictive: it does not hold, for instance, in standard Rothschild and

Stiglitz (1976) insurance economies, because a risk-averse consumer is always willing to

purchase full coverage at the fair price, equal to her riskiness. As we shall now see, the

existence of equilibria of GCS games then becomes problematic.

4.5 The Existence Conundrum

As a starting point, let us consider the two-type case with c2 > c1 and strictly convex

preferences for the buyer, and let us examine a candidate equilibrium of GCS in which both

types 1 and 2 purchase strictly positive quantities. AMS (2014) show that the aggregate

equilibrium allocation then has the same structure as the JHG allocation. First, sellers earn

zero expected profits. Second, the quantity Q1 purchased by type 1 is priced at the average

cost c1, while the additional quantity Q2−Q1 purchased by type 2 is priced at the marginal

cost c2. Third, the quantity Q1 purchased by type 1 is equal to her demand D1(c1).

This sounds promising but, because type 1 is not excluded from trade, Theorem 6 implies

that P1 or P2 has to give way. It is intuitive that the weak requirement P1 should be

maintained, and thus that P2 should be dropped. Specifically, it can be shown that P1 holds

for type 1 and that T (Q1) = T−k(Q1) = c1Q1 for all k, so that no seller is indispensable to

18Specifically, the insider can trade on both sides of the market, so that types i > i0 (i < i0) are willing
to buy (sell) at price ci. As in Back and Baruch (2013) and Biais, Martimort, and Rochet (2013), we focus
on the ask side of the market.
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provide type 1 with her equilibrium aggregate trade. Because any seller k who trades with

both types 1 and 2 on the equilibrium path makes a profit with type 1 and a loss with type

2, this opens the way to a lemon-dropping deviation that essentially consists for seller k in

convincing type 2 to trade the layer (Q1, c1Q1) with his competitors and the complementary

layer (Q2 −Q1, c2(Q2 −Q1)) with him, thus neutralizing his losses with type 2.

Specifically, the deviation involves two contracts. When Q2 > Q1 > 0, the first one is

essentially that traded by type 1 with seller k on the equilibrium path, while the second one

makes the quantity Q2 − Q1 available at a unit price slightly lower than c2. Thus type 2

can strictly increase her utility by trading the second contract on top of the layer (Q1, c1Q1)

made available by the sellers other than k; besides, seller k can break ties to make sure that

type 2 strictly prefers this contract to the first one. As a result, seller k can make his loss

with type 2 arbitrarily small while securing, as c1 > c1, a strictly positive profit with type 1;

hence the deviation is profitable. A similar but slightly more involved argument shows that

seller k has a profitable deviation also when Q2 = Q1 > 0.

As a consequence, trade can take place in equilibrium only if type 1 is excluded from trade:

in short, the possibility of cross-subsidizing between contracts at the deviation stage makes

it impossible to support cross-subsidies between types on the equilibrium path. Specifically,

the following result holds (AMS (2014, Theorems 1–2)):

Theorem 7 Suppose there are two buyer types with strictly convex preferences, and that

c2 > c1. Then any equilibrium of GCS implements the JHG allocation, but an equilibrium

exists if and only if Q∗
1 = 0 in that allocation, that is, if and only if τ1(0, 0) ≤ c1. If an

equilibrium exists, it can be sustained by each seller posting the JHG tariff, which consists of

a single layer with unit price c2.

To allow for a finer comparison with the continuous-type model of Biais, Martimort, and

Rochet (2000), let us now suppose as in Section 2.1 that there is an arbitrary but finite

number I of types, each assumed to have strictly convex preferences. The same difficulty

arises as for the characterization of entry-proof tariffs, however: when I > 2, the game GCS

with no restrictions on admissible menus is hardly tractable. As in Section 3.3, a convenient

assumption is that sellers are restricted to post convex tariffs, which ensures that the indirect

utility functions (z−k
i )Ii=1 are quasiconcave and satisfy the weak single-crossing property for

all k. The resulting convex-tariff game GCT can be interpreted as a discriminatory auction

in which sellers simultaneously bid quantities at each marginal price. In line with Back

and Baruch (2013), this captures oligopolistic competition on a limit-order market where
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market-makers post collections of limit orders that are executed by an informed insider in

order of price priority.

It should be noted that the set of deviations for the sellers is much smaller in GCT than

in GCS; in particular, the deviation that led to Theorem 7 is no longer feasible. However,

the following result, due to AMS (2019a, Theorems 2–3), shows that, in spite of this, the

equilibrium-existence problem only becomes more acute when the number of types increases:

Theorem 8 Suppose there are I buyer types with strictly convex quasilinear preferences,

and that ci is strictly increasing in i. Then any equilibrium of GCT implements the JHG

allocation, but an equilibrium exists if and only if Q∗
i = 0 for all i < I in that allocation, that

is, if τi(0, 0) ≤ ci for all i < I. If an equilibrium exists, it can be sustained by each seller

posting the JHG tariff, which consists of a single layer with unit price cI .

The proof proceeds by showing that, in any candidate equilibrium, the market tariff T is

piecewise linear and has a structure similar to that of the JHG tariff. That is, the quantity

supplied on each layer but the last one matches the residual demand of the marginal type,

at a price equal to the expected cost of serving the buyer types who trade along this layer.

This implies that sellers earn zero expected profits, and also that the marginal type on

any such layer exhausts the supply at the corresponding marginal price. As a result, each

seller offering trades at this marginal price is indispensable for the marginal type and all

higher types to reach their equilibrium utility. But one can hardly be indispensable and yet

earn zero expected profit: hence any such seller could raise his tariff in a profitable way, a

contradiction. This shows that the market tariff T must consists of a single layer and be

such that no seller is indispensable to serve the buyer types who trade along it. However,

each seller will then want to issue a limit order to hedge against the risk of large purchases

emanating from the most costly types. This implies that all types except perhaps the last

one must be excluded from trade.

The upshot from Theorems 5 and 7–8 is twofold. First, the structure of equilibria

of discrete-type models, when they exist, is very different from that of the equilibria of

continuous-type models that have been emphasized in the literature: namely, pricing is

linear and only the last type can trade in equilibrium. Second, necessary and sufficient

conditions for the existence of an equilibrium become increasingly stringent as the number

of types increases: equilibria fail to exist when there are sufficiently many types with similar

preferences, as when we approximate the continuous sets of types postulated by Biais,

Martimort, and Rochet (2000) or Back and Baruch (2013). The pure-strategy-equilibrium
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correspondence thus fails to be lower hemicontinuous when we move from discrete-type

models to continuous-type models. Overall, the predictions of competitive-screening models

are very sensitive to fine modeling details, which makes them somewhat fragile.

4.6 Ways Out

A natural way to address the equilibrium-existence problem in discrete-type models is to

weaken the equilibrium concept. This can be done in two ways.

First, we may consider mixed-strategy equilibria of GCS, the existence of which follows

from Carmona and Fajardo (2009). Preliminary investigations of the two-type case have

led to a robust example of a mixed-strategy equilibrium that exists when the necessary

and sufficient conditions for the existence of a pure-strategy equilibrium are not satisfied

(Attar, Farinha Luz, Mariotti, and F. Salanié (2021)). The key point is that the strategic

uncertainty faced by each seller regarding the tariffs offered by his competitors makes it now

impossible for him to target specific types, unlike in the deviations used to derive Theorems

7–8. However, this equilibrium bears no obvious relationship with existing equilibrium

candidates; the JHG allocation, in particular, does not emerge even when the number of

sellers grows large. The systematic characterization of mixed-strategy equilibria nevertheless

remains a fascinating—though hard—topic for future research.

Next, we may consider ε-equilibria of GCS. AMS (2019a) show that, if every type i has

quasilinear preferences ui(Q, T ) ≡ vi(Q)− T , then, as the number K of sellers grows large,

GCS admits an ε-equilibrium, with ε of the order of 1/K2, that supports the JHG allocation.

The intuition is that if K−1 sellers contribute to providing a fraction 1/K of the JHG tariff,

the residual gains from trade for the remaining seller vanish when K grows large because

the resulting market tariff is almost entry-proof. The reason why convergence takes place at

rate 1/K2 is that these gains from trade are, for every type i, bounded above by

vi(Q
∗
i )− vi

(

K − 1

K
Q∗

i

)

−
1

K
ciQ

∗
i ,

which is at most of the order of 1/K2 as v′i(Q
∗
i ) ≤ ci at the JHG allocation. Thus we retrieve

the convergence result of Theorem 5 for the competitive limit, albeit at the cost of relying

on a notion of approximate equilibrium. Glosten (1994, Proposition 2) provides a similar

result, assuming from the outset that there is an infinite number of sellers.

4.7 Regulation

An alternative route to decentralize the JHG allocation consists in explicitly introducing
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a market regulation. In this spirit, AMS (2019b) study a nonexclusive insurance market

in which it is prohibited for sellers to cross-subsidize between contracts. The regulation

thus bears on the total profit a seller earns on each contract, and is targeted at dumping

practices; it can alternatively be interpreted as banning profits on basic-coverage contracts.19

Specifically, let GCSR be the regulated game that is obtained from GCS by adding one final

stage in which a seller’s profit is confiscated whenever he makes a loss on any of the contracts

he is trading. The following result then holds (AMS (2019b, Theorem 2)):

Theorem 9 Suppose there are two buyer types with strictly convex preferences, and that

c2 > c1. Then the JHG allocation is the unique candidate-equilibrium allocation of GCSR.

Moreover, under regularity conditions on the buyer’s preferences, GCSR has an equilibrium

as long as there are sufficiently many sellers.

There are two parts in this result. The necessity part states that the regulation has

no anti-competitive implications. The intuition is that each seller aims at increasing his

profit by complementing the aggregate coverage provided by its competitors, which gives

rise to a form of Bertrand competition over each layer; as a result, the JHG allocation is

the unique candidate-equilibrium outcome. The sufficiency part reflects that the regulation,

by blocking the cross-subsidies between contracts that were at the root of Theorem 7, helps

restore existence of an equilibrium even if both types trade in the JHG allocation.

A necessary feature of equilibrium is that sellers must issue latent contracts to discipline

their competitors. As in AMS (2011), these contracts are not traded in equilibrium but

are meant to block cream-skimming deviations. In the context of insurance, these contracts

provide additional coverage that high-risk consumers are willing to combine with the coverage

provided by any such deviation. This makes it impossible for a seller to profitably deviate

by separating low-risk from high-risk consumers.

5 Alternative Extensive Forms

An important takeaway from the literature surveyed in Section 4 is that competitive-screening

games generally fail to implement the JHG allocation. This failure can be traced back

to a common source, namely, the paucity of instruments allowing to punish a deviating

19Several insurance markets are actually regulated along analogous lines. For instance, in health insurance,
Germany and Switzerland rely on a central fund to redistribute costs among firms according to a risk-
equalization scheme. These cost-sharing mechanisms, by pooling and redistributing costs among sellers of
a standardized basic-coverage contract, prevent firms from earning abnormal profits on such coverage by
dropping lemons on their competitors.
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seller. Indeed, if sellers make their offers simultaneously, the only device available to block

deviations consists in letting the buyer select latent contracts in the nondeviating sellers’

menus. However, this device is effective only when the buyer has linear preferences, reflecting

the very special property that, if latent contracts are issued at the equilibrium price, all the

types who are willing to trade at this price have the same indirect utility function z−k
i : they

are willing to trade a contract issued by a deviating seller if and only if its unit price is

less than the equilibrium price. This no longer holds when the buyer has strictly convex

preferences and different types trade at different marginal prices.

The generic failure of latent contracts at sustaining equilibria in competitive-screening

games—let alone at implementing the JHG allocation—suggests that we look for alternative

extensive forms whereby the sellers sequentially receive information over the course of the

game. Three kinds of extensive forms have been studied in the literature. The first one

allows the buyer to signal her type by recontracting, which requires that all previously

signed contracts be publicly observable. The second one lets the sellers bid through an

ascending discriminatory auction, in which the offers made at previously quoted prices are

publicly observable. The third one enables the sellers—and, possibly, the buyer as well—to

voluntarily disclose information about the contracts selected by the buyer; which information

eventually becomes available, and to whom, then depends on the agents’ disclosure strategies.

5.1 Recontracting

Beaudry and Poitevin (1995) study a sequential game in which a risk-averse entrepreneur

whose project can be of low or high riskiness can repeatedly solicit financing from successive

cohorts of uninformed lenders before the realization of the project’s return. An important

feature of this game is that there is a potentially infinite number of recontracting rounds.

Hence there is no last stage of the game in which the entrepreneur could commit to reject

further offers: a lender can never be sure that she will not try to further diversify her risk

by selling new claims on her project.20 That is, nonexclusivity is distinctively linked to the

absence of commitment and the sequential nature of contracting.

At each round of recontracting, the buyer can solicit further offers from a new cohort of

lenders; if she does so, she has to provide a summary of all the contracts she has signed in

previous rounds, though not of the contracts she has rejected. This observability assumption

stands in contrast with the competitive-screening models surveyed in Section 4, in which, by

design, no seller has information about existing contractual relationships. Another difference

20This feature is similar to Kahn and Mookherjee’s (1998) moral-hazard model of nonexclusive contracting.
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is that, at each round of recontracting, competition is exclusive, in the sense that the buyer

can accept at most one offer from one lender. The assumption that lenders are short-lived

and cannot observe previously rejected contracts is meant to limit the lenders’ ability to

sustain collusive outcomes.

In this setup, Beaudry and Poitevin (1995) show that, when the high-risk project has

positive NPV and each project can be financed by riskless claims using the entrepreneur’s

collateralizable wealth, there exists a perfect Bayesian equilibrium that supports the JHG

allocation: an entrepreneur with a low-risk project obtains the net claims corresponding to

her preferred financial position among the contracts with nonnegative pooling profits, while

an entrepreneur with a high-risk project manages to completely diversify her risk without

pledging any of her wealth in the project.

This outcome can be supported without recontracting on the equilibrium path, with

each seller posting in the first round a menu consisting of the trades comprised in the

JHG allocation. If the entrepreneur solicits additional offers, then she is believed to have

a high-risk project; for instance, she is offered Q∗
2 − Q∗

1 at price c2 if she initially accepted

(Q∗
1, T

∗
1 ), and she is offered (0, 0) if she initially accepted (Q∗

2, T
∗
2 ). No lender, therefore, can

profit by deviating, for any offer that would be accepted by an entrepreneur with a low-risk

project would also be accepted by an entrepreneur with a high-risk project in anticipation of

future rounds of recontracting. Notice that it is essential for this reasoning that the buyer can

only select a single contract at each round, that previously signed contracts be observable,

and that there always be further opportunities of recontracting. It is fair to ask whether the

first two assumptions are consistent with the intuitive notion of a nonexclusive market; in

particular, a prediction of the model is that each entrepreneur trades with a single lender.

5.2 A Discriminatory Ascending Auction

An alternative approach consists in sticking more closely to competitive-screening games,

while allowing punishments to be carried out by the sellers themselves. This requires,

of course, that deviations be observable by the nondeviating sellers, in the spirit of the

reactive-equilibrium literature cited in Footnote 14. In this respect, the recursive structure

of the JHG allocation suggests that it be implemented sequentially, layer by layer, from

the bottom up. To validate this intuition, AMS (2021) propose to model the strategic

interactions between sellers as a discriminatory ascending auction.

In their model, the auctioneer quotes price sequentially, in increasing order, and according

to a discrete price grid with a minimum tick size. Each time he quotes a new price, each

33



seller publicly announces the maximum quantity he stands ready to trade with the buyer at

this price; in other terms, he offers a limit order at the current price. Once this auctioning

phase is completed, the buyer selects which quantities to purchase from which sellers at each

price, according to her type. We denote by GDA the corresponding extensive-form game.

The solution concept for GDA is pure-strategy subgame-perfect Nash equilibrium.

It should be noted that GDA can be interpreted as a sequential version of the convex-tariff

game GCT . Indeed, as it is optimal for the buyer to take up the best price offers first, she

in the end faces a collection of convex tariffs that aggregate into a convex market tariff T .

From her perspective, the fact that T was built up sequentially is irrelevant.

For the sellers, by contrast, the fact that bids are made sequentially and publicly during

the auctioning phase is crucial, as it allows them to react, at any price, to a deviation at

a lower price; indeed, the key advantage of a sequential auction lies in its transparency, a

point emphasized in other contexts by Milgrom (2000) and Ausubel (2004). Importantly,

such reactions—which can take place almost immediately when the tick size is small—can

only take the form of quantity increases or decreases at future prices, while the quantities

supplied at lower prices cannot be withdrawn or augmented. This commitment assumption

makes GDA quite different from the Walrasian tâtonnement process.

From our implementation perspective, two questions immediately arise. First, does GDA

admit an equilibrium? Second, how do equilibrium allocations relate to the JHG allocation?

The second question is especially pressing, because the dynamic nature of GDA may perhaps

allow to sustain equilibria with collusive outcomes.

The first result established by AMS (2021) is that GDA admits a very simple Markov

perfect equilibrium. The relevant states variables are the current price p and the aggregate

quantity Q− supplied at prices lower than p. Assuming for simplicity that the buyer has

quasilinear preferences, with demand function Di, the residual demand of type i in state

(p,Q−) is max{Di(p) − Q−, 0}; observe that maximizing aggregate expected profits in any

state (p,Q−) asks for serving the residual demand of the type i such that ci < p ≤ ci+1,

which we shall call the profitable residual demand in state (p,Q−). The following result then

holds (AMS (2021, Theorem 3)):

Theorem 10 Suppose there are I buyer types with strictly convex quasilinear preferences,

and that ci is strictly increasing in i. Then there exists a Markov perfect equilibrium of GDA

in which, in any state (p,Q−),

(i) if p ≤ c1, each seller supplies a zero quantity;
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(ii) if c1 < p ≤ cI , each seller supplies a share 1/K of the profitable residual demand;

(iii) if p > cI , each seller supplies an infinite quantity.

Moreover, the resulting aggregate equilibrium allocation converges to the JHG allocation as

the tick size goes to zero.

The mechanics of the equilibrium are very simple. First, at any price p ≤ cI , no unilateral

increase in supply is profitable if the profitable types at price p, that is, all the types j such

that p > cj, rationally choose to ignore this deviation and carry on trading the same quantity

with each seller; indeed, the deviation can then only lead to losses with unprofitable types

at price p and reduce their residual demand at higher prices. Second, at any price p ≤ cI ,

no unilateral decrease in supply is profitable, because the corresponding increase in the

profitable residual demand at the next price will be shared with the other sellers in the

continuation equilibrium. As a result, although each seller is indispensable to serve a strictly

positive profitable residual demand, no seller has an incentive to wait for a higher price to

be quoted. This stands in stark contrast with the convex-tariff game GCT , in which a seller

indispensable at price p can always secretly deviate by bidding a lower quantity at price p

and a higher quantity at a slightly higher price.

Given a tick size ∆, the following equilibrium outcome obtains. As soon as the price

reaches c1 + ∆, the sellers serve the demand D1(c1 + ∆) of type 1; this quantity will also

be purchased by types i > 1. Then, as soon as the price reaches c2 + ∆, the sellers serve

the residual demand max{D2(c2 +∆)−D1(c1 +∆), 0} of type 2; this quantity will also be

purchased by types i > 2—and so on, until the price reaches cI+∆, at which point the sellers

flood the market. By construction, the resulting aggregate equilibrium allocation converges

to the JHG allocation as ∆ goes to zero.

The second result established by AMS (2021) is that every sequence of equilibria of GDA

satisfies this convergence property, modulo an intuitive refinement that can be described as

follows. In any play of the game, every type i accepts all offers up to some price pi. However,

the sellers’ aggregate supply at price pi may well exceed type i’s residual demand at this

price; she can then break ties in many different ways, and her choice typically matters to

the sellers. An equilibrium of GDA is robust to irrelevant offers if every type i’s trades at

price pi do not depend on offers made at prices p > pi. Intuitively, the buyer never punishes

a seller for deviating at a price at which she is not willing to trade.21 The following result

then holds (AMS (2021, Theorem 4)):

21The tie-breaking rules used in the proof of Theorem 10 are consistent with this refinement.
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Theorem 11 In any sequence of equilibria robust to irrelevant offers of GDA associated to

a sequence of tick sizes going to zero, the aggregate equilibrium allocations converge to the

JHG allocation, and the equilibrium market tariffs converge to the JHG tariff.

Leaving technical details aside, Theorem 11 results from a simple Bertrand undercutting

argument. To see this, suppose, by way of contradiction, that, given the limit market tariff,

strictly positive expected profits can be earned at some price p. Because the highest price

at which trade takes place can be shown to be bounded along any sequence of equilibria

when the tick size ∆ goes to zero, we can focus on the highest such p. Continuation profits

at higher prices must be zero: indeed, the robustness refinement ensures that, if they were

strictly negative, then, for ∆ small enough, some seller could profitably withdraw all his offers

at such prices without affecting his expected profits up to price p. Now, the convergence of

aggregate supply functions as ∆ goes to zero implies that, for ∆ small enough, aggregate

supply in a left-neighborhood of p becomes negligible. Hence each seller can, almost without

losing priority, undercut his competitors at a price arbitrarily close to p, and supply nothing

afterwards; by doing so, he can appropriate almost all expected profits at price p, and the

robustness refinement again ensures that his expected profits at lower prices remain the

same. But then this deviation would be profitable for at least one seller, a contradiction.

Overall, this argument shows that, given the limit tariff, strictly positive expected profits

cannot be earned at any price p; given budget-balance, this exhaustion of gains from trade

characterizes the JHG tariff, from which Theorem 11 follows.

Taken together, Theorems 10–11 provide an implementation of the JHG allocation as

the essentially unique equilibrium outcome of competition when each seller can quickly react

to his competitors’ offers; an attractive feature of this implementation is that, in the spirit

of Bertrand competition, it only requires that there be two competing sellers. From a

market-design perspective, these positive results invite us to reconsider the role of continuous

bidding for financial and insurance markets, and offer a useful complement to studies that

advocate a transformation of continuous markets into batch auctions, so as to avoid possible

inefficiencies linked to high-frequency trading (Budish, Cramton, and Shin (2015)).

5.3 Information Disclosure

A common feature of the recontracting game of Beaudry of Poitevin (1995) and of the

ascending discriminatory auction of AMS (2021) is that the release of information to sellers

about previously signed contracts or previously made offers is exogenous. By contrast,

following the seminal contribution of Jaynes (1978), several authors have studied what
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happens when agents can voluntarily disclose information about the contracts they are

engaged in, so that the information available to each seller is endogenously determined

in equilibrium. Although the buyer can still in principle subscribe to multiple contracts

issued by different sellers, each seller can then enforce exclusivity clauses contingent on the

information disclosed by his competitors.22

Jaynes (1978) considers the following timing. First, each seller offers a menu of contracts,

possibly specifying exclusivity clauses; besides, he commits to disclose to a subset of his

competitors the contract selected by the buyer from his own menu. Next, the buyer selects

a contract from each seller’s menu, information is disclosed, and exclusivity clauses are

enforced, which determines the contracts that are eventually executed. The JHG allocation

turns out to be the only candidate-equilibrium allocation. In the two-type case, Jaynes’

(1978) proposed equilibrium can be described as follows. First, two sellers offer a limit order

at price c1 with maximum quantity Q∗
1; these sellers share their information and enforce

exclusivity clauses, which ensures that they do not make losses by overselling to type 2.

Second, two sellers offer a limit order at price c2 with maximum quantity Q∗
2 − Q∗

1; these

sellers do not share their information.

As pointed out by Hellwig (1988), however, this candidate equilibrium is not robust to

a cream-skimming deviation, whereby one of the sellers supposed to offer trades at price

c1 secretly deviates by offering a contract at a price slightly less than c1 that, per se,

attracts type 1, but would attract type 2 only in combination with contracts issued by the

nondeviating sellers at price c1. Thanks to the information disclosed by the nondeviating

sellers, the deviating seller is still able to enforce exclusivity on this contract; as a result,

he is assured to only attract type 1, and the deviation is profitable. Intuitively, the idea

is that sellers by themselves have no basis for treating deviating and nondeviating firms

asymmetrically in their disclosure decisions.

In that respect, it should be noted that the above deviation is effective only if the

nondeviating sellers are not aware of it. Otherwise, they could punish the deviating seller

by concealing from him the contracts selected by the buyer from their menus. In that case,

a seller attempting to cream-skim type 1 would no longer be able to enforce exclusivity; as

a result, his contract would also become attractive for type 2, along with contracts issued

by nondeviating sellers at price c1 and, possibly, c2. Hence cream-skimming is impossible

if the sellers’ offers are public. This intuition is formalized by Hellwig (1988), who studies

a multi-stage extensive-form game in which each seller can make his disclosure decisions

22In exclusive insurance markets, information sharing enables the construction of joint databases collecting
information on each loss so as to ensure that the same loss is not indemnified twice.
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contingent on his competitors’ contract offers.

Jaynes (2011) and Stiglitz, Yun, and Kosenko (2020) have more recently argued that

information sharing may allow to support the JHG allocation in equilibrium even if sellers

cannot change their disclosure decisions in reaction to the offers of their competitors. The

idea is that they can instead rely on information revealed by the buyer. In equilibrium, the

firms’ disclosure strategies induce the buyer to truthfully reveal her information to them,

which in turn enables them to treat deviating and nondeviating firms asymmetrically.

6 Concluding Remarks: Empirical Perspectives

To conclude, we briefly examine the implications of the theoretical results surveyed in this

article for empirical work. The discussion will focus on insurance markets, prominent

examples of which—life-insurance, annuity, long-term-care, and, to some extent, health-

insurance markets—are nonexclusive.

6.1 The Positive-Correlation Property

A standard way to test for the presence of adverse selection on insurance markets is to

exploit the positive-correlation property, which states that, under adverse selection, the

aggregate coverage purchased by a consumer and her riskiness should be positively correlated

conditionally on observables (Chiappori and B. Salanié (2000)). This property is typically

satisfied when a consumer’s preferences over aggregate coverage-premia pairs (Q, T ) only

depend on her riskiness; indeed, it is then equivalent to the single-crossing condition, which

precisely expresses the fact that riskier consumers are more eager to purchase more coverage.

In our notation, this is the case if the riskiness ci and the willingness-to-pay τi(Q, T ) are

both increasing in the consumer’s type i, so that the demand Qi for coverage is increasing

in ci.
23 Chiappori and B. Salanié (2000, 2003) have developed several econometric methods

to test this prediction.

Under single-crossing, the positive-correlation property is a characteristic of consumer

demand; as such, it is independent of whether competition on the market is exclusive

or nonexclusive.24 Yet the empiricist should care about the difference. Indeed, under

23This is the case, for instance, if consumer preferences have an expected-utility representation and face a
binary loss (Rothschild and Stiglitz (1976)), as well as for many other specifications of consumer preferences
and more than two loss levels (AMS (2021, Online Appendix C)).

24In a more general setting, Chiappori, Jullien, B. Salanié, and F. Salanié (2006) show that the positive-
correlation property can alternatively be derived from a simple inequality on equilibrium profits, even if the
single-crossing property is not satisfied.
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exclusivity, it does not matter whether his data originate from firms or from consumers,

as each consumer’s aggregate coverage is provided by a single contract issued by a single

firm. This explains the usual reliance on within-firm data, which are easier to obtain.

However, under nonexclusivity, such data can be misleading, as low-coverage contracts may

disproportionately attract high-risk consumers in combination with other contracts.25 Thus

the positive-correlation property may still hold at the consumer level, taking into account

all sources of coverage; but the contracts sold by a firm may feature a negative correlation

between the riskiness of its customers and the coverage it sells to them.

The validity of the positive-correlation property has been at the centre stage of empirical

studies of nonexclusive insurance markets (Cawley and Philipson (1999), Finkelstein and

Poterba (2004), Finkelstein and McGarry (2006)). However, because these studies typically

take as a benchmark the exclusive-competition model, the above distinction between demand-

and supply-side approaches is often overlooked. Rejecting adverse selection on these markets

on the basis of the failure of the positive-correlation property is a decision that should,

therefore, be taken with some care: in principle, we would need to collect comprehensive

data at the consumer level about all sources of coverage. As pointed out by B. Salanié

(2017), this is likely to be a demanding, though worthwhile task.

6.2 Exploiting Price and Cost Data

The analysis of entry-proof tariffs in Section 4 leads to a very sharp prediction for the

competitive outcomes of nonexclusive insurance markets: each marginal unit of coverage

available along the market tariff should be priced at the expected cost of serving the consumer

types who choose to purchase it. This suggests an alternative empirical strategy exploiting

price and cost data to compare the price of each layer of insurance to its average cost, as

measured by the empirical loss frequency of the consumers who trade this layer.

To illustrate this approach, suppose that the loss is binary and that we have data on

observationally equivalent consumers n = 1, . . . , N , providing information about individual

aggregate coverage-premia pairs (Qn, T n) and loss realizations Ln ∈ {0, 1}. Given this data,

a natural two-step empirical procedure may run as follows.

The first step would be to construct an estimate of the market tariff T or, more precisely,

of the marginal price schedule T ′.26 Although data on firms’ offers are typically not available,

25This is actually a prediction of the regulated game GCSR under free-entry (AMS (2019b, Theorem
3)): in equilibrium, basic contracts, traded by both low- and high-risk consumers, offer more coverage than
complementary contracts, traded by high-risk consumers only. Thus, with data originating from a single
firm, we could well observe a negative correlation between risk and coverage.

26This is in line with the classical problem of estimating a firm’s production frontier.
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we could, to this end, use the data on individual aggregate coverage and premia, assuming

that each consumer strives to minimize the price she pays for her aggregate coverage. For

instance, we could perform a nonparametric regression

T n = T (Qn) + εn,

with one-sided error terms εn capturing the idea that consumers may fail to combine the

firms’ offers optimally.

The second step would be to test whether the estimator T̂ ′ of T ′ satisfies the property that

each marginal quantity is priced at the expected cost of serving the consumers who purchase

it. This would involve comparing, for each aggregate coverage levelQ, the estimated marginal

price T̂ ′(Q) with the empirical loss frequency

ĉ (Q) ≡

∑

n 1{Qn≥Q,Ln=1}
∑

n 1{Qn≥Q}

of the consumers whose aggregate coverage is at least Q.

Estimates of prices and costs play a crucial role in this procedure. This contrasts with

tests of the positive-correlation property, which only rely on aggregate coverage amounts and

loss realizations. The procedure is thus closer to that proposed by Einav, Finkelstein, and

Cullen (2010) in a setting where consumers have a zero-one demand for coverage: evidence

of adverse selection is obtained if the average cost of serving the consumers choosing to buy

an additional layer of insurance is affected by the price of that layer. Our analysis suggests

that the upper-tail conditional expectation function is the generalization of the firms’ cost

function in Einav, Finkelstein, and Cullen (2010) to richer environments where firms offer

nonexclusive insurance contracts and consumers can choose different levels of coverage. An

attractive feature of this approach is that it is fully nonparametric: there is no need to

make assumptions about consumers’ underlying utility functions nor about the distribution

of their private information.
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Appendix

Proof of Theorem 6. The proof consists of three steps.

Step 1 For each i in the support of the distribution of types, let Q−k
i (0, 0) be a solution

to the maximization problem that defines z−k
i (0, 0). Then

z−k
i (0, 0) = ui(Q

−k
i (0, 0), T−k(Q−k

i (0, 0))) ≤ ui(Q
−k
i (0, 0), T (Q−k

i (0, 0))) ≤ Ui, (20)

where the first inequality follows from T ≤ T−k, and the second inequality follows from

the fact that Ui is type i’s equilibrium utility. Now, if Ui = z−k
i (0, 0) for some type i and

some seller k, all the inequalities in (20) are in fact equalities. This has two fundamental

consequences. First, we have

ui(Q
−k
i (0, 0), T−k(Q−k

i (0, 0))) = ui(Q
−k
i (0, 0), T (Q−k

i (0, 0))),

which implies

T−k(Q−k
i (0, 0)) = T (Q−k

i (0, 0))

and, hence, by P2,

Q−k
i (0, 0) = 0. (21)

Second, we have

Ui = ui(Q
−k
i (0, 0), T−k(Q−k

i (0, 0)))

and, hence, by (21),

Ui = ui(0, 0). (22)

Because Ui ≥ z−l
i (0, 0) ≥ ui(0, 0) for all l 6= k, the upshot from this reasoning is that, if

Ui = z−k
i (0, 0) for some type i and some seller k, then, for this type i, Ui = z−k

i (0, 0) for any

seller k, and hence (21) must hold for all k. In other terms, the indispensability property

P2 implies that, if, for some type, the individual-rationality constraint binds for some seller,

then it must bind for all sellers.

Step 2 By P1 and Step 1, there exists some i such that Ui = z−k
i (0, 0) for all k. Let (qki , t

k
i )

be the contract traded by such a type i with seller k in equilibrium, and let Q−k
i =

∑

l 6=k q
l
i

be the quantity purchased by type i from the sellers other than k, so that

Ui = ui(q
k
i +Q−k

i , tki + T−k(Q−k
i )). (23)
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We claim that Q−k
i = 0. Indeed, suppose, by way of contradiction, that Q−k

i > 0. Because

type i could abstain from trading with the sellers other than k, it must be that

ui(q
k
i +Q−k

i , tki + T−k(Q−k
i )) ≥ ui(q

k
i , t

k
i ). (24)

Similarly, consider the maximization problem that defines z−k
i (0, 0), and whose unique

solution, by (21), is Q−k
i (0, 0) = 0. As type i could instead purchase Q−k

i from the sellers

other than k, it must be that

ui(0, 0) > ui(Q
−k
i , T−k(Q−k

i )). (25)

We know from (22)–(23) that the left-hand sides of (24)–(25) are both equal to Ui. Hence

ui(0, 0) ≥ ui(q
k
i , t

k
i ). (26)

Representing by T = φ(Q) the equilibrium indifference curve of type i, (25)–(26) amount to

T−k(Q−k
i ) > φ(Q−k

i ) (27)

and

tki ≥ φ(qki ). (28)

Because φ is concave and φ(0) = 0, φ is subadditive. Thus, by (27)–(28),

tki + T−k(Q−k
i ) > φ(qki +Q−k

i ),

which amounts to

ui(0, 0) > ui(q
k
i +Q−k

i , tki + T−k(Q−k
i )),

in contradiction to (22)–(23). Hence Q−k
i = 0, as claimed. Because this is true for all k, we

obtain that

∑

k

qki =
1

K − 1

∑

k

Q−k
i = 0,

and thus that qki = 0 for all k.

Step 3 We now verify that there exists some type i1 such that Qi ≡
∑

k q
k
i vanishes if

and only if i ≤ i1, which concludes the proof. By P1 and Steps 1–2, we know that there

exists at least one type i for which Qi = 0. This implies in particular that

For each Q > 0, ui(0, 0) ≥ ui(Q, T (Q)),
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and, hence, by strict single-crossing, that

For all j < i and Q > 0, uj(0, 0) > uj(Q, T (Q)),

so that Qj = 0 for all j < i. Thus the set of types who are excluded from trade is an interval

I0 at the bottom of the type distribution. We just need to check that I0, if it is not reduced

to a single type, contains its least upper bound i1. (This is obvious if the distribution of

types is discrete.) By assumption, the mapping i 7→ ui(0, 0) is continuous, and so is the

mapping i 7→ Ui by Berge’s maximum theorem. Because Uj = uj(0, 0) for all j ∈ I0, it

follows that Ui1 = ui1(0, 0) as well, and hence that Ui1 = z−k
i1

(0, 0) for all k. Proceeding as

in Step 2 then shows that Qi1 = 0, as desired. Hence the result. �
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Abstract

Standard evaluations of public policies involve discounting the flow of expected net
benefits at a risk free discount rate. Consequently, they systematically ignore the insur-
ance benefits of policies that hedge the aggregate risk, and the social cost of projects
that raise the aggregate risk. Normative asset pricing theory recommends adjusting the
discount rate to the project’s risk, but few countries have attempted to implement this
complex solution. We explore an equivalent approach based on the property that the
value of a project under uncertainty equals the expected value of its state-contingent
NPV, using the relevant state-contingent risk-free discount rate. Under this "stress dis-
counting" approach, projects are evaluated under two polar risk-free economic scenarios,
one business-as-usual scenario, and one low-probability catastrophic scenario, in the spirit
of the now well-established banking regulation. Ramsey discounting should be performed
in each scenario to estimate the corresponding scenario-contingent NPV, which is a simple
and intuitive task. This approach automatically values the insurance benefits of projects
whose net benefits are negatively correlated with economic growth. We extend this ap-
proach to value carbon mitigation projects, combining the two economic scenarios with
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Perfection is achieved, not when there is nothing more to add, but when there is

nothing left to take away. Antoine de Saint-Exupéry

1 Introduction

Under the standard practice, a project is deemed socially desirable if the discounted value of
its flow of expected net social benefits is positive, using a unique public discount rate. For
example, the official discount rate is 3.5% in the U.K. (Treasury, 2020). But this procedure
ignores the social cost of projects that increase the macroeconomic risk, and the social benefit
of projects that reduce it. In other words, it ignores risk and risk aversion. Compare for
example an investment in a railways infrastructure (which arguably is most useful in a growing
economy) to another investment in a mass vaccination infrastructure (which arguably is most
useful during a pandemic that kills the economy). The standard public valuation practice
values both projects equally if their expected net benefits are the same. However, risk aversion
necessarily implies that a marginal reallocation of capital from railways to mass vaccination
infrastructures would reduce the aggregate risk at no cost, thereby increasing welfare.1

Modern asset pricing theory such as the consumption-based CAPM (CCAPM), inter-
preted in a normative way, strongly recommends solving this problem by adjusting the dis-
count rate to the risk profile of each project, and potentially of each of its specific benefit
(Bodie and Merton, 2000; Brealey et al., 2017). Under the CCAPM and its extensions, the
sufficient statistic of the risk profile is the CCAPM, which is the income-elasticity of the
benefit under consideration. In the case of a railway infrastructure for example, this pro-
cedure would require to estimate the beta of the demand for transportation, but also the
social cost of carbon and of air pollution, or the value of time lost and lives saved. But this
perfect solution has failed. The complexity of this procedure is likely to explain its low level
of adoption in the public sector around the world.

In this paper, we propose a simpler and more intuitive solution based on the fundamental
asset pricing principle (Lucas, 1978):2 Any state-dependent benefit Bt = Bts |s∈S material-
izing at date t has a Present Value at date 0 equaling

PV = E[e−rttBt], (1)

where rt = rts |s∈S is the stochastic discount rate associated to maturity t and E is the
expectation operator with respect to the states of nature s ∈ S. The state-dependent discount
rate rts is the rate at which benefits in t should be discounted conditional to state s, i.e.,
under certainty. The Ramsey rule can be used to determine it. Project analysts just need to
perform a sequence of NPV estimations under certainty. This approach is much simpler than
the CCAPM approach because it just requires to use the Ramsey discount rate contingent to
each state considered, thereby eliminating the complexity of risk-adjusting the discount rate
together with the task to estimate the betas. This alternative approach is also more intuitive
because the Ramsey rule is by now well understood. Moreover, measuring the value creation
of an asset through the expectation of its contingent NPV should also be easily understood

1This is only partly accounted for in the U.K. where the public discount rate for health projects is reduced
to 1.5% (Treasury, 2020).

2This principle is a direct consequence of the double additivity of the Discounted Expected Utility model,
with respect to the states and to time. It does not hold under recursive preferences.
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by practitioners. Finally, this approach does not give up anything to the basic principles
of asset pricing. In fact, the CCAPM is a special case of the Stochastic Discount Factor
(SDF) approach when assuming a geometric Brownian motion to consumption growth. More
generally, the fact that the contingent discount rate is smaller in bad states of nature, i.e.,
in low-consumption states, provides the right instrument to deliver a premium to assets that
yield more benefits in those states. Finally, our approach provides information about the
circumstances in which the project is most valuable, as it measures the conditional PV of the
project in each state of nature. This may be useful for the transparency of the decision-making
and the public debate.

The complexity of this alternative approach depends upon the number of states of nature
(or macroeconomic contingencies) that evaluators will have to consider. To choose the number
of scenarios to consider and their characteristics, let us start by recalling that the CCAPM
fails to predict interest rates and risk premia in financial markets (Mehra and Prescott,
1985; Weil, 1989). In short, this means that the gaussian volatility of the growth rate of
consumption is too small to explain why the interest rate has been so low in the XXth
century, and why the aggregate risk premium has been so larger. Rietz (1988) and Barro
(2006, 2009) and Weitzman (2007) showed that this failure of the CCAPM can be solved by
recognizing that the lower tail of the distribution of economic growth is fatter than assumed
in the standard CCAPM. In Barro’s work, the equilibrium risk-free rates and risk premia
are mainly determined by the probability of a macroeconomic catastrophe, and the gaussian
volatility plays only a marginal role on these matters. In this paper, we push this idea to
this logical end by proposing to perform the expected NPV valuation with only two states.
In the Business-As-Usual (BAU) scenario, consumption grows at a constant positive rate
that reflects the likely economic prosperity. But in the low-probability catastrophic scenario,
consumption drops immediately by an amount similar to what is suggested by Barro, and
then gradually recovers at a growth rate smaller than in the BAU scenario. Calculating the
contingent discount rates from the Ramsey rule in this two scenarios is then trivial. The
aggregate risk in this model has thus 4 easy-to-understand parameters: the probability of
catastrophe, the drop in consumption in that state, and the constant growth rates in the two
states. The calibration of these parameters should closely fit the observed asset prices in the
economy.

Other sources of risk can easily be added into this framework. To illustrate, in the
context of climate change, the debate on the Social Cost of Carbon has explored the role of
uncertainty mostly from the point of view of an uncertain climate sensitivity (Dietz et al.,
2018; Daniel et al., 2019). Conditional to each macroeconomic scenario, a specific emission
path can be considered together with an uncertain climate sensitivity to calibrate climate
damages. We show that it is appropriate in that case to consider 2 types of shocks (economic
and climatic), and therefore four distinct scenarios, to correctly evaluate cliate mitigation
projects. Our objective here is to illustrate the method and to prove its efficiency. We
check that the method gives satisfactory results by benchmarking it with more elaborate
approaches. This is what we do in section 3 and 4 of this document, before applying these
methods to real-based cases.

Thus, in this article, we start from the failure of national governments and key public
institutions (World Bank, European Investment Bank,...) to adopt an efficient approach to
discounting. There are various reasons why economists failed to improve the public discount-
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ing systems in the western world. The obvious argument is that using a single discount rate
makes life much easier for the evaluators who are well accustomed with this practice, as es-
timating CCAPM betas may be technically difficult (Cherbonnier and Gollier (2020)). The
second argument is that there is much at stake for many lobbies, in particular in those sec-
tors with large betas. They are the losers of risk-adjusting the standard discounting system.
There is a clear agency problem associated to the existence of various asymmetric informa-
tion problems in this context. More flexibility in choosing project-specific discount rates may
favor strong lobbies equipped with a good understanding of how to estimate CCAPM betas.
Third, many public economists working in the sphere of public policy evaluations are not
experts in asset pricing theory. At the same time, most asset pricing experts in academia
continue to ignore public sector finance. Finally, adjusting discount rates to risk is a common
practice in financial markets, but is often considered as highly inefficient by public servants
in charge of implementing cost-benefit analyses in the public sector. They may be right, in
the sense that the risk-adjustments used by private institutions and their stakeholders are
inefficient. But this does not help. It is important to disentangle the normative nature of
modern asset pricing theory, which provides a strong argument for the risk adjustment, from
how market participants do apply it in practice.

Fifty years of developments in asset pricing theory has clearly demonstrated the key role
of covariance with aggregate consumption when measuring the welfare impact of an asset.
These developments justifying adjusting the discount rate to the risk profile of the projects
had a very limited impact on the public practice of discounting. We are aware of only three
countries which have attempted to adapt their evaluation practices in that direction. In
2020, the Dutch government (Rijksoverheid (2020)) has implemented a discounting system
that contains three risk-adjusted discount rates. The Norwegian government had also adopted
in 1997 a discounting system with three discount rates allocated to three risk classes defined
by the projects’ contribution to the aggregate uncertainty, but this system has been aban-
doned in 2012 as choosing the suitable risk class for a project was deemed too arbitrary3 Since
then, Norway uses a single discount rate of 4%. Finally, France has introduced a CCAPM
rule since 2013 with a risk-free discount rate of rf =2.5% and an aggregate risk premium of
Π=2% (Quinet (2013)). Evaluators must estimate the beta of their project to determine the
rate rf + βΠ at which the expected net benefit must be discounted. The experience shows
that very few evaluators have tried to estimate the beta of their projects, even for those
costing tens of billion euros in public funds. They rather used a default beta of one, yielding
an implicit single discount rate of 4.5%. In Gollier (2021), the welfare cost of ignoring the
risk-adjustment in the discount rate has been estimated to be large, equivalent to 15% of
permanent consumption at least. It is time to propose an operational method of discounting
that has two properties: (1) approximate the efficient solution in a robust way, and (2) have
a better chance to be adopted by the public sector, i.e., be simple, transparent and intuitive.

The paper is organized as follows. We recall in section 2 the principles of the SDF approach
for public investment valuation. The basic stress discounting method with two scenarios is

3See Hagen et al. (2012) page 77: "Experience from previous practice with several risk classes suggests that

many project analysts have been uncertain about the technical criteria for choosing the risk class, and that

such choices may therefore at times seem somewhat arbitrary. These circumstances suggest that it may be

preferable to recommend simple and transparent rules that capture the most important aspects of the matter,

without being too complex to understand or to apply."
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explained, calibrated and illustrated in section 3. This latter section also provides some
benchmarking exercises by comparing the results and implications of this method with those
of the cutting-edge analytical methods (that depart from the classical Gaussian CCAPM in
order to explain the asset pricing puzzles). In section 4, we expand the approach to allow
for four scenarios, which is especially relevant for projects with a climate dimension. As an
illustration, we estimate the discounted social cost of carbon, i.e. the discounted expected
value of avoided damage when emitting one ton of CO2 less at a given horizon. Benchmarking
exercises are then provided using a numerical approach based on the DICE model. Section 5
presents an application on a French nuclear waste project.

2 Two equivalent valuation methods

In this section, we first summarize the SDF approach to asset pricing. We then recall the
methodology of the standard approach to value public investment and policies, stressing its
operational complexities.

2.1 Expected and contingent present values

There is a representative agent in the economy whose discrete flow of consumption is given by
the stochastic process (C0, C1, ..., Ct, ...). This agent extracts utility u(Ct) from consuming
Ct at date t. Social welfare at date 0 is measured by the discounted sum of temporal expected
utility, using a rate of pure preference for the present δ. Let’s consider an investment project
that generates a flow of net benefits (B0, B1, ..., Bt, ...) that are potentially correlated to
consumption.4

The Present Value (PV) of the project is defined as the sure monetary benefit received
today that has the same impact on social welfare as a marginal investment in that project.
In other words, PV equals

PV =
1

u′(C0)

∂

∂ε

∣

∣

∣

∣

ε=0

+∞
∑

t=0

e−δtEu(Ct + εBt). (2)

By definition, it is socially desirable to invest in the project if and only if PV is positive. This
condition can be rewritten as follows:

PV = E

[

+∞
∑

t=0

bt(Ct)e
−rt(Ct)t

]

, (3)

where bt(Ct) is the expected benefit at date t conditional to Ct, and where the state-contingent
discount rate rt(Ct) is defined as

rt(Ct) = δ −
1

t
log

(

u′(Ct)

u′(C0)

)

. (4)

This means that the value creation of an investment project is the expectation of the contin-
gent present values

∑

bt exp(−rtt), using a stochastic discount factor exp(−rtt). We hereafter

4As is well-known, risks that are not correlated to aggregate consumption should not be priced. Therefore,
Bt should be interpreted as the expected net benefit at date t conditional to Ct.
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assume that the utility function u exhibits constant relative risk aversion γ. Let gt denote
the annualized growth rate of consumption:

gt(Ct) =
1

t
log

(

Ct

C0

)

(5)

Combining this definition with equation (4) yields the Ramsey rule:

rt = δ + γgt(Ct). (6)

The pair of equations (3) and (6) fully describes an evaluation procedure in which the
project analyst must perform three different tasks:

1. Characterize the flow of net expected benefits (b0, b1, ...) conditional to each growth
scenario;

2. Compute the contingent PV of this flow in each scenario, using the associated discount
rate;

3. Compute the expectation of the contingent PVs to obtain the PV of the project.

Each of these tasks is intuitive and simple. The complexity of the procedure may emerge
however if the number of scenarios to consider is large.

A special case is worthy examining in more details at this stage. Consider a risk-free
project, or a project whose net benefits are independent of economic growth. In that case,
equation (3) simplifies to

PV =
+∞
∑

t=0

Bte
−rftt, (7)

where the risk-free discount rate rft is defined as follows:

rft = −
1

t
log

(

Ee−rtt
)

. (8)

From this benchmark, one can observe that when projects are risky, their PV will be larger
or smaller than the risk-neutral PV depending upon whether their net benefits are negatively
or positively statistically linked to economic growth. More precisely, equation (3) directly
implies that

PV =
+∞
∑

t=0

E
[

Bte
−rtt

]

=
+∞
∑

t=0

(

E [Bt] E
[

e−rtt
]

+ cov(Bt, e−rtt)
)

≥
+∞
∑

t=0

e−rfttE [Bt] (9)

whenever the net benefit of the project and the stochastic discount factor covary positively.
From the Ramsey rule (6), this is the case when the net benefit and consumption growth vary
in opposite direction, i.e., are anti-comonotone. Inequality (9) states that the project has a
negative risk premium in that case, i.e., its value creation is larger than if one would assume
independence between its net benefit and aggregate consumption. The opposite result holds
when they are comonotone.
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2.2 Lessons from the standard approach

The tradition in the asset pricing literature is to value an asset as the discounted sum of its
flow of expected benefits using a risk-adjusted discount rate:

PV =
+∞
∑

t=0

E [Bt] e−ρtt (10)

This approach is compatible with the SDF approach described in the previous section if and
only the risk-adjusted discount rate ρt is defined as

ρt = −
1

t
log

(

E

[

Bt

E[Bt]
e−rtt

])

(11)

Further simplifications can be obtained by making two additional assumptions. First suppose
that the net benefit of the project is linked to aggregate consumption through the following
functional form:

log

(

Bt

B0

)

= at + βt log

(

Ct

C0

)

+ ϵt, (12)

where we assume exogeneity, so that E [ϵt | Ct] = 0 for all Ct. Observe that we can interpret
the project-specific βt as the income-elasticity of its net benefit (at date t). Second, suppose
that aggregate consumption follows a discrete version of a geometric brownian motion so
that log(Ct/C0) is normally distributed with mean µt and variance σ2t. In that case, it is
well-known that the risk-adjusted discount rate equals

ρt = rf + βtΠ, (13)

with risk-free discount rate rf = δ +γµ−0.5γ2σ2 and aggregate risk premium Π = γσ2. This
is the standard CCAPM approach to discounting. Under that approach, the project analyst
has an a priori simple task to perform. The analysis requires estimating the income-elasticity
βt of the project to determine the risk-adjusted rate to discount the flow of expected benefits.

In spite of its apparent simplicity, this standard approach faces serious operational diffi-
culties. The most immediate one arises from the estimation of the beta. The flow of benefits
may include several distinct components (for example a financial one and some externali-
ties) each of them exhibiting an income-elasticity that requires estimation. The beta of the
project is then the sum of the of the income-elasticity of these components. In addition, the
income-elasticities need to be evaluated for each project. A difficulty that arises is due to
the asset pricing puzzles that the CCAPM generates. With a growth process calibrated with
growth rate µ = 2% and volatility σ = 3% and with a CRRA γ = 2, we obtain a risk-free
discount rate net of the rate of impatience of 3.82% and an aggregate risk premium 0.18%. In
particular this risk premium is so low that it makes sense in practice to discount all project
at the mean discount rate of 4%. Financial markets reveal much smaller interest rate on
average (risk-free rate puzzle, Weil (1989), and much larger risk premia (equity premium
puzzle, Mehra and Prescott (1985)). Over the last two decades, the asset pricing literature
has solved these puzzles by considering growth stochastic processes that fatten the tails of
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the distribution of future consumption.5 Bansal and Yaron (2004) has pioneered a new liter-
ature on "long run risks" in which trend of growth reverses to the mean and in which growth
volatility is itself stochastic.6 Rietz (1988) and Barro (2006, 2009) showed that the inclusion
of rare disasters in the growth process can also solve these puzzles.

These strategies to solve the puzzles of the standard CCAPM make it much more complex
to operationalize for project analysts. This is because the CCAPM formula (13) needs to be
revised when exiting the Gaussian world. Indeed, as shown by Martin (2013), the efficient
risk-adjusted discount rate becomes a polynomial function of the beta of the project, where
the coefficient associated to the nth power of β is proportional to the n + 1 cumulant of
the annual change in log consumption. This raises some complexity to the analysis. Another
source of complexity comes from the observation that the coherence of the calculation requires
the project analyst to estimate the flow of expected benefits EBt by using the complex growth
stochastic processes that have been used to estimate the risk-free rate and the aggregate risk
premium. In practice, this is infeasible without allowing some shortcuts that have not been
provided in the literature up to now.

3 Basic project evaluation: stress discounting with two states

of the economy

In the face of these complexities, should we go back to using a single discount rate? We
believe not, because the cost of ignoring the social cost of risk in the economy is potentially
large (Gollier (2021)). In this section, we develop an evaluation procedure based on the SDF
methodology presented in Section 2.1. This alternative procedure aims at two objectives.
First, we want it to be simple, intuitive and easy to operationalize. Second, we want it to
generate valuations that approximate well the true value of assets and investment projects.
Because these objectives goes in opposite directions, one should leave the precise procedure
to implement to national circumstances, based on the willingness of project analysts and
their principals to use a more complex procedure in exchange for more accurate results. The
calibration of the procedure that we use in this paper should be interpreted as an illustration.

Inspired by Barro (2006, 2009), we propose a procedure based on the SDF approach using
only two states or scenarios, a BAU scenario and a stressed scenario.

3.1 Projects maturing in one year

In this section, we limit our analysis to the evaluation of short projects, i.e., projects maturing
within one period (here, one year). For a one-period horizon, our two-state uncertainty is
characterized by three parameters: the growth rate gb in the Business-As-Usual (BAU), the
growth rate gs < 0 in the catastrophic state, and the probability π of the catastrophe. We
want to match three moments:

5Another path to solve the financial puzzle is to generalize the discounted expected utility framework into
its Epstein-Zin-Weil extension. This approach raises two issues. First, Epstein et al. (2014) have shown that
the calibration of EZW preferences necessary to solve the asset pricing puzzles generates a new puzzle, which is
related to the implausibly large value of an early resolution of uncertainty. Second, under the veil of ignorance,
risk aversion and the aversion to consumption fluctuations should be equivalent from a normative viewpoint.

6See Gollier (2018) for a discussion on the link between stochastic volatility and the fourth moment of the
distribution of consumption.
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δ 0 rate of pure preference for the present
γ 4 degree of relative risk aversion
rf 1.0% risk-free rate
Π 2.0% aggregate risk premium
gb 2.0% growth rate of consumption in the BAU scenario

gs -33.3% growth rate of consumption in the stress scenario
π 2.33% probability of the stress scenario
G 1.3% growth rate of expected consumption
rb 8.0% contingent discount rate in the BAU scenario
rs -133.4% contingent discount rate in the stress scenario

Table 1: Benchmark calibration of the evaluation model.

• The growth rate gb in the BAU. We assume a growth rate of gb = 2% per year on the
basis of the trend of growth in the western world over the last century.

• The risk-free rate rf . We assume a risk-free rate of rf = 1% corresponding to the
average real rate of return of Bills in the western world over period 1880-2005 (Barro,
2009).

• The expected rate of return of a claim on aggregate consumption (β = 1). (Barro, 2009)
documents an average real return on equity of 7.5%, whereas Bansal and Yaron (2004)
assume a CCAPM beta of equity equaling β = 3. This is compatible with an aggregate
risk premium Π around 2.17%. We calibrate our model to produce an aggregate risk
premium of Π = 2%. This means that the risk-adjusted discount rate for a share on
aggregate consumption is 3% under our calibration.

We follow Barro (2009) by assuming a degree of relative risk aversion equaling γ = 4,
which is an upper bound of what we recognize as a standard attitude toward risk. Finally,
for moral reasons, we assume no discrimination across generations in the welfare function
(δ = 0). There is no ethical argument to penalize individuals on the basis of the generation
to which they belong. It is in line with what was retained in Stern and Stern (2007) - a rate
very close to zero, equal to 0.1% -, but the French and British authorities have for their part
retained a rate equal to 1% and 1.5% respectively - cf. Quinet et al. (2013) and Treasury
(2020).

Using the framework presented in the previous section, it is easy to verify that matching
the above-mentioned moments univocally determines the remaining two parameters of our
two-state model: The probability of catastrophe must be equal to π = 2.33%, and the rate
of growth in the catastrophic state must be equal to gs = −33.3%. Observe that the values
of these two stress parameters are similar to those obtained by Barro (2009), as he estimated
from international data a probability of catastrophe of 1.7% and an expected drop in GDP
in that case of 29%. The efficient discounting system and its underlying economic context
that supports it is summarized in Table 1. The expected consumption grow at rate 1.3%.

We now show that adding some gaussian noise to the growth process does not add much
to the resolution of the asset pricing puzzle. Compared to our calibration for the 1-year
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risk free aggregate risk
rate premium

certainty 5.2% 0.0%
benchmark 1.0% 2.0%
benchmark with gaussian noise 0.7% 2.1%

Table 2: Effect of risk on asset prices. The "certainty case" corresponds to an economy
growing at the sure rate G = 1.3%. The benchmark case corresponds to the two-state growth
model described in Table 1. In the "benchmark with gaussian noise", I add to the benchmark
a gaussian noise in the BAU scenario of the benchmark model, with a standard deviation of
2%.

maturity, Barro (2009) has the additional ingredient of a gaussian noise around gb = 2%
in the BAU scenario. In his paper, the gaussian noise has a standard deviation of 2%. In
Table 2, I compare the risk free rate and the aggregate risk premium under three economic
growth process. The reference is an economy with no uncertainty at all, growing at the sure
rate G = 1.3%. In such an economy, the risk free rate equals 5.2%. We see that the two-
state uncertainty examined in our benchmark dramatically reduces this interest rate to 1%.
The addition of the gaussian noise with a volatility of 2% in the BAU scenario generates an
additional reduction of the risk free rate to 0.7%. Concerning the aggregate risk premium,
the two-state risk increases it to 2.0%, from 0 in the case of certainty. The addition of the
gaussian noise has the marginal effect to increase it to 2.1%. This illustrates the fact that our
two-state benchmark risk captures most of the asset pricing impact of the uncertainty of the
Barro’s model. In other words, removing the gaussian noise from the model has a marginal
impact in the evaluation of projects.

Going back to our benchmark model, we know that there are two approach to the evalua-
tion of projects. We support the simple SDF approach. Consider a 1-year project generating
an expected benefit bb

1 conditional to the BAU scenario, and an expected benefit bs
1 condi-

tional to the stress scenario. Using the exact Ramsey rule, we obtain the state-dependent
discount rates rb = γgs = 8.0% and rs = γθ = −133.4%, Using the associated SDF e−r, this
yields the simple pricing formula

PV = (1 − π)(0.92bb
1) + π(3.80bs

1) = 0.902bb
1 + 0.088bs

1. (14)

The strong asymmetry between the two state-dependent discount factors illustrates the val-
uation bonus for projects able to generate benefits in the stress scenario.

Let us compare this very simple valuation formula to what would be required in the
CCAPM approach consisting in discounting the expected benefit at a risk-adjusted rate. The
evaluator should first estimate the beta of the project. An estimation of this income-elasticity
of the benefit is given by the following equation:

β =
Log(bb

1) − Log(bs
1)

gb − gs
. (15)

This allows the evaluator to estimate in turn the risk-adjusted discount rate (1 + 2β)%.
Finally, the evaluator must discount the expected benefit (1 − π)bb

1 + πbs
1 at this rate. This

is a long and obscure detour to produce a value for projects.
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SDF Approach
Present value PV=0.902 × 2 + 0.088 × 4 = 2.157
Discount rate (eq. (11)) ρ1 = − log(PV/Eb) = −5.25%

CCAPM approach
beta β = (log(bb

1) − log(bs
1))/(gb − gs) = −1.96

Discount rate (eq. (13)) ρ1 = (1 + 2β)% = −2.92%
Present value =e−R(0.9767 × 2 + 0.0233 × 4) = 2.107

Table 3: Two approaches to the estimation of the value of a one-year project with state-
dependent benefits (bb

1 = 2, bs
1 = 4) in the benchmark calibration of the two-state model of

Table 1.

Let me illustrate the SDF and CCAPM approaches with a simple example under our
benchmark calibration described in Table 1. We assume bb

1 = 2 and bs
1 = 4, which describes a

negative-beta project. The expected benefit of the project equals 2.047. Following the SDF
valuation rule (14), we immediately obtain a project value equaling 2.15. This is compatible
with a risk-adjusted discount rate of -5.25%. Under the CCAPM approach, we first use
equation (15) to obtain an estimation of the beta of the project. This gives β = −1.96, and
thus a risk-adjusted discount rate of -2.92%. This yields a present value of 2.11. Beyond
the unnecessary complexity of the CCAPM approach, notice the large discrepancy between
the two estimations in terms of the (implicit) discount rate. this CCAPM approach does
not generate an exact solution. Indeed, remember that the linear CCAPM discounting rule
rf + βΠ is exact only when the growth rate of consumption is gaussian, which is not the case
as soon as one recognizes the existence of fat tails or catastrophic events.

We have already explained that outside the gaussian world, the efficient risk-adjusted
discount rate is a polynomial function of the beta of the asset. Martin (2013) gives the
following exact rule:

ρ1 = δ +
+∞
∑

n=1

κn

n!
(βn − (β − γ)n) , (16)

where κn is the n-th cumulant of log consumption growth in the first period. The first
cumulants are familiar: κ1 is the mean, κ2 = σ2 the variance, κ3/Sigma3 the skewness,
and κ4/σ4 is the excess kurtosis of log(C1/C0). In the gaussian case, only the first term in
the summation operator of equation (16) is non-zero, which makes it equivalent to equation
(13). In all other cases, higher-order cumulants are non-trivial and the risk-adjusted discount
rate becomes a non-linear function of β. In our two-state benchmark, the log consumption
growth is heavily negatively skewed, whereas β3 − (β − γ)3 is convex in β, so that this term
introduces a concavity in the (1, β) relationship. In Figure 1, we represented the exact risk-
adjusted discount rate and its CCAPM linear approximation. The special case described in
Table 3 is illustrated in the left side of this figure.
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Figure 1: Risk-adjusted discount rate for a project with net benefit b1 = Cβ
1 as a function of

β in the benchmark two-state model calibrated in Table 1. The red curve is the exact rate
from equation (11), whereas the dashed line corresponds to its CCAPM approximation from
equation (13).

3.2 Multiple-year projects

In this section, we generalize our model to time horizons larger than one year. In Barro’s
model, the growth process is i.i.d. over time, so that a catastrophe can occur every year. One
advantage of this assumption is that the term structure of discount rates is flat, i.e., ρt is
independent of t. The disadvantage is that evaluators face a myriad of scenarios to examine
when considering long-lived projects. To keep our model as simple as possible, we continue
to assume that there are only two possible scenarios, with a stress scenario occurring with
probability π = 2.33%, and a BAU scenario occurring with probability 1 − π. {Cs

t } |t∈N

and {Cb
t } |t∈N describe the deterministic growth process of consumption in the stress and

BAU scenarios respectively. The state-dependent annualized growth rate of consumption is
denoted gi

t = (1/t) log(Ci
t/C0), i ∈ {s, b}. In this benchmark, we propose to select these two

state-dependent growth processes in such a way that the term structures of risk-free rates
and aggregate risk premia be flat, respectively at rf = 1% and Π = 2% as in the one-year
case. These two sets of conditions

rf = δ −
1

t
log

(

π exp(−γgs
t t) + (1 − π) exp(−γgb

t t)
)

(17)

rf +Π = δ−
1

t
log

(

π exp((1 − γ)gs
t t) + (1 − π) exp((1 − γ)gb

t t)
)

+
1

t
log

(

π exp(gs
t t) + (1 − π) exp(gb

t t)
)

,

(18)
for all t ∈ N/0 univocally determine our two-state growth process characterized by {(gs

t , gb
t )} |t∈N/0.

Of course, for t = 1, the solution is as described in the previous section, with gs
1 = −33.3%

and gb
1 = 2.0%. Consumption levels and annualized gowth rates in the two scenarios are de-

scribed in Table 4 and in Figure 2. In the stress scenario, the annualized growth rate increases
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t gs
t gb

t Cs
t Cb

t rs
t rb

t

1 -33.40 2.00 0.72 1.02 -133.00 -133.00
11 -6.07 1.27 0.51 1.15 -24.30 -24.30
21 -3.53 1.20 0.48 1.29 -14.10 -14.10
31 -2.49 1.18 0.46 1.44 -9.94 -9.94
41 -1.90 1.19 0.46 1.63 -7.59 -7.59
51 -1.52 1.20 0.46 1.85 -6.08 -6.08
61 -1.25 1.23 0.47 2.12 -5.01 -5.01
71 -1.05 1.26 0.47 2.45 -4.22 -4.22
81 -0.90 1.31 0.48 2.88 -3.60 -3.60
91 -0.78 1.35 0.49 3.43 -3.11 -3.11
101 -0.68 1.41 0.50 4.14 -2.71 -2.71
111 -0.60 1.46 0.52 5.05 -2.38 -2.38
121 -0.53 1.51 0.53 6.22 -2.11 -2.11
131 -0.47 1.56 0.54 7.72 -1.87 -1.87
141 -0.42 1.60 0.56 9.61 -1.67 -1.67
151 -0.37 1.65 0.57 12.00 -1.49 -1.49
161 -0.33 1.68 0.58 15.00 -1.34 -1.34
171 -0.30 1.71 0.60 18.80 -1.20 -1.20
181 -0.27 1.74 0.61 23.50 -1.08 -1.08
191 -0.24 1.77 0.63 29.40 -0.97 -0.97

Table 4: Growth process and state-dependent discount rates in our two-state benchmark
model. The state-dependent annualized growth rates gi

t and discount rates ri
t are expressed

in % per year. We assume γ = 4 and δ = 0. This yields a constant risk-free interest rate of
rf = 1% and a constant aggregate risk premium of Π = 2%, for all maturities.

over time. Consumption is at a minimum 30-50 years after the crash, a period during wich
consumption is 54% smaller than today. Two centuries after the crash, consumption remains
37% smaller than today. In the BAU scenario, consumption has an exponential trajectory,
but the annualized growth rate of consumption is hump-shaped, with a minimum annualized
growth rate at 1.2% around a time horizon of 20-50 years.

The corresponding efficient state-contingent discount rates are immediately derived from
the Ramsey rule:

ri
t = δ + γgi

t, (19)

for all t and for i ∈ {s, b}. Table 4 and Figure 2 describe the term structures of these two
state-dependent discount rates. The stress-specific discount rates has an increasing term
structure, but it remains negative for all maturities under consideration (200 years). The
term structure of the BAU discount rates is hump-shaped in parallel to the BAU annualized
growth rates.

The discounting system described in Table 4 provides an easy workplace for the evaluator,
who must estimate the flow of expected benefits {bs

t , bb
t} |t∈N/0 of the project under scrutiny
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Figure 2: State-contingent annualized growth rates (line 1), consumption levels (line 2) and
discount rates (line 3) in our benchmark model. This is a graphical representation of Table
4.
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under the two scenarios. This allows the evaluator to compute the contingent PVs

PV i =
∑

t=0

bi
t exp(−ri

tt), (20)

and eventually the value of the project which is the expected PV πPV s + (1 − π)PV b.

4 When climate matters: Stress discounting with four scenar-

ios

In the context of climate change, future aggregate consumption will mostly depend upon
two sources of uncertainty: the growth of Total Factor Productivity (TFP), and the cli-
mate sensitivity. A large climate sensitivity will raise climate damages, and will therefore
adversely affect aggregate consumption. As discussed by Dietz et al. (2018), Cai and Lontzek
(2019) and Lemoine (2021), these two sources of risk imply opposite correlations between
consumption and the benefit of mitigation. If TFP uncertainty predominates, consumption
and mitigation benefits will be positively correlated, as a larger growth yields more emis-
sions and a larger marginal benefit of mitigation, assuming a convex damage function. If the
uncertainty affecting the climate sensitivity dominates, consumption and mitigation benefits
will be negatively correlated. Indeed, a larger climate sensitivity implies at the same time
a larger mitigation benefit and a smaller future aggregate consumption. This means that
the risk-adjusted discount rate to value mitigation efforts, i.e., to estimate the Social Cost of
Carbon (SCC), is highly sensitive to the way these two sources of risk. According to Dietz
et al. (2018), the so-called “climate beta”, is smaller tan 1, and has a decreasing term struc-
ture. Indeed, the risk of climate damage is increasing over time while negatively correlated
with economic growth. Consequently, the beta is decreasing over time, and could take low
or even negative values on the long term. This means that climate mitigation projects might
exhibit an insurance value over the long run.

In this section, we propose to re-examine these issue by considering two risks with two
possible outcomes each, i.e., a four-state structure of risk.

4.1 Methodology

Applying the stress discounting procedure to value an investment project requires more than
two scenarios to take into account both economic and climatic uncertainties. We follow Dietz
et al. (2018) who analyzes 10 sources of uncertainty and shows that the two prevailing ones
are shocks on TFP and climate sensitivity. Consequently, we consider two binary risks, that
of an economic disaster as before, and that of a climatic catastrophe corresponding to a very
high climate sensitivity. We combine these two sources of uncertainty, giving a total of four
possible scenarios.

One of the key outputs is the expected discounted value of carbon benefit. In practice,
the public authorities identify a tutelary value for carbon, that is a social cost of carbon path
SCCt, equal to the consumption-equivalent at time t of the damage induced by emitting one
more ton of CO2 at the same period. What matters here is the present social value of a
project avoiding carbon emissions. The evaluator can compute these values by discounting
the social cost of carbon, using the official discount rate r defined by the public authorities.
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This is what is shown in the left part of the following equation. In reality, the social cost
of carbon SCCt is not the same along the different states of nature (depending on growth g
and climate sensitivity S), and the exact calculation should compute the expected weighted
value, as shown in the right part of this equation:

e−rtSCCt ≃
E[u′(Ct(S, g))SCCt(S, g) | S, g]

u′(C0)

As explained in the previous section, when the avoided carbon emissions are proportional to
the consumption raised to the β power (as it would be the case for instance if they are linked
to a volume of passenger transport), the expected value of environmental externality is then

e−rtSCCtC
β
t ≃

E[u′(Ct(S, g))SCCt(S, g)Cβ
t (S, g) | S, g]

u′(C0)

where the right-hand side corresponds to the approximate method currently used and the
left-hand side gives the exact value when considering all the states of nature. The stress-
discounting method amounts here to do this calculation by considering only four states of
nature. It requires to provide the evaluator for each of the four scenarios with a social cost
of carbon path and a basic assumption on economic growth (that translates into a constant
discount rate). We will apply this method in section 5 but need first to calibrate then
benchmark it. This is done in the two following sections.

4.2 Calibration

Before anything else, general assumptions are needed on risks and on climate damage. Re-
garding environment-economy modelling, we use the DICE 2016R2, with slightly modified
parameters to allow easy comparisons with the analysis done in section 3.7 We also assume
that the environmental policy is set at a low level of ambition (which amount to stop all
emissions in 2080), and is not modified to take into account any surprises on growth or cli-
mate. This amounts to saying that we do not become aware until too late if the sensitivity
to the climate is much higher than expected (Pindyck (2021)) or if we enter in a period of
secular stagnation with very low economic growth.8

As previously mentioned, we also follow Dietz et al. (2018) who show that two main
sources of uncertainty matter, respectively on economic growth and on climate sensitivity,
and use their calibration. More precisely, they assume that the growth rate of the total
factor productivity (TFP) is driven by a fist-order autoregressive process with an uncertain
trend growth rate g0 that follows a normal law with mean 1.6% and standard deviation 0.9%.
Regarding climate sensitivity, Dietz et al. (2018) consider as in Dietz and Stern (2015) that
it follows a log-logistic function with a mean at 2.9C◦, a standard deviation equal to 1.4C◦,
truncated from below at 0.75◦.

As mentioned before, all these choices are only indicative - in particular, it is up to the
public authorities to choose these assumptions, and possibly use a more recent Integrated

7We choose as previously a pure rate of preference equal to zero, instead of 1.5% as originally in DICE,
and assume no deceleration of TFP, i.e. using the notations used in this model dela = 0 instead of 0.5%.

8In practice, this means that we maintain in these simulations the emission control rate (MIU parameter in
DICE) at its optimal level as calibrated in the base scenario (we assumed here that emissions cannot become
negative, following Anderson and Peters (2016)).
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Assessment Model. Similarly, regarding the scenarios, we arbitrarily choose to retain dis-
aster scenarios with a probability of occurring equal to 8%. Regarding climate, under the
assumptions defined in the previous paragraph, there is a probability equal to 92% that the
climate sensitivity is under 4.5◦ with a mean at 2.6◦, and otherwise above this threshold
with a mean at 5.7◦. We analyze growth distribution using Monte Carlo simulations, and
check that the average growth in the 8% worst case corresponds to a stressed scenario with
a sudden drop of 43% and a subsequent yearly negative TFP growth equal to −0.2%. The
average growth in the 92% remaining cases correspond to a TFP growth equal to 2.3%. We
check that the consumption growth is relatively independent of the climate sensitivity, and
equals respectively to 3.6% and −0.1% in the BAU and the stressed economic scenarios. We
thus obtain the following four scenarios :

• Good climate and BAU (probability 84.64%) : S = 2.6 and g = 3.6%;

• Bad climate and BAU (probability 7.36%) : S = 5.7 and g = 3.6%;

• Good climate and Stress (probability 7.36%) : S = 2.6 and g = −0.1% after 43% drop
of consumption;

• Bad climate and Stress (probability 0.64%) : S = 5.7 and g = −0.1% after 43% drop
of consumption.

We can then estimate the paths of temperatures and the social cost of carbon for the
four corresponding scenarios, as show in figure 3. As expected, in the scenario with an
economic shock, the SCC is higher at the beginning (before the sudden drop in consumption)
and lower later on after because it corresponds to the monetary equivalent of damage while
future generations are poor in those stressed scenarios.

Figure 3: Temperature and social cost of carbon for the four scenarios.

4.3 Benchmark comparison

We can then compute the expected discounted value of carbon benefit, as explained in pre-
vious section, and benchmark it to the exact value obtained by running 5000 draws of a
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Monte Carlo simulation. We also benchmark it to what would be obtained by using a single
discount rate and a single social cost of carbon path, corresponding to the average scenario.
The latter scenario is obtained by assuming a mean climate sensitivity equal to 2.9◦ and
taking the mean TFP obtained from the Monte Carlo simulation. This is close to assuming
that annual consumption growth is 2.7%, which corresponds to a non-risk adjusted social
discount rate equal to 3.915%. The result is shown in the left part of the figure 4. We see
that the value obtained using the stress-discounting method is very close to the exact value,
whereas the method based on a single growth scenario and a single discount rate provides
a value more than 50% too low. This shows that taking risk into account greatly raises the
carbon value (this point is discussed in more detail on an example in the next section) and
that limiting ourselves to four schematic scenarios is a good approximation. The graph on the
right hand-side provides the risk-free rates according to those three approaches, and shows
that the stress-discounting method provides, as seen in section 4, a declining term structure
close to the real value.

Figure 4: Discount rates and expected present carbon value obtained from a numerical estimation
(with 5000 Monte Carlo simulations), from the stress-discounting method and from an approximation
based on a single discount rate and a single carbon path (mimicking the method currently followed
by public administration).
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Another benchmark can be provided through the illustrative example of a project that
avoid emitting 1 ton of CO2 each year during 50 years starting from now. The expected
present value of such a project is presented in figure 5.

Figure 5: Valuation of a project avoiding 1tCO2 per year

We observe that

• The stress discounting method gives a very good approximation of the exact value,
whereas the official method is very wrong:

• The fourth scenario, despite his very low probability of occurrence, has a significant
impact. When both shocks are present, the discounted carbon value is very high because
of the high climate sensitivity and because future generations will be relatively poor.

5 Applications

5.1 Nuclear wastes

In France, the second generation of nuclear power plans (1970-2050) will produce a total of
83,000 m3 of nuclear wastes of high activity or medium activity/long life. The current policy
project is to build a geological repository at a depth of 500 meters in the French Ardennes.
The site will take 10 years to be built, and the wastes will progressively be transferred in
the repository over the next century, for a final irreversible closure around 2150. The flow
of gross costs associated to this project is described in Figure 6, with a non-discounted sum
of 25.5 billion euros. The code name of this project is Cigéo.9 Its management has been
delegated to ANDRA, the national agency in charge of nuclear waste management. There
exist various alternative solutions to Cigéo. Many are either not technologically mature or
prohibitively more expensive (Bouttes et al. (2021)). Let us examine the credible alternative
of a Permanent Surface Storage (PSS). The PSS strategy consists in periodically repackaging
the nuclear wastes to be stored on surface or subsurface, as currently practiced in all countries
producing nuclear electricity. For France, the annual gross costs of PSS strategy are estimated
at 100 million euros. Gross costs do not take account of the elasticity of these costs (of labour,
cement, land use, capital,...) to changes in GDP. Following (Bouttes et al. (2021)), we assume
an income-elasticity of these costs equal to 0.8. Notice that this implies that costs will be
larger in the BAU scenario than in the stress scenario, and that Cigéo has no macro-hedging
benefit if we limit the analysis to the income-elasticity of these costs.

9For "Centre Industriel de stockage GEOlogique" in French.
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Figure 6: Flow (to be extrapolated to infinity) of the gross costs (in euros per year) of
Cigéo (geological repository, plain curve) and PSS (surface storage, dashed curve). Source:
ANDRA.

contingent value expected
BAU stress value

PV Cigéo 10.61 47.00 12.43
PV PSS 4.68 163.69 12.63
PV PSS with damages 4.68 240.72 16.48

Table 5: Valuation (in billion euros) of Cigéo and PSS costs. In the last line, we add a
permanent flow of health and environmental damages x = 50 million euros/year materializing
in the stress scenario if the PSS option is implemented ex ante.

In Table 5, we summarize the stress discounting procedure to evaluate the competing
options Cigéo and PSS. In the BAU scenario, the contingent PV of PSS costs is much smaller
than the contingent PV of Cigéo costs. This is due to the observation that with a discount
rate as high as rb = 3.6%, the PSS option is very attractive given the postponment of
most expenditures. If one were sure that the BAU scenario would prevail, Cigéo should
not be implemented. But the opposite conclusion should be made contingent to the stress
scenario, because of the much smaller discount rate rs = 0.2% combined with the large penalty
∆ = 3.08 to be used when evaluating costs in that scenario. When taking the expected value
of these two pairs of contingent PV costs using the stress probability π = 5%, we obtain
basically the same PV of the costs, around 12.5 billion euros, with a small advantage for
Cigéo.

An important piece of the story is missing in this comparison of the two options to manage
nuclear wastes in the long run. The geological repository is used as a passive natural barrier
to radionuclides. On the contrary, the surface storage of nuclear wastes requires an active
maintenance to guarantee its safety. Cigéo has thus an important safety benefit compared
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to PSS, in particular in the stress scenario. Such a scenario is likely to be associated with
a degradation of our democratic institutions and their ability to maintain the right level
of supervision, protection and maintenance of the surface storage, as well as cope with the
potential adverse consequences of a nuclear incident. To model this idea, let us assume that in
the stress scenario, a permanent flow B̄s of health and environmental damages is incurred by
the local population if the PSS option had been selected ex ante. The contingent PV of these
damages equals B̄s∆/(1 − exp(−rs)). Multiplying this contingent PV by the probability π of
the stress scenario yields the additional PV of costs of the PSS option. Suppose for example
a flow B̄s = 50 million euros of annual damages. The contingent PV of this flow in the
stress scenario is 77 billion euros. Consistent with equation (??), this adds 3.85 billion euros
to the expected PV costs, thereby inducing a strong preference for Cigéo. The safety issue
associated to the PSS option means that Cigéo is an insurance for future generations, and
Table 5 makes that apparent. Although the risk of a chaotic evolution of our society is small,
Cigéo should be implemented because of its insurance benefit against the large health and
environmental risk of the alternative option.

Imagine how the project analyst would have proceeded if asked to use the standard
CCAPM approach to evaluate Cigéo, using PSS as the default option. This analyst should
first estimate the CCAPM-beta of the net benefit of Cigéo. It would include the positive
income-elasticity of the costs and the negative beta associated to the safety issue examined
above. The global CCAPM-beta of Cigéo has a term structure, that should be used to
determine the maturity-specific Cigéo risk-adjusted discount rates using the term structures
of the risk-free rate and aggregate risk premia examined in Section 3. Then, the analyst
should estimate the flow of expected net benefits of Cigéo, using the information about
the distribution of future incomes and the income-elasticity of the costs that include health
and environmental damages. Finally, this flow should be discounted using the maturity-
specific discount rates. It will generate a positive NPV for Cigéo. However, this standard
approach is complex and does not provide the essence of the argument for why Cigéo should
be implemented.

5.2 Climate mitigation project ?

transportation project with strong climate mitigation impact, such as grand paris express ?

6 Conclusion

[TBD]
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1 Introduction

It is well known that retail investors have limited understanding of �nancial

products and often rely on the recommendations of experts when making

investment decisions. The important losses su¤ered by small investors in

the 2007-2008 �nancial crisis highlighted the de�ciencies of the market for

�nancial services, e.g., investment advisors, brokerage �rms, �nancial plan-

ners, etc. A voluminous literature documents the mis-selling and mis-pricing

of �nancial products, either because of con�icts of interest due to commis-

sions and kickbacks from product designers or simply because of careless or

incompetent �nancial advice.1

Accordingly, but already underway since the early 2000s, there has been

a tightening of the regulatory framework for retail �nancial markets over

the past �fteen years, e.g., the Dodd�Frank Wall Street Reform and Con-

sumer Protection Act (2010) in the US or the MiFiD II (2018) regulations

in the EU. The emphasis has been on business conduct rules for ensuring

transparency, disclosure of appropriate information, and suitable recommen-

dations through Know Your Client requirements. As noted by many2, the

analogy is with product safety regulations. To a lesser extent, redress mech-

anisms for wronged consumers have also been considered, with discussions

on how to promote the right to seek compensation from investment advisors

who recommended or sold unsuitable �nancial products, either through civil

courts, industry arbitration panels or �nancial ombudsman authorities.3 As

in producer liability for safety defects, advisor liability would provide direct

protection for investors and bene�t them indirectly by strengthening the �-

nancial intermediaries� incentives to deliver reliable services, thus improving

the attractiveness of retails investments.

Investor redress raises the issue of how to assess the harm su¤ered by

wronged investors, given that investments are intrinsically risky. The most

1See, among others, Basel Committee on Banking Supervision (2008), Campbell (2006),
Campbell et al (2011), Inderst and Ottaviani (2012a), Calcagno and Monticone (2015),
Célérier and Vallée (2017), Gennaioli et al (2021), Egan (2019), Egan et al (2019), Lin-
nainmaa et al (2021), Astous et al (2022), and the references therein.

2See for instance Warren (2008), Cherednychenko (2010), Moloney (2012).
3See CFA Institute (2014) for an international comparison of redress mechanisms and

International Organization of Securities Commissions (2021).
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common formula for determining the damages awarded, usually referred to

as Market Adjusted Damages, is to consider what the investor would have

received with a suitable portfolio or investment strategy, given the investor�s

time horizon and risk tolerance:

This measure of damage allows the claimant to recover the dif-

ference between what the claimant�s account made or lost versus

what a well-managed account, given the investor�s objectives,

would have made during the same time period. (FINRA 2017,

p. 67)

Speci�cally,

These damages compensate an investor for losses caused by wrong-

ful conduct in both a rising and falling market by adding or re-

ducing return according to the actual performance of the market.

(Aidiko¤ et al 2014, p. 135)

Similar formulations are used by many adjudicatory bodies and have been

discussed by legal scholars.4 The following formulation is particularly ex-

plicit:

Where inappropriate �nancial advice has been provided, the pur-

pose of compensation is to place the consumer in the �nancial

position they would have been in if the �nancial adviser had

provided appropriate �nancial advice...We need to consider what

would have been a suitable alternative. We will look for an alter-

native portfolio of investments with the correct mix of defensive

and growth assets. (Financial Ombudsman Service Australia

2014, p. 2 and 4)

Consensus over these damages formula is relatively recent as evidenced

by the evolution of the notion in the legal literature. In the early 1970s, Co-

hen (1971, p. 1605, footnote 5) remarks that �there has been almost no dis-

cussion of the proper measure of damages in a suit for the loss caused by the

4See for instance Financial Regulatory Authority (2017), Vandendriesche (2015),
Dolden and Newnham (2015), Stanton (2017).
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recommendation of an unsuitably high risk� and then compares �actual dam-

age caused�, interpreted as Market Adjusted Damages as de�ned above, to

a rescission standard whereby the investor receives the purchase price of his

investment plus risk-free interest since the date of purchase.5 Easterbrook

and Fischel (1985) discuss Market Adjusted Damages but express reserva-

tions about the concept. In the case where a client was recommended an

excessively risky portfolio, they propose that the best measure of the harm

su¤ered by the investor is the excess risk assessed ex ante, independently of

ex post realized returns:

The court could compute the extent to which the portfolio

the broker put together was riskier than an appropriate target

portfolio and award compensation that depends on how far a

well-chosen portfolio would be expected to outperform the ex-

cessively risky one. Any client could obtain this compensation

even if his portfolio later beat the market. The award should be

based on excess risk viewed ex ante, not on how things turned

out. (Easterbrook and Fischel 1985, p. 651).

Literally interpreted, Market Adjusted Damages compensate an investor

for any ex post loss due to faulty advice, assuming that suitability is ver-

i�able by the adjudicatory body and that alternative suitable investments

(from an ex ante perspective) can be determined. The concept is attractive

because it appears to o¤er an easy way to disentangle the risk of faulty ad-

vice from the intrinsic market risk of any risky investment. However, the

notion is not without problems. First, an investor sold an unsuitable port-

folio will �le a claim only when the investment turns out to be unsuccessful.

She will stay put when the unsuitable portfolio delivers returns greater than

with an appropriate portfolio given her needs and risk tolerance. This will

occur, for instance, when an unsuitably high risk portfolio with large ex-

pected returns was recommended and the market evolved favorably. With

Market Adjusted Damages, the liability risk faced by the advice provider is

5See also FINRA (2017, p. 67) for the de�nition of rescission damages and Himes
(1999) for the use of various measures in US court decisions.
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therefore one-sided and materializes only in market downturns, with no com-

pensation in market up-turns.6 Secondly, and most importantly, the advice

providers� liability costs will ultimately be born by investors, because they

will be factored in the advice fees or the loads on the funds sold. This should

be taken into account if the purpose of investors� right to claim damages is

to improve their expected utility from investing in risky assets.

This paper analyzes damages formulas for investor redress from three

perspectives. First, I characterize the formula that provides full compen-

satory expectation damages at least cost, in the sense of minimizing the

liability cost incorporated in advice fees and given that advice providers will

exert costly e¤ort to deliver reliable recommendations. Secondly, I charac-

terize the optimal insurance coverage against the risk of erroneous advice,

given that the cost of coverage will be part of the advice fee and is therefore

born by investors. Finally, I characterize the e¢cient liability scheme tak-

ing into account the dual function of liability, i.e., providing protection to

investors against the risk of unsuitable advice and providing advisors with

incentives to supply suitable advice. This third perspective connects with

the standard model of producer liability, as developed by Spence (1977) and

Shavell (1987, 2007) among others. I show that each of the three perspec-

tives yields a di¤erent variant of the Market Adjusted Damages formula.

As in the analytical literature on the market for �nancial advice (Bolton

et al 2007, Inderst and Ottaviani 2012a, 2012b, Carlin and Gervais 2012,

Gennaioli et al 2015), I consider a setting where retail investors have di¢-

culty in identifying their needs and have little knowledge of how to invest.

The �nancial advisor�s job is to identify the client�s needs and to match

clients with appropriate investment strategies and products. By contrast

with the extant literature, I abstract from biased advice due to con�icts of

interest and focus on the risk of mismatches due to the advisor�s imperfect

information about the clients� needs and the cost to the advisor of iden-

tifying correct matches. Another di¤erence is that the extant analytical

6Easterbrook and Fischel (1985) make similar observations (see p. 649). The possibility
of investor opportunism may explain the reluctance of many jurisdiction to allow redress
for faulty advice, for fear of subjecting advice providers to excessive risk of liability; see
Black (2010).
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literature is too stylized to allow a meaningful study of damages formulas. I

consider the recommendation of investment strategies in a setting with risky

asset returns where damages, in case of unsuitable recommendations, may

depend on the ex post realized returns of the investments. I characterize

the appropriate damages formula in this setting.

The paper develops as follows. Section 2 describes the analytical frame-

work. The sections 3 and 4 present two preliminary results, least cost expec-

tation damages and optimal insurance, which are shown to di¤er. Section 5

characterizes the e¢cient liability scheme. Section 6 concludes.

2 Model

Consider an investment period, say from date 0 to date 1, in an economy

with complete risk trading opportunities. Agents have an exponential utility

function with respect to end of period wealth:

ui(wi) = �
1

�i
e��iwi (1)

where wi is the date 1 wealth of agent i and �i is the agent�s absolute

risk aversion coe¢cient. The date 0 market value of the prospect wi is

the expectation E(mwi) where m is the market stochastic discount factor.

With exponential utility functions, it is well known that m is an exponential

function of aggregate wealth.7 Equivalently, in terms of wealth per capita,

m = Be��s (2)

where B is a positive constant, � is the harmonic mean of the �i�s, i.e., 1=� is

the average risk tolerance in the economy, and s is the random date 1 wealth

per capita. The gross risk-free rate of return is Rf satisfying E(m) = 1=Rf ,

so that m can be rewritten as

m =
e��s

RfE(e��s)
: (3)

7See for instance Bühlmann (1980), Wang (2003), and Johnston (2007).
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Optimal portfolios. Consider now an agent whose date 1 wealth derives

solely from the investment of an initial capital w0. An optimal investment

strategy for that agent maximizes Eui(wi) subject to the budget constraint

E(mwi) � w0. The optimal strategy eliminates all idiosyncratic risks and

the date 1 payo¤s, written wi(s), satisfy the �rst-order condition

u0i(wi(s)) = �m(s), s 2 S; (4)

where u0i denotes marginal utility, � > 0 is a Lagrange multiplier, andm(s) is

the stochastic discount factor for a dollar delivered in state s of the economy.

Substituting from (1) and (3) into the �rst-order condition and then in the

budget constraint yields

w�
i = w0Rf +

�
�

�i

�
(s� s) (5)

where

s �
E(ms)

E(m)

is the �risk-neutral� expected wealth per capita.8

The prospect w�
i is the payo¤ of an optimal portfolio or investment strat-

egy for an agent with absolute risk aversion �i and wealth invested equal to

w0. Rather than a buy and hold investment, one can also view w�
i as result-

ing from an optimal dynamic trading strategy over the investment period

[0; 1], as for instance in Palma and Prigent (2009).

My focus is a subset of unsophisticated agents, small or retail investors,

who are �unable to fend for themselves� to use the language of the 1933 US

Securities Act9. These investors have a vague understanding of their needs

and are unable to di¤erentiate between optimal and suboptimal portfolios,

let alone design and manage complex trading strategies. They therefore seek

the advice of experts, e.g., investment advisors, �nancial planners, brokers

or other �money doctors�. The term �nancial advisor will refer here to any

intermediary with expertise whose job is to assess the investor�s needs and

8The risk-neutral probability density function is g�(s) = [m(s)=E(m(s))]g(s), where
g(s) is the �physical� density function.

9 I borrow this from Carlin and Gervais (2012).
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transform the initial capital w0 into a prospect of date 1 payo¤s.

To simplify, the retail investors all have the same initial capital and

they belong to one of two categories in terms of risk tolerance: some are

type l with risk aversion �l, some are type h with risk aversion �h where

�l > �h, i.e., type h is the more risk tolerant. Accordingly, �nancial advisors

design optimal portfolios for each risk tolerance category, for instance a

�conservative� versus an �aggressive� strategy, and they match customers with

the suitable returns pro�le.

If the fee for �nancial advice or load on funds is p, the amount e¤ectively

invested is w0 � p yielding the payo¤

wi = (w0 � p)Rf +

�
�

�i

�
(s� s) = w�

i � pRf , i = l; h: (6)

Figure 1 illustrates the net payo¤s as a function of the state of the economy

at date 1. The portfolio designed for the more risk tolerant has greater risk

exposure, as captured by the steeper slope, but this is compensated by larger

expected returns.10

Fig. 1. Optimal net-of-fee returns for types l and h

10The expected payo¤ is E (wi) = Rf (w
0 � p) + (�=�i) (E(s)� s) where E(s) > s.
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KYC (�Know Your Client�). However, the matching process is imperfect.

With probability �i, a type i investor is matched with her type-optimal

portfolio; with probability 1� �i, this investor is matched with the portfolio

designed for type j, j 6= i. The probability of correct matches depends on

the quality of the information gathered about the customer�s needs and on

the advisor�s matching strategy. As in the analysis of experts markets, the

�nancial advisor exerts costly e¤ort to diagnose the customer�s needs, in

the present case whether the customer�s type is l or h, and then selects a

�treatment�, here an investment strategy.11

The advisor�s KYC e¤ort is denoted by e � 0. The cost to the advisor

is c(e), an increasing and strictly convex function with c0(0) = 0. I interpret

e = 0 as some exogenous minimal e¤ort level when an adviser meets a client,

with c(0) � 0. The information obtained by the advisor is summarized by a

signal x with continuous densities fl(x; e) and fh(x; e) over the same support

X � R. I assume that fl 6= fh for all e � 0. The advisor obtains some

information even with minimal e¤ort, but greater e¤ort will improve the

information as described below.

A matching strategy is a function '(x) 2 [0; 1] representing the prob-

ability of matching the client with the type l optimal portfolio given the

information x. Hence,

�l =

Z

X

'(x)fl(x; e) dx and �h =

Z

X

[1� '(x)]fh(x; e) dx;

Let

�(�h; e) = max
'

Z

X

'(x)fl(x; e) dx

subject to

Z

X

[1� '(x)]fh(x; e) dx = �h, �h 2 [0; 1]:

From well known results12, �(�h; e) is decreasing and concave in �h with

�(0; e) = 1 and �(1; e) = 0.

The function �l = �(�h; e) is the �matching opportunity frontier� describ-

11See Dulleck and Kerschbamer (2006), Balafoutas and Kerschbamer (2020), Chen et
al (2022) on general experts markets.

12See Lehmann and Romano (2005), chapter 3.
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ing the trade-o¤s between the probabilities of correct matches, for a given

level of KYC e¤ort. �(�h; e) is strictly increasing in e for all �h 2 (0; 1), i.e.,

a larger KYC e¤ort shifts the matching opportunity frontier upwards.13 For

tractability, �(�h; e) is strictly concave and twice di¤erentiable.

Redress. Once date 1 returns are realized, an investor sold an unsuitable

portfolio has the opportunity to �le a claim in order to obtain redress or

compensation for the unsuitable advice. I assume that investors can always

ascertain ex post whether they were mismatched. This is veri�able by courts

or speci�cally designed industry arbitration panels. Moreover, �ling a claim

is without cost. The redress for an investor sold an unsuitable portfolio

may in general depend on the performance of other relevant portfolios, for

instance the realizations of w�
l and w�

h. I denote by Di the ex post compen-

sation awarded to a mismatched investor of type i = l; h. The main issue in

what follows is to characterize the appropriate redress formulas.

Welfare. Let pi be the load on the portfolios designed for type i = l; h;

that is, I allow for the possibilities of di¤erent loads. Given the quality of

matches and the possibility of redress, the average ex-post utility of of a

type l investor is

U l = �lEul(w
�
l � plRf ) + (1� �l)Eul(w

�
h � phRf +Dl): (7)

Similarly, for a type h investor, it is

Uh = �hEuh(w
�
h � phRf ) + (1� �h)Euh(w

�
l � plRf +Dh) (8)

An e¢cient arrangement is a Pareto-optimum with respect to U l and Uh

subject to the constraints

�l � �(�h; e), �h 2 [0; 1]; (9)

c(e)+
X

i=l;h

�i(1��i)E(mDi) � pl[�l�l+�h(1��h)]+ph[�h�h+�l(1��l)] (10)

13That is, e0 > e yields a more informative signal in the sense of Blackwell (1951); see
for instance Ganuza and Penalva (2010).

9



where �i is the proportion of type i in the population of retail investors

considered.

The inequality (10) is the advisor�s non negative pro�t constraint per

customer: the loads on funds must cover the cost of KYC e¤ort and the

liability costs.14 Given the matching strategy, the advisor faces a propor-

tion �l(1� �l) of type l customers who will be mismatched and similarly a

proportion �h(1� �h) of mismatched type h customers. The advisor hedges

the risk by purchasing �l(1 � �l) units of an asset (or portfolio) with date

1 payo¤s equal to Dl and �h(1� �h) units of an asset with payo¤s equal to

Dh. The right-hand side of (10) is the income per customer, given the load

on funds and the risk of mismatch.

Ex post investor opportunism. Consider the redress formulas Dl = w�
l �

w�
h and Dh = w�

h � w�
l . Then

E(mDl) = E(mDh) = 0

because w�
l and w�

h have the same date 0 market value of w0. The following

is therefore a Pareto-optimal arrangement: pl = ph = p where p = c(0),

yielding the investor expected utility

U i = Eui(w
�
i � pRf ):

The quality of advice is irrelevant because errors in assigning portfolios

can always be repaired ex post and this is ex ante without cost. Accordingly,

the advisor exerts the minimal level of e¤ort. The outcome is the same as

with perfect matches.

However, the above is not feasible because investors are presumed to �le

a claim whenever a mismatch occurred, even though the amount awarded

is negative. From Figure 1, this will arise for one type of investor or the

other when s 6= s. Welfare must therefore be maximized subject to the

incentive compatibility or disclosure constraint that damages awarded are

14The liability cost with respect to type i can be written as E(zmDi). where z is
an indicator variable with z = 1 when a mismatch is veri�ed ex post, z = 0 otherwise.
Because a mismatch is a purely idiosyncratic event, E(mzDi) = (1� �i)E(mDi).
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non negative,

Di � 0, i = l; h: (11)

Given zero ex post litigation costs, investor redress is costly only because of

the investors� ex post opportunism, i.e., investors with unsuitable portfolios

will sometimes be better o¤ ex post than with their type-optimal portfolio.

Miscellaneous. The following observations will be used repeatedly.

Observation 1. For any random x and y, the following statements are equiv-

alent: Eu(x) � Eu(y), Eu0(x) � Eu0(y), and Eu(x + k) � Eu(y + k) for

any constant k.

Observation 2. Let A � S. Then, u0i(w(s)) = �m(s) for s 2 A and some

constant � if and only if w(s) = w�
i (s) + k for s 2 A and some constant k.

The �rst claim follows trivially from the speci�cation of exponential util-

ity functions, i.e., a constant payo¤ can be factored out. The second derives

from the fact that the optimal payo¤s for di¤erent amounts of initial wealth

are parallel straight lines when expressed in terms of s; see (5).

3 Least-Cost Compensatory Damages

Before discussing arrangements, I consider two preliminary issues. The �rst

is a liability rule that allows investors to claim full compensatory damages

(from an ex ante perspective) for an unsuitable portfolio. The second, which

turns out to yield a di¤erent speci�cation, is the optimal insurance coverage

that investors would want to subscribe against the risk of being assigned an

unsuitable portfolio.

Expectation damages. For simplicity, let the load be the same across

funds. Suppose that the law entitles mismatched investors to obtain dam-

ages satisfying

Eui(w
�
j � pRf +Di) = Eui(w

�
i � pRf ), i = l; h; j 6= i: (12)
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Per Observation 1, this is equivalent to

Eui(w
�
j +Di) = Eui(w

�
i ), i = l; h; j 6= i: (13)

In expectation, investors are then in the same situation whether mismatches

occur or not. Borrowing from contract law terminology, I will refer to Di

satisfying (13) as �expectation damages�. Di is restricted to be non negative,

i.e., damages satisfy the disclosure constraint.

Facing the liability risk, advisors choose their KYC e¤ort and matching

strategy to minimize the per client cost

c(e) +
X

i=l;h

�i(1� �i)E(mDi):

Competition between advisors will drive down the advice fee p to the result-

ing minimum cost per customer.

Suppose KYC e¤ort can generate su¢ciently precise information at rea-

sonable cost, so that the advisor�s cost minimization involves interior match-

ing decisions, i.e., �h 2 (0; 1).15 Substituting for �l = �(�h; e), the advisor�s

e¤ort and matching strategy satisfy the �rst-order conditions:

���h(�h; e) =
�hE(mDh)

�lE(mDl)
; (14)

�l�e(�h; e)E(mDl) = c0(e); (15)

where ��h and �e denote partial derivatives.

The trade-o¤ between the two possible types of errors depends on the

relative costs of compensating type l and type h investors and KYC e¤ort

depends on the absolute level of these costs.16 Increasing the probability

15Otherwise, only one type of portfolio would be sold and it would be optimal for the
advisor to exert no e¤ort.

16The left-hand side of (14) can be shown to de�ne a critical value of the posterior odds
(of type l versus type h) for classifying the investor as l rather than h. To interpret (15),
note that, from the enveloppe theorem, (15) is equivalent to

d f�l�(�h; e)E(mDl) + �h�hE(mDh)g =de = c0(e):

where �h is a function of e via (14).
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of correct matches is always bene�cial in terms of reducing liability costs.

However, for a given quality of information, an increase in �l must be traded

o¤ against a decrease in �h. A larger KYC e¤ort relaxes that trade-o¤, but

there is then a trade-o¤ between KYC e¤ort and liability costs.

The investors� expected utility is then

U i = Eui(w
�
i � pRf ); i = l; h;

where p is the advisors� minimized unit cost. Incentives to provide reliable

advice are driven solely by the advisors� liability risk. The clients� inability

to assess the quality of advice does not matter. They are indi¤erent because

they su¤er no loss from erroneous advice. They only search for the lowest

price, which results from the trade-o¤ between the cost of KYC e¤ort and

liability costs. This equilibrium replicates the simple model of producer

strict liability for safety defects as developed for instance in Shavell (1987,

2007).

Least-cost damages. Although indi¤erent to the quality of advice, in-

vestors care about its price. So far, damages have been de�ned by the

condition (13) but without further characterization. There is clearly an in-

�nity of formulas satisfying that condition. I now look for the one with

the smallest cost. At equilibrium, this will yield the lowest advice fee. The

problem is then to choose Di that minimizes

E(mDi) subject to (13) and Di � 0:

Proposition 1 The feasible least-cost compensatory damages for a mis-

matched type i investor are DC
i = maxfw�

i � w�
j � �Ci ; 0g where �Ci > 0

solves

Eui(maxfw�
i � �Ci ; w

�
jg) = Eui(w

�
i ): (16)

The intuition for the form of the damages formula is that ex post com-

pensation should be paid only when the bene�t-cost ratio is highest. When

DC
i > 0, the mismatched type i investor gets w�

j + DC
i = w�

i � �Ci . Per

Observation 2, the marginal utility-price ratio u0i=m is then constant, where
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the constant depends on �Ci .

The resulting damages formula is �Market Adjusted Damages� (MAD)

but with a deductible. The investor is compensated for part of the ex post

loss due to an unsuitable portfolio, provided the loss is above a threshold. As

in the MAD formula, damages are computed as the di¤erence between the

realized returns under the unsuitable portfolio and the returns that would

have been obtained under the appropriate portfolio, but minus a deductible.

Figure 2 provides an illustration of the post redress payo¤s. The gray

line depicts the payo¤s to type l with the type-optimal portfolio; the broken

dark line depicts the �nal payo¤s to a mismatched type l investor. The

damages Dl(s) are expressed as a function of the state of the economy.

Fig. 2. Least-cost compensatory damages for a mismatched type l

Corollary 1 If the law requires compensatory damages, the fee for �nan-

cial advice is minimized by Market Adjusted Damages with the appropriate

deductible.

The result contrasts with other forms of compensation discussed in the

literature. As noted in the introduction, Easterbrook and Fischel (1985,
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p. 651) suggest that a wronged investor should be awarded compensation

based on inadequate risk-taking viewed ex ante, irrespective of �how things

turn out�. Similarly, de Palma and Prigent (2009) use compensating varia-

tions based on certainty equivalents to quantify the losses from misaligned

portfolios.

To illustrate, one can always �nd a constant compensation in case of

mismatch, say Di � di, that solves (13). With exponential utility functions,

the amount required is di = wC
ii � wC

ij where w
C
ii is the certainty equivalent

of the payo¤s under the suitable portfolio and wC
ij is the certainty equivalent

under the wrong portfolio, i.e., ui(w
C
ii ) = Eui(w

�
i ) and ui(w

C
ij) = Eui(w

�
j ).

The above shows that, while di¤erences in certainty equivalents is an ap-

propriate measure of harm, it does not constitute the appropriate damages

awarded ex post.

4 Mismatch Insurance

The preceding section did not discuss another feature of the simple model of

producer liability, namely that damages equal to consumers� losses constitute

e¢cient insurance coverage (Spence, 1977). Expectation damages obviously

provide insurance against the risk of an unsuitable portfolio, but it does not

follow that this is the optimal insurance coverage.

Let us consider the type i investors in isolation. Suppose they face the

risk of a mismatch with exogenous probability 1��i, in which case they get

the type j optimal portfolio. Without insurance, and assuming there is no

advice fee, a type i investor has expected utility

Ui = �iEui(w
�
i ) + (1� �i)Eui(w

�
j ):

Because Eui(w
�
j ) < Eui(w

�
i ), it follows that Eu

0
i(w

�
j ) > Eu0i(w

�
i ) per Obser-

vation 1. Hence, the investors would want to transfer some wealth from the

no-mismatch to the mismatch event, i.e., purchasing some coverage against

the risk of mismatch is bene�cial.

Abusing notation, I reinterpret p as the insurance premium paid up-

front for the coverage Di in case of a mismatch. The zero-pro�t insurance
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premium is then p = (1� �i)E(mDi). The investor�s expected utility is

Ui = �iEui(w
�
i � pRf ) + (1� �i)Eui(w

�
j � pRf +Di):

Feasible insurance policies must satisfy the disclosure constraint Di � 0.

To gather intuition, consider the coverage scheme

Di = maxfw�
i � w�

j � �; 0g: (17)

This is again the MAD formula with a deductible. Least-cost expectation

damages is the particular case with � = �Ci . Let p(�) be the insurance

premium given the coverage (17). The investors� expected utility is then

Ui(�) � �iEui(w
�
i � p(�)Rf )

+(1� �i)Eui(maxfw�
i � �; w�

jg � p(�)) (18)

Because a larger deductible means less insurance coverage, p(�) is a decreas-

ing function. We have the following result.

Lemma 1 U 0
i(�) < 0 for � � 0.

Investors would be willing to pay for an insurance coverage greater than

the least-cost compensatory damages de�ned by the deductible � = �Ci . Re-

call that the MAD formula literally interpreted entails that ex post losses

due to unsuitable advice are compensated, which amounts to � = 0, equiva-

lently Di = maxfw�
i �w�

j ; 0g. The above shows that this is better from the

investors� point of view than least-cost expectation damages, even though

they bear the cost of coverage. Note that expected utility is then greater

with the unsuitable than with the type-optimal portfolio.

Optimal insurance. From the lemma, expected utility can be increased

further by allowing coverage with a negative deductible. I show that a

negative deductible is indeed the optimal policy and derive the result without

exogenously imposing the form of coverage as in (17). The optimal mismatch
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insurance for type i investors solves

max
Di;p

Ui = �iEui(w
�
i � pRf ) + (1� �i)Eui(w

�
j � pRf +Di)

subject to (1� �i)E(mDi) � p and Di � 0.

Proposition 2 The optimal indemnity for a type i investor assigned the

wrong portfolio is Di = maxfw�
i � w�

j � �i; 0g for some �i < 0.

The end-of-period payo¤s under the optimal coverage are depicted in

Figure 3 for a type l investor. As in the MAD formula, the compensation

for a mismatch depends on the di¤erence in returns between the suitable

and unsuitable portfolios. However, the indemnity is greater than the ex

post loss due to the mismatch and an indemnity may be paid even though

there is no ex post loss.

Fig. 3. Optimal mismatch insurance for type l

Two intuitions underlie the result. First, when compensation is paid, the

indemnity should be adjusted so as to keep constant the marginal utility-

price ratio u0i=m. The rationale is the same as for the least-cost compen-
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satory damages: the expected utility of mismatched investors is then maxi-

mized for a given insurance premium; conversely, the insurance premium is

minimized for a given level of expected utility of mismatched investors. Per

Observation 2, this requires a payo¤ equal to w�
i up to a constant, thereby

yielding the form of damages described in the proposition. Secondly, ex post

overcompensation, i.e., �i < 0, is desirable because it mitigates the ine¢-

ciencies imposed by the disclosure constraint. A negative deductible allows

wealth to be transferred more often from the mismatch to the no-mismatch

event, which is bene�cial from an ex ante perspective. Although mismatched

investors obtain greater expected utility than with the correct match, this

nevertheless comes at a cost, i.e., the insurance premium. Investors would

be better o¤ ex ante if mistakes never occurred and they got w�
i for sure.

5 Optimal Liability

I now turn to the Pareto-optimal arrangement. This is analyzed �rst without

considering the advisor�s incentives in making recommendation decisions.

Next, incentives are taken into account in order to describe e¢cient liability

schemes.

Optimal allocation. I characterize a Pareto-optimum with respect to

U l and Uh as de�ned as in (7) and (8). The constraints are the matching

possibility set (9), the non negative pro�t constraint (10), and the disclosure

constraints (11). The maximization is with respect to e, �l, �h, Dl, Dh,

pl, and ph. As before, it is assumed that KYC e¤ort generates enough

information at reasonable cost for matching decisions to be interior. To

shorten notation, I write

uii � ui(w
�
i �piRf ), uij � ui(w

�
j �pjRf +Di), ui � �iuii+(1��i)uij ; (19)

uii is the utility of type i from a correct match and uij the utility (including

redress) from a mismatch.

Proposition 3 In a Pareto-optimal allocation:

(i) redress for a type i investor sold the wrong portfolio is Di = maxf(w�
i �
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w�
j � �i; 0g for some �i < 0, i = l; h;

(ii) matching decisions and advisor e¤ort satisfy

���h(�h; e) =

�h
(Euhh � Euhl)

RfEu
0
h

+ �h(ph � pl + E(mDh))

�l
(Eull � Eulh)

RfEu
0
l

+ �l(pl � ph + E(mDl))

; (20)

�e(�h; e)

�
�l
(Eull � Eulh)

RfEul
+ �l(pl � ph + E(mDl))

�
= c0(e); (21)

where �l = 1� �h are weights attached to each type�s expected utility.

Figure 4 provides an illustration of the optimal redress. The broken

black line is the �nal payo¤s for a mismatched type l investor; the broken

gray line, the �nal payo¤s for a mismatched type h. For either type, the

optimal redress is the MAD formula with a negative deductible.

Fig. 4. Optimal redress for type l and h

The conditions for the advisor�s matching decisions and KYC e¤ort

should be compared with (14) and (15) of Section 3. The di¤erence is that
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the trade-o¤ between �l and �h now does not depend solely on the relative

costs of redress to advisor; similarly, KYC e¤ort does not depend only on

the absolute level of these costs. The right-hand side of (20) equals the

relative social bene�ts of classifying the investor as one type or the other.

The numerator is the bene�t over type h clients of a marginal increase in

�h: with respect to the �rst term, (Euhh � Euhl)=(RfEu
0
h) is the wealth

equivalent, in date 0 dollars, of the di¤erence in expected utility between a

suitable and an unsuitable portfolio with redress; the rest of the numerator

is the savings in redress costs to mismatched type h investors net of the

di¤erence in loads. The interpretation of the denominator is similar. Con-

dition (21) states that the marginal cost of KYC e¤ort equals the marginal

social bene�t. The expression inside the brackets must be positive because

�e and c0 are positive. It follows that both the numerator and denominator

on the right-hand side of (20) are positive.

Two-part liability schemes. Suppose advisors are liable for the optimal

redress payments de�ned above. The advisor will then choose KYC e¤ort

and matching decisions to maximize

pl[�l�l + �h(1� �h)] + ph[�h�h + �l(1� �l)]� c(e)�
X

i=l;h

�i(1� �i)E(mDi)

Compared with (20) and (21), the advisor�s decisions are then ine¢cient

because e¤ort and matching decisions would satisfy

���h(�h; e) =
�h(ph � pl + E(mDh))

�l(pl � ph + E(mDl))

�e(�h; e)�l[pl � ph + E(mDl)] = c0(e)

Thus, the optimal redress payments di¤er from what provides appropri-

ate incentives to advisors. From (21), because Eull < Eulh (and similarly

Euhh < Euhl) making the advisor liable for the full amount of redress over-

states the marginal bene�t to clients of KYC e¤ort.

As is well known, there may be a discrepancy between legal damages

achieving optimal insurance and damages providing e¢cient incentives. This
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arises in particular when the harm su¤ered by consumers includes a non-

pecuniary dimension (Spence, 1977; Shavell, 1987; Polinsky and Shavell,

2010). Liability equal to the consumers� optimal insurance coverage will

then typically under-incentivize producers. Achieving e¢cient incentives re-

quires additional instruments, e.g., �nes imposed on producers contingent

on the occurrence of harm. In the present case, by contrast, damages equal

to the optimal insurance coverage will tend to over-incentivize advisors. The

implication is that the liability costs faced by advisors should be decoupled

from the insurance coverage provided to investors.

Consider, among other possibilities, a two-part liability scheme involv-

ing an insurance pool at the industry level. For instance, the industry arbi-

tration panel handling complaints also operates an insurance pool. The

pool is responsible for paying the optimal redress amounts Dl and Dh.

It is �nanced by an ex ante per customer fee t imposed on advisors and

by billing advisors ex post for part of the compensation paid out to in-

vestors who won a claim against them. Advisors are liable for the payments
bDi = maxf(w�

i � w�
j �

b�i; 0g, i = l; h, where the b�i�s are such that

�iE(m bDi) = �i
(Euii � Euij)

RfEui
+ �iE(mDl)) (22)

where the right-hand side is set at the optimal values. Because Euii < Euij ,

(22) holds with b�i > �i. Loosely speaking, advisors are then liable for the

redress paid net of the cost of overcompensating mismatched investors, i.e.,

the advisors� liability cost is akin to expectation damages.

The fee levied by the pool satis�es

t =
X

i2fl;hg

�i(1� �i)E[m(Di � bDi)]

where the right-hand side is computed at the optimal values. The advisor

then chooses KYC e¤ort and matching decisions to maximize

pl[�l�l+�h(1��h)]+ph[�h�h+�l(1��l)]� t�c(e)�
X

i=l;h

�i(1��i)E(m bDi);
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which yields the optimal decisions.

Proposition 4 Optimal incentives for advisors are achievable by two-part

liability with an industry compensation pool: the compensation paid to in-

vestors sold the wrong products is decoupled from the advisors� liability pay-

ments.

The purpose of a two-part scheme with decoupling is to prevent advisors

from facing too large a liability risk, which would unduly increase the cost

of advice, while still allowing investors to be appropriately insured against

the risk of wrong advice.

6 Concluding Remarks

Investors ultimately bear the cost of redress for unsuitable �nancial advice.

Assuming litigation and veri�ability costs are nil, redress is costly only be-

cause of investors� ex post opportunism, i.e., investors recommended an un-

suitable portfolio will �le a complaint only when the �wrong� portfolio does

worse ex post than the ex ante suitable portfolio, which will not always be

the case. Literally interpreted, Market Adjusted Damages, i.e., allowing the

claimant to recover the di¤erence in returns between suitable and unsuit-

able portfolio, would overcompensate investors from an ex ante perspective.

However, Market Adjusted Damages with the appropriate deductible is an

e¢cient formula if the purpose of the law is to award expectation damages

at least cost. By contrast, optimal insurance coverage against the risk of

unsuitable recommendations will sometimes overcompensate ex post and

will overcompensate from an ex ante perspective. The reason is that this

mitigates the e¤ects of ex post investor opportunism. When considering op-

timal liability for incentivizing �nancial advisors, however, making advisors

liable for the full amount of insurance coverage creates too much incen-

tives, resulting in too high advice costs. An optimal scheme decouples the

advisor�s liability cost from the insurance coverage provided to investors.

Loosely speaking, the advisor should be liable for expectation damages and

the excess insurance coverage funded at the industry level.
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Appendix

Proof of Proposition 1: The Lagrangean is

L = E(m(s)Di(s)) + 
fEui(w
�
i (s))� Eui(w

�
j (s) +Di(s))g � E(�(s)Di(s))

where 
 is the multiplier of (13) and �(s) � 0, s 2 S, are the multipliers of

the disclosure constraints. The Kuhn-Tucker conditions are �(s)Di(s) = 0,

s 2 S, and


u0i(w
�
j (s) +Di(s)) = m(s)� �(s), s 2 S: (23)

When Di(s) > 0, �(s) = 0 and therefore u0i(w
�
j (s) + Di(s)) = m(s)=
.

Per Observation 2, the latter implies

w�
j (s) +Di(s) = w�

i (s) + k (24)

for some k. The equality (24) cannot hold for all s. Suppose it does. Then

(13) would be

Eui(w
�
i (s) + k) = Eui(w

�
i (s));

implying that k = 0. But then (24) would imply Di(s) < 0 for some s,

contradicting the disclosure constraints.

From (24), damages are Di(s) = maxfw�
i (s)�w�

j (s) + k; 0g so that (13)

becomes

Eui(w
�
j (s) +Di(s)) = Eui(maxfw�

i (s) + k;w�
j (s)g) = Eui(w

�
i (s))

which can only be satis�ed with k < 0, yielding the deductible �Ci = � k in

the proposition.�

Proof of Lemma 1: We prove the claim for i = l; the logic is the same for

i = h. Using (5),

w�
l (s)� w�

h(s) = 
(s� s) where 
 = �=�h � �=�l > 0:
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For a given �, the premium is therefore

p(�) = (1� �l)

Z
es(�)

s�

[
(s� s)� �]m(s)g(s) ds

where es(�) = s� �=
. It follows that

p0(�) = � (1� �l)

Z
es(�)

s�

m(s)g(s) ds: (25)

Expected utility is

Ul(�) = �l

Z s+

s�

ul(w
�
l (s)� p(�)Rf )g(s) ds

+(1� �l)

Z
es(�)

s�

ul(w
�
l (s)� p(�)Rf � �)g(s) ds

+(1� �l)

Z s+

es(�)
ul(w

�
h(s)� p(�)Rf )g(s) ds:

Therefore,

U 0
l (�)

p0(�)Rf

= � �l

Z s+

s�

u0l(w
�
l (s)� p(�)Rf )g(s) ds

�(1� �l)

Z
es(�)

s�

u0l(w
�
l (s)� p(�)Rf � �)g(s) ds

�(1� �l)

Z s+

es(�)
u0l(w

�
h(s)� p(�)Rf )g(s) ds

�
(1� �l)

R
es(�)
s�

u0l(w
�
l (s)� p(�)Rf � �)g(s) ds

p0(�)Rf

: (26)

With the type-optimal portfolio, u0l(w
�
l (s) � p(�)Rf ) = b�m(s) for all s

and some b�. In the case of a mismatch and for s 2 [s�; es(�)], we have

u0l(w
�
i (s) � p(�)Rf � �) = �m(s) for some � � b�, where the inequality

follows from � � 0. Substituting in (26), using (25), and recalling that
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E(m) = 1=Rf ,

U 0
l (�)

p0l(�)Rf

= � �lb�=Rf � (1� �l)�

Z
es(�)

s�

m(s)g(s) ds

�(1� �l)

Z s+

es(�)
u0l(w

�
h(s)� p(�)Rf )g(s) ds+ �=Rf

= �l(� � b�)=Rf + (1� �l)

Z s+

es(�)
[�m(s)� u0l(w

�
h(s)� p(�)Rf )]g(s) ds

> 0:

The sign follows from � � b� and �m(s) > u0l(w
�
h(s) � p(�)Rf ) for s > es(�).

Because p0(�) < 0, we get U 0
l (�) < 0.�

Proof of Proposition 2: Let �Rf � 0 and �(s) � 0 for all s be the

multipliers associated with (1 � �i)E(mDi) � p and Di � 0 respectively.

The Lagrangian is

L = Ui + �Rf [p� (1� �i)E(m(s)Di(s))] + E(�(s)Di(s)): (27)

The Kuhn-Tucker conditions are

�iEu
0
i(w

�
i (s)� pRf ) + (1� �i)Eu

0
i(w

�
j (s)� pRf +Di(s)) = �; (28)

u0i(w
�
j (s)� piRf +Di(s)) = �Rfm(s)� �(s)=(1� �i) for all s; (29)

�(s)Di(s) = 0 for all s:

First, we show that �(s) = 0 for all s is not possible. Suppose the

contrary. Taking the expectation of (29) then implies

Eu0i(w
�
j (s)� pRf +Di(s))] = � = Eu0i(w

�
i (s)� pRf ): (30)

where the second equality is obtained by substituting the �rst equality in

(28). Now (29) and Observation 2 applied to the right-hand side of (30)

25



imply

u0i(w
�
j (s)� pRf +Di(s))

m(s)
= �Rf =

u0i(w
�
i (s)� pRf )

m(s)
, s 2 S.

Hence, Di(s) = w�
i (s) � w�

j (s) for all s, contradicting (??). Thus, �(s) > 0

over a set with positive measure. From (29) it then follows that

Eu0i(w
�
j (s)� pRf +Di(s)) < �

which from (28) implies

Eu0i(w
�
i (s)� pRf ) = b� for some b� > �:

But then, using (29) and Observation 2 again, when Di(s) > 0,

u0i(w
�
j (s)� pRf +Di(s))

m(s)
= �Rf < b�Rf =

u0i(w
�
i (s)� pRf )

m(s)
. (31)

Applied to the left-hand side of (31), Observation 2 implies that w�
j (s) �

pRf+Di(s) = w�
i (s)+k for some k. From the inequality in (31), k > � pRf .

Equivalently, k = � pRf � � where � < 0.�

Proof of Proposition 3: A Pareto-optimum allocation maximizes V �


l�lU l+
h�hUh for some weights 
l and 
h attached to the expected utility

of types l and h. The rest of the argument is then similar to that of Propo-

sition 2 and is therefore omitted. The weights �l and �h in the proposition

satisfy

�l =

l�lEu

0
l


h�hEu
0
h + 
l�lEu

0
l

; �h = 1� �l:�
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Abstract

There has been a significant amount of research, especially empirical, on the effects

that vehicle safety technologies such as seatbelts and airbags have on driver behav-

iour and resulting accindent rates. In this paper we investigate the impact of vehicle

safety technologies which either reduce the probability of an accident or the size of

loss associated with an accident should one occur. We do this in an environment

with heterogeneous individuals who differ either by their (subjective) cost of taking

effort to avoid accidents or by their (subjective) size of loss should an accident occur.

We investignate both selection effects (i.e., who will value more highly the technology

and so purchase it) and the effect on driving behaviour. The latter is the so-called

offsetting or risk compensation effect. Using a data set that combines information

from two sources: one about equipment levels of vehicles and the other from insur-

ance experience (i.e., accidents, changes in bonus malus) we investigate the effects

of selection (adverse versus advanatageous recruitment) and offsetting behaviour for

varying quality airbags and braking systems.

Keywords: Value of research, externalities.



1 Introduction

There has been substantial empirical research on the effect that improved safety devices,

such as seatbelts and airbags, have on driving behaviour and resulting accident rates

(e.g., see Peltzman, 1975 and Harless and Hoffer, 2003). If the adoption of a safety device

reduces the size of loss of an accident to individuals, then the marginal value of exerting

effort to avoid accidents falls and one expects some reduction in safe driving behaviour

which in turn increases the risk of an accident to others. This type of reaction has been

termed the offsetting or risk compensation effect and should be taken into account when

valuing improved safety devices or measures (see Gossner and Picard, 2005). In the

case of voluntary purchase of such devices, the presence of any externality due to the

offsetting effect is also a relevant policy concern (see Hoy and Polborn, 2015). The optimal

intervention depends on the extent to which adoption of the safety device reduces the level

of care that individuals take as well as the strength of the resulting externality effect. In

a setting with heterogeneous preferences, one cannot draw clear conclusions about the

strength of any offsetting behaviour created by voluntary adoption of an improved safety

technology by simply comparing accident rates or driving records of adopters to non-

adopters. The reason is that one needs to decompose this difference into a selection (or

recruitment) effect and a behavioural effect. It is this feature of safety technologies that

we investigate here.

In a classic paper, Peltzman (1975) identified an important offsetting effect due to

mandatory seat belt legislation. Many empirical papers since have investigated the exis-

tence and strength of offsetting behaviour across a wide range of technologies and envi-

ronments. The finding that intended improvements to safety from such regulation may

be reduced, entirely eliminated, or even reversed due to offsetting behaviour is an im-

portant policy consideration. A plethora of recent developments of safety technologies,1

which are available for voluntary purchase with select automobiles, makes further study of

their effects on driving behaviour important. An important policy concern is determining

whether individuals should be allowed to make their own decisions about which vehicle

safety features to adopt and, if so, what role can taxes an subsidies play to improve welfare.

We develop a theoretical model with two key features which allows us to organize how

to investigate the empirical effects of improved safety technologies with an eye towards

providing input for policy. Firstly, assuming no change in driving behaviour, we classify

technologies based on whether they have an effect on the size of loss should an accident

1The estimated fitment rate for recently developed safety features for 2017 global passenger vehicle

production includes 14% with automated emergency braking, 8% with lane keeping assist, 11% with blind

spot monitoring, and 7% with adaptive cruise control (IHS Markit - quoted in CARANDDRIVER, Nov,

2017, p. 82).
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occur or, alternatively, an effect on the likelihood of incurring an accident. Safety devices

such as airbags affect the size of loss due to an accident while others, such as lane departure

warning systems or improved braking systems, presumably reduce the probability of an

accident. We refer to these types of safety technologies as loss mitigation (LMT ) and

probability reduction (PRT ) technologies, respectively.2 Secondly, it is important to be

able to understand the forces (individual preferences) that motivate some vehicle owners

to adopt improved safety techologies and how adoption affects their driving behaviour. To

this end, we assume individuals may differ either by their (subjective) size of loss should

an accident occur or by their preceived cost of own effort (diligence in safe driving habits).

There are, of course, many other potential behavioural traits that may influence such

choices. We discuss some of these later in the paper.

One important consideration is that, depending on the extent of any possible offsetting

effect, a PRT may provide for either a positive or negative externality. As long as any

reduced level of attentiveness to safe driving does not completely neutralize or reverse

the inherent effect of the reduced probability of a vehicle with improved PRT causing an

accident, the technology provides a positive externality and so a subsidy is in order. If

the adopter reduces his own efforts at safe driving so much that he becomes more likely

to cause an accident, then the adoption of the PRT leads to a negative externality and

should be taxed. As in the classic case of a mandated LMT (e.g., safety belts), adoption

of any LMT in our model also leads to a reduction of safe driving efforts. Thus, adopters

of improved LMT s generate a negative externality due to the expected offsetting effect

and so a tax is in order.3

Compared to measuring the effects of safty innovations when they are mandatory (e.g.,

seat belt laws) or publicly provided (e.g., improved road barriers), there are more com-

plications in an environment of voluntary purchase/adoption. Many questions are raised

which require a careful analysis of data in any empirical exercise. What type of individuals

will purchase these devices? A priori to adoption decisions, will those at higher risk of acci-

dent or lower risk of accident adopt improved safety devices? Conditional on no offsetting

effects, would adopters (ex post) display higher or lower accident rates; that is, will there

be adverse or advantageous recruitment in addition to possible offsetting effects? How

will adoption affect driving habits in regards to safety given different reasons for choosing

a particular type of safety device? Given the relevant externalities associated with offset-

ting behaviour, valuing such technologies requires separating the selection (recruitment)

effects from behavioural effects from adoption. For example, if there is a positive correla-

2Some technologies may affect both the size and probability of loss, although we do not model such a

mixed possibility here.
3See Hoy and Polborn (2015) for analysis of optimal taxation of safety technologies for both LMTs and

PRTs in a setting with homogeneous individuals.
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tion between adoption and accident rates but this is due entirely to selection effects and

not behavioural effects, then one will draw a different conclusion about the value of such

devices than if the positive correlation is due in part to some offsetting behaviour. These

complications are absent when all drivers adopt the safety measure either actively through

mandates or passively through public provision.

In order to generate useful intution on these matters, we consider an increasingly com-

plex environment of safety technology adoption: Firstly, we consider mandatory adoption

of technologies; second, we consider voluntary adoption of a single type of technology (e.g.,

LMT ) while holding the level of the other technology (e.g., PRT ) fixed; third, we con-

sider the voluntary and simultaneous adoption of both types of safety technology. Each

of these three settings relate well to different policy environments as discussed later in the

paper. Although we do not propose explicit policy recommendations, our results point to

appropriate tax/subsidy policies that would enhance welfare.

These three scenarios represent alternative polic environments regarding regulations

about vehicle safety. There are many instances of specific safety features being made

mandatory, such as seat belts, minimal quality airbag requirements, rear view cameras,

etc.. Of particular note are laws passed by the EU requiring from 6 July 2022 that all

new pasenger vehicles be fitted with a suite of features including reversing detection with

camera or sensors, attention warining in case of driver drowsiness, lane keeping assist

and also, between 2024 and 2025, a plan to include advanced driver distraction warning

(see https://ec.europa.eu/docsroom/documents/50774). The first scenario of exogenous

improvements applies to these instances. Given existing types of echnologies which are

mandated, it is useful to know how those affect the value of other newly developed tech-

nologies that individuals may choose to adopt voluntarily. This is the second scenario

in which we analyze introducing one or the other new PRT or LMT technology. Fi-

nally, our third scenario considers the choice problem for both types of technology offered

simultaneously.

Although we do not develop specific policy conclusions, our work points in some use-

ful directions by identifying various possible externalities from voluntary (or mandatory)

adoption. We address some of these in the discussion section of the paper.

We provide an empirical application using a data set acquired from the Taiwan In-

surance Institute (TII). This data set provides detailed information on insureds’ claims

and driving records. This data is supplemented with information from vehicle records re-

garding various vehicle characteristics including two safety technologies: quality of airbag

systems and quality of braking systems. We designate as a high quality airbag system any

vehicle with airbags equipped for both front and back seats, while we designate as a high

quality braking system any vehicle which is equipped not only with an anti-lock brake
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system, which is standard for virtually all cars in our sample, but is also equipped with

a traction control system, vehicle stability control system, acceleration slip regulation as

well as down-hill assist control, and hill-start assist control. We treat the high quality

airbag system as a LMT and the high quality braking system as a PRT .4 We also con-

sider choice of a SUV as an enhanced LMT since, in comparison to a sedan, a SUV is

larger and heavier and so provides better protection to its occupants.

The data covers two years (2011 and 2012) and contains 2,371,730 observations. It is

an unbalanced panel. We perform two empirical exercises. Firstly, we treat the data in

a cross-sectional manner to estimate the relationship between claims arising from third

party losses and various vehicle and driver characteristics including quality of braking

and airbag systems. These results should be treated as descriptive of the relationship

between safety technologies and accident claims since recruitment effects are not separated

from behavioural effects. Second, we extract observations from the data set for those

individuals who are present in both years and have an identifiable change in automobile.

For these individuals we can determine if they have purchased a new (different) vehicle with

higher, lower, or same quality of both airbag system (LMT ) and braking system (PRT ).

This allows us to estimate behavioural effects of the adopted technologies without the

confounding implications of possible recruitment effects.

Our propositions lead to implications on whether positive or negative correlations

between adopters of a safety technology are consistent with the presence of heterogeneous

cost or loss size types in the population (i.e., the presence of adverse or advantageous

recruitment). There are, however, substantial challenges in drawing conclusions about

actual choices of vehicle safety technologies based on such preferences. Vehicle choice is

not solely driven by safety technology present in the chosen vehicle but other features of

the vehicle as well which may be bundled together with safety technologies. In the case

of purchasing a SUV, it seems appropriate to view the choice to be based on both safety

considerations (bigger is safer) and other features (bigger means more storage space).

The paper is structured as follows. A brief literature review follows. Section 3 of this

paper provides the basic theoretical model and propositions relating choice of technology

to individuals based on each type of heterogeneity (i.e., differing costs of precaution and

differing subjective size of loss). Section 4 describes the data and our empirical analysis.

In the final section we provide a discussion of our findings.

4A high quality braking system presumably also has some characteristics of a LMT since, conditional

on being in a potential accident scenario, a better braking system may not allow one to avoid the accident

but would reduce the speed of the impact and hence reduce the size of loss.
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2 Literature Review

Much of the literature about the phenomenon of offsetting behaviour has been directed at

determining empirically its size in a wide variety of economic settings. We focus here on

those papers relating to traffic safety.5 Papers most closely related to ours include Harless

and Hoffer (2003), who investigate the recruitment and offsetting effects of voluntary

adoption of airbags and Winston, et al. (2006) who consider both adoption of airbags and

antilock braking systems as do we.

In comparison to the vast range and depth of empirical research on the offsetting

hypothesis, there is relatively little theoretical analysis of the phenomenon. Our model

should be thought of as futher developing this stream of research. Of particular relevance

to our work is the paper by Blomquist (1986). He develops a general model of driver

safety behaviour and demonstrates the result that “under plausible conditions a change

in exogenous safety, which is beyond driver control, causes a compensatory change in

driver effort in the opposite direction”, (Blomquist, 1986, p. 371). His model has both

dimensions of safety as does ours (i.e., safety technologies and endogenous driver safey

choice) and provides a useful comparative static result describing conditions under which

the choice of exogenous safety may reduce the driver’s own effort to avoid bad outcomes.

However, he does not explicity model the two types of technology that we do and he also

does not address welfare implications.

Neill (1993) also develops a model to determine conditions under which the probability

of an accident increases or decreases as a result of an increase in the level of an imposed

safety technology or regulation. As in our model, this depends on how the increase in

the imposed safety technology affects the marginal benefit of individuals’ own levels of

precaution. His paper investigates how this relationship between the safety technology

and the individual’s effort to avoid accidents impact on the choice of self-insurance (LMT

in our terminology and safety devices in his). However, he does not address the normative

implications of imposed safety technologies and restricts his attention to LMTs.

Hause (2006) also develops a general model of the offsetting phenomenon. He points

out (pp. 689-690) that “Despite accumulating evidence on the empirical relevance of OB

(offsetting behaviour), none of the theoretical literature has provided a model determining

formal conditions under which dominant or partial OB occurs, much less the magnitude

of the OB effect on expected accident loss”. By a dominant effect Hause means that the

OB effect (change in own effort of accident avoidance) results in no net change in the

expected accident loss. By a partial OB effect is meant that the net effect of the safety

regulation or technology is a reduction in the net expected accident loss, but less than the

5For example, workplace safety (e.g., Lanoie (1992)), sports (e.g., Potter (2011) on formula 1 racing

and McCannon (2011) on basketball), food safety (e.g., Miljkovic (2011), et al.).
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direct effect.

Another paper that has some of the same properties and objectives as our paper is that

of Gossner and Picard (2005). Their goal is to investigate how to value the benefit of an

improvement in road safety in the presence of an offsetting effect. The loss in their model

is financial and the source of externalities is through the insurance market They consider

a similar problem as in our paper by taking into account how changes in road safety affect

precautionary effort levels of individuals. Due ot the fact that losses are financial, they,

also investigate the implications of drivers’risk aversion on the value of improvements to

road safety. In our model, our "uninsured losses" are meant to cover uncompensated pain

and suffering as well as uninsured financial losses.

The most important advantage of our model is that we combine the elements of an ex-

plicit treatment of (1) optimal choice of safety features including consideration of whether

specific features (for a PRT ) are strategic complements or substitutes, (2) how the safety

technology affects the marginal value of precaution, and (3) whether the adopted safety

technology is an LMT (mitigates loss) or a PRT (reduces probability of loss). Impor-

tantly, we allow for heterogeneity of preferences in our model in one of two dimensions

(cost of driving more safely and size of loss due to an accident). These features allow

us to consider most carefully the interplay between adoption decisons (recruitment) and

offsetting behaviour.

3 Models

In this section we first develop the individual’s objective function based on the level of each

type of technology (PRT and LMT ) and two possible types of preference heterogeneity.

We allow for individuals to differ either by size of loss amount due to an accident as well

as differeing cost of precaution. As noted earlier in the paper, we develop our model in

the context of three regulatory environments. The first involves describing the effect of

an exogenous increase to one or the other type of technology while in the second we treat

the case where the individual chooses a level of each type of technology while holding the

level of the other technology fixed. Finally, we allow for simultaneous choice of levels of

PRT and LMT .

We analyze separately each scenario for individuals who differ due to heterogeneous

cost of precaution and due to heterogeneous perception of size of loss. In regards to

generating the possibilities of advantageous versus adverse recruitment, the source of het-

erogeneity is crucial. The implications for analyzing the relationship between levels of

these safety technologies and driving behaviour in the data are, of course, complicated by

the effects of offsetting behaviour.
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We assume each individual chooses (or required to adopt) a level of PRT, θ, and LMT,

λ. For a given level of own care, p, a higher level of θ reduces the probability of an accident

while a higher level of λ reduces the size of loss should an accident occur. Although some

safety technologies no doubt have both effects, we do not model such a possibility.6

The probability of an accident (claim) is D(p, θ) ∈ (0, 1) with partial derivatives Dp,

Dθ < 0, Dpp, Dθθ > 0. Given that a lower value of Dp (resp. Dθ) means p (resp. θ)

is at the margin more productive in reducing the probability of an accident, it follows

that Dpθ > 0 implies that a higher value of θ reduces the marginal productivity of p or,

equivalently, a lower value of θ increases the marginal productivity of p (and vice versa).

In this case we say that own care and the PRT are substitutes. It seems plausible that

a technology like lane departure warning would be a substitute for own care as it could

give confidence to drive while more tired and/or pay less attention to one’s location on the

road. Therefore, if one person has a higher cost of own care then we might expect such

a person to acquire a higher level of PRT when it is a substitute for own care (i.e., when

Dpθ > 0). It seems at least possible that choosing a higher quality ABS system, which is

one of the variables of interest in our data set, may improve effectiveness of own care since

more dangerous situations can be avoided if one is both more alert and has better brakes -

an example of complementarity (i.e., Dpθ < 0). On the other hand, it is also possible that

better brakes reduces the benefit of driving at modest speeds since the braking distance

to a stationary (or slower) vehicle is less and so collisions can be avoided at higher speeds.

The sign of this cross-partial not surprisingly is important and so we investigate both

possibilities. It seems intuitively appealing that if Dpθ < 0, then purchasing a higher level

of PRT may actually have a reverse offsetting effect (i.e., lead to an increase in own care

and so a reinforcement of the reduction in loss probability). We also assume D(p, θ) is a

strictly convex function.

We also acknowledge here, but do not explicitly model, that the level of care of other

drivers will have an effect on an individual’s probability of an accident and also may well

affect the marginal benefit of both the individual’s level of precaution (Dp) and PRT

(Dθ). This is explicitly taken into account for a much simpler model with homogeneous

individuals and only one type of safety technology in Hoy and Polborn (2015). In that

paper, the equilibrium level of choice variables is the same as each individual’s optimal

value. With heterogeneous preferences, each individual generally chooses a different level

for all variables and so equilibrium analysis and formal comparative statics analysis be-

comes unmanageable. We do, however, return to this issue when addressing our empirical

6An improved braking system seems a good candidate for possessing both effects. Being able to brake

in a shorter distance (and in a more controled manner) should reduce the probability of being involved in

an accident and, conditional on being involved in an accident, may well reduce the consequences.
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strategy.

The size of the loss is L(λ) ≥ 0 and depends on the level of LMT (λ) with Lλ < 0. We

assume Lλλ < 0. The loss is not meant to be a financial loss but is measured in monetary

equivalent utility terms.7 Similarly, we let the cost of own care be measured in monetary

equivalent terms and represented by c(p) with c′, c′′ > 0. The financial cost of PRT and

LMT levels are represented by kR(θ) and kM (λ) with both being increasing and strictly

convex functions. Each individual chooses {p, λ, θ} to minimize

Ω(p, λ, θ) = D(p, θ)L(λ) + c(p) + kR(θ) + kM (λ) (1)

In the scenario in which differential costs of precaution is the source of individual hetero-

geneity, we replace c(p) with (1 + τ)c(p), τ ≥ 0 where higher τ represents an individual

having higher cost of precaution. In the scenario in which individual heterogeneity is the

result of differential size of loss, we replace L(λ) with (1 + ν)L(λ), υ ≥ 0 where higher ν

represents an individual having a higher loss from an accident.8

We do not include in our objective function characteristics of risk preferences beyond

the subjective parameter which can reflect either differences in (subjective) size of loss or

a weighting parameter on the probability of loss. In the context of our data, the set of

insurance contracts available to consumers is tightly regulated by the Taiwan Insurance

Institute and so we believe risk preferences over financial losses resulting from accidents is

not an important factor to model. For other settings/countries, this would not be a rea-

sonable assumption and alterations to the objective function which account for alternative

risk preferences over financial outcomes would be important to include.

In each model, our reference to expected losses includes whatever costs are pertinent

to the individual’s choice problem (i.e., the cost of precaution for all models and also the

cost of the PRT and LMT when those are purchased voluntarily. We first present the

models for exogenous changes in levels θ, λ.

3.1 Exogenous changes to PRT and LMT

Governments often introduce mandatory use of safety equipment (e.g., helmets, safety

belts, airbags, rear cameras, winter tires, etc.) or make safety improvements to roads

(e.g., rumble strips, crash barriers, illuminated lines, lighting, etc.). To represent the

effects of such policies, we write θ and λ as exogenously set at values θ and λ, respectively,

and note that individuals incur no (direct) cost to these changes. We first consider case

in which the source of heterogeneity is due to a differential cost of precaution. Therefore,

7See Hoy and Polborn (2015) for discussion.
8We assume these are uninsurable losses of accident victims. A good discussion of what these may can

be found in Gossner and Picard (2005). We discuss a potential role for insurance later in this paper.
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we assume an individual chooses precaution, p, to minimize the expected loss Ω where:

Ω(p, λ, θ) = D(p, θ)L(λ) + (1 + τ)c(p) (2)

and refer to this scenario as Model A1.

The first order condition is

Fp(p, λ, θ) = DpL+ (1 + τ)c′ = 0 (3)

Upon totally differentiating with respect to p and θ, we obtain:

dp

dθ
= −

DpθL

[DppL+ (1 + τ)c′′]
(4)

Given that the denominator is positive (i.e., both Dpp and c′′ are positive), it follows that

the sign of dp

dθ
is the same as the sign of Dpθ. This is intuitively pleasing since if own care

and the level of the PRT are substitutes (Dpθ > 0) then one would expect an increase in

θ would lead to a reduction in p and vice versa if they are complements.

We can follow the same procedure to determine the effect of an exogenous change in

the level of LMT (λ) on own care. We obtain:

dp

dλ
= −

DpLλ

[DppL+ (1 + τ)c′′]
< 0 (5)

The above represents a classic offsetting effect (e.g., Peltzman, 1975); that is, a reduction

in the size of loss due to an exogenous policy intervention like mandatory seatbelts leads

to a reduction in own care.

It is also interesting to see how, given exogenous levels of PRT and LRT , individual

care varies according to the level of an individual’s extra cost of care, τ . It is straightfor-

ward to show upon totally differentiating (3) with respect to p and τ , one obtains

dp

dτ
= −

c′

[DppL+ (1 + τ)c′′]
< 0 (6)

This is intuitively pleasing since one would expect those with higher cost of precaution

would engage in less precaution.

Proposition 1. Suppose individuals differ according to cost of precaution. At given lev-

els of PRT and LMT, individuals with higher cost of precaution choose a lower level of

precaution. An exogenous increase in the level of PRT technology leads to a reduction (in-

crease) in precaution if the PRT is a substitute (complement) to precaution. An exogenous

increase in the level of LMT will lead to a reduction in the chosen level of precaution.

Consider the case in which the source of heterogeneity is due to a differential size of

loss, should an accident occur. The individual chooses precaution, p, to minimize the

expected loss Ω where:

Ω(p, λ, θ) = D(p, θ)[(1 + ν)L(λ)] + c(p) (7)
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and refer to this scenario as Model A2.

The first order condition is

Fp(p, λ, θ) = Dp(1 + ν)L+ c′ = 0 (8)

Upon totally differentiating with respect to p and θ, we obtain:

dp

dθ
= −

Dpθ(1 + ν)L

[Dpp(1 + υ)L+ c′′]
(9)

As in the case for heterogeneity due to differential cost of precaution, the sign of dp

dθ
is the

same as the sign of Dpθ.

We can follow the same procedure to determine the effect of an exogenous change in

the level of LMT (λ) on own care. We obtain:

dp

dλ
= −

Dp(1 + λ)Lλ

[Dpp(1 + υ)L+ c′′]
< 0 (10)

which represents a classic offsetting effect (e.g., Peltzman, 1975).

It is also interesting to see how, given exogenous levels of PRT and LMT , individual

care varies according to the level of an individual’s extra loss from an accident, ν. It

is straightforward to show upon totally differentiating (8) with respect to p and ν, one

obtains
dp

dν
= −

DpL(λ)

[DppL+ (1 + τ)c′′]
> 0 (11)

and so, as one would expect, those with higher loss from an accident engage in more

precaution. We summarize these results in the following proposition.

Proposition 2. Suppose individuals differ according to the size of loss due to an acci-

dent. At given levels of PRT and LMT, individuals with higher loss choose a higher level of

precaution. An exogenous increase in the level of PRT technology leads to a reduction (in-

crease) in precaution if the PRT is a substitute (complement) to precaution. An exogenous

increase in the level of LMT will lead to a reduction in the chosen level of precaution.

We see that if levels of PRT and LMT are determined exogenously, whether hetero-

geneity is due to differential cost of precaution or differential size of loss due to accident,

the effect of an increase in PRT is to lead to an reduction (increase) in precaution if the

PRT and precaution are substitutes (complements). The effects of heterogeneity on levels

of precaution for any given (exogenously fixed) levels of PRT and LMT are as expected:

higher cost individuals choose lower levels of precaution while higher loss individuals choose

higher levels of precaution. Comparing levels of precaution across heterogeneous types is

less straightforward when all variables are endogenously determined (i.e., chosen at a finan-

cial cost by individuals). Moreover, comparing the resulting loss probabilities (accident
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rates) across heterogeneous individuals is also straight forward: higher cost individuals

experience higher accident rates while higher loss individuals experience lower accident

rates. As we show below, such comparisons are not so straightforward when individuals

choose levels of PRT and LMT. Selection effects combined with behavioural (offsetting)

effects lead to a more complicated determination of such comparisons.

3.2 Endogenous Choice of one of PRT or LMT

We now return to the main concern of this paper which is the endogenous choice of safety

technologies. In order to better develop intuition, it is helpful to begin with the restriction

that each individual chooses a level of safety technology of only one type with the other

type set at a fixed level. First we explore the scenario in which individuals differ according

to cost of precaution and are faced with a fixed value of PRT (θ = θ) and choose {p, λ}

to maximize:

Ω(p, λ, θ) = D(p, θ)L(λ) + (1 + τ)c(p) + kR(θ) + kM (λ) (12)

Note the change in order of variables with p −→ 1, λ → 2, and τ −→ 3. This leads to

first-order conditions:

F1(p, λ, θ) = Dp(p, θ)L(λ) + (1 + τ)c′(p) = 0 (13)

F2(p, λ, θ) = D(p, θ)Lλ(λ) + k′

M (λ) = 0 (14)

Total differentiation gives:

dF1 = F11dp+ F12dλ+ F13dτ = 0 (15)

dF2 = F21dp+ F22dλ+ F23dτ = 0 (16)

where F11 = DppL + (1 + τ)c′′ > 0, F12 = F21 = DpLλ > 0, F22 = DLλλ + k′′

M > 0,

F13 = c′, F23 = 0. Thus, with | F |> 0, we have

[

F11 F12

F21 F22

][

dp/dτ

dλ/dτ

]

=

[

−F13

−F23

]

=

[

−c′(p)

0

]

(17)

which gives (reasons stated below):

dp

dτ
=

∣

∣

∣

∣

∣

−c′(p) F12

0 F22

∣

∣

∣

∣

∣

| F |
=
−c′(p)F22

| F |
< 0 (18)

dλ

dτ
=

∣

∣

∣

∣

∣

F11 −c′(p)

F21 0

∣

∣

∣

∣

∣

| F |
=

c′(p)F21

| F |
> 0 (19)
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The higher cost types choose a lower level of precaution which, since that effect increases

the marginal productivity of the LMT (λ), leads to them choosing a higher level of λ.

Consider the same scenario except for the situation in which individuals differ due to

size of loss parameter υ. Individuals choose {p, λ} to maximize:

Ω(p, λ, θ) = D(p, θ)(1 + υ)L(λ) + c(p) + kR(θ) + kM (λ) (20)

This leads to first-order conditions:

F1(p, λ; υ) = Dp(p, θ)(1 + υ)L(λ) + c′(p) = 0 (21)

F2(p, λ; υ) = D(p, θ)(1 + υ)Lλ(λ) + k′

M (λ) = 0 (22)

Total differentiation gives:

dF1 = F11dp+ F12dλ+ F13dυ = 0 (23)

dF2 = F21dp+ F22dλ+ F23dυ = 0 (24)

where F11 = Dpp(1+υ)L+c
′′ > 0, F12 = F21 = Dp(1+υ)Lλ > 0, F22 = D(1+υ)Lλλ+k

′′

M >

0, F13 = DpL < 0, F23 = DLλ < 0.

Thus, with | F |> 0, we have

[

F11 F12

F21 F22

][

dp/dυ

dλ/dν

]

=

[

−F13

−F23

]

=

[

−DpL

−DLλ

]

(25)

which gives (reasons stated below):

dp

dν
=

∣

∣

∣

∣

∣

−DpL F12

−DLλ F22

∣

∣

∣

∣

∣

| F |
=
−DpLF22 +DLλF12

| F |
(26)

dλ

dυ
=

∣

∣

∣

∣

∣

F11 −DpL

F21 −DLλ

∣

∣

∣

∣

∣

| F |
=
−DLF11 +DpLF12

| F |
(27)

In both equations above, the first term of the numerator is positive but the second is

negative. Therefore, neither has a definitive sign. A higher value of υ leads to an increase

in the marginal productivity of both the LMT (λ) and precaution (p). It may then be

the case, for example, that an individual with higher υ will find it worthwhile to choose a

sufficiently higher value of λ so as to lower the size of loss of life enough that the marginal

productivity of precaution falls.

We refer to these as Models B1.i and B2.i and we summarize the results in the following

two pairs of equations with associated propositions.
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Model B1.i: Individuals differ according to the cost of precaution and face a fixed level

of PRT . Higher cost individuals choose a lower level of precaution and a higher level of

LMT and, on average, experience both a higher accident rate and worse driving record.

dp

dτ
=
−c′(p)F22

| F |
< 0,

dλ

dτ
=

c′(p)F21

| F |
> 0 (28)

Proposition 3. Suppose individuals differ according to cost of precaution, the level of

available PRT is fixed, and individuals choose level of precaution and LMT to minimize

expected loss. Individuals with higher cost of precaution choose a lower level of precaution

and a higher level of LMT and, on average, experience both a higher accident rate and

worse driving record.

Model B2.i: Individuals differ according to the size of loss and face a fixed level of PRT .

The net effects on their levels of precaution and LMT are ambiguous. Although marginal

productivity of each choice variable is higher for higher loss individuals, responding with

a higher choice of one of the variables may lead to a reduction in the optimal choice of

the other variable. Therefore, we cannot predict whether higher loss individuals will, on

average, experience a lower or higher accident rate or a better or worse driving record.

dp

dν
=
−DpLF22 +DLλF12

| F |
,

dλ

dυ
=
−DLF11 +DpLF12

| F |
(29)

Proposition 4. Suppose individuals differ according to size of loss, the level of available

PRT is fixed, and individuals choose level of precaution and LMT to minimize expected

loss. The relationships between the size of loss and any of the other variables of inter-

est (i.e., level of precaution, level of LMT, average driving record or accident rate) are

indeterminate.

We now explore the scenario in which individuals differ according to cost of precaution

and are faced with a fixed value of LMT (λ = λ) and choose {p, θ} to maximize:

Ω(p, θ, λ) = D(p, θ)L(λ) + (1 + τ)c(p) + kR(θ) + kM (λ) (30)

Note the change in order of variables with p −→ 1, θ → 2, and τ −→ 3. The first-order

conditions are:

F1(p, θ, λ) = Dp(p, θ)L(λ) + (1 + τ)c′(p) = 0 (31)

F2(p, θ, λ) = Dθ(p, θ)L(λ) + k′

R(θ) = 0 (32)

Total differentiation gives:

dF1 = F11dp+ F12dθ + F13dτ = 0 (33)

13



dF2 = F21dp+ F22dθ + F23dτ = 0 (34)

where F11 = DppL+(1+τ)c′′ > 0, F12 = F21 = DpθL (sign of Dpθ), F22 = DθθL+k′′

R > 0,

F13 = c′, F23 = 0. Thus, with | F |> 0, we have

[

F11 F12

F21 F22

][

dp/dτ

dθ/dτ

]

=

[

−F13

−F23

]

=

[

−c′(p)

0

]

(35)

which gives (reasons stated below):

dp

dτ
=

∣

∣

∣

∣

∣

−c′(p) F12

0 F22

∣

∣

∣

∣

∣

| F |
=
−c′(p)F22

| F |
< 0 (36)

dθ

dτ
=

∣

∣

∣

∣

∣

F11 −c′(p)

F21 0

∣

∣

∣

∣

∣

| F |
=

c′(p)DpθL

| F |

{

> 0 if Dpθ > 0

< 0 if Dpθ < 0

}

(37)

The higher cost types choose a lower level of precaution and a higher (lower) level of the

PRT (θ) if the PRT and precaution are substitutes (complements).

Consider the same scenario except for the situation in which individuals differ due to

size of loss parameter υ. Individuals choose {p, θ} to maximize:

Ω(p, θ, λ) = D(p, θ)(1 + υ)L(λ) + c(p) + kR(θ) + kM (λ) (38)

Note the change in order of variables with p −→ 1, θ → 2, and υ −→ 3. This leads to

first-order conditions:

F1(p, θ, λ) = Dp(p, θ)(1 + υ)L(λ) + c′(p) = 0 (39)

F2(p, θ, λ) = Dθ(p, θ)(1 + υ)L(λ) + k′

R(θ) = 0 (40)

Total differentiation gives:

dF1 = F11dp+ F12dθ + F13dυ = 0 (41)

dF2 = F21dp+ F22dθ + F23dυ = 0 (42)

where F11 = Dpp(1 + υ)L + c′′ > 0, F12 = F21 = Dpθ(1 + υ)L (same sign as Dpθ),

F22 = Dθθ(1 + υ)L+ k′′

R > 0, F13 = DpL < 0, F23 = DθL < 0.

Thus, with | F |> 0, we have

[

F11 F12

F21 F22

][

dp/dυ

dθ/dν

]

=

[

−F13

−F23

]

=

[

−DpL

−DθL

]

(43)
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which gives (reasons stated below):

dp

dν
=

∣

∣

∣

∣

∣

−DpL F12

−DθL F22

∣

∣

∣

∣

∣

| F |
=
−DpLF22 +DθLDpθ(1 + υ)L

| F |
(44)

dθ

dυ
=

∣

∣

∣

∣

∣

F11 −DpL

F21 −DθL

∣

∣

∣

∣

∣

| F |
=
−DθLF11 +DpLDpθ(1 + υ)L

| F |
(45)

In both equations above, the first term of the numerator is positive. The second term is

positive (negative) if precaution and the PRT are complements (substitutes). Therefore,

if precaution and PRT are complements, then individuals with a higher loss choose both a

higher level of precaution and the PRT. In this case, those with higher levels of the safety

technology (PRT) will be observed to have a lower accident rate and an improved driving

record. If the PRT and precaution are substitutes, then it is possible that the negative

second term will dominate the positive first term and one of the two partial derivatives

will be negative. Thus, it is possible that a higher loss type might choose a lower level

of precaution and end up with a worse driving record. By simple observation of the first

order condition, it is not possible that a higher loss type would choose both a lower level

of precaution AND lower level of PRT since that would imply optimal choices leading to

higher marginal benefit than marginal cost for both choice variables.

We refer to these two scenarios analyzed above (i.e., heterogeneous cost types and

heterogeneous loss types) as Models B1.ii and B2.ii. We summarize the results with the

following propositions.

Proposition 5. Suppose individuals differ according to cost of precaution, the level of

available LMT is fixed, and individuals choose level of precaution and PRT to minimize

expected loss. Individuals with higher cost of precaution choose a lower level of precaution

and a higher (lower) level of the PRT if precaution and the PRT are complements (substi-

tutes). As a result, one cannot infer whether those individuals holding a higher level of the

safety technology (PRT) have a higher or lower accident rate or better or worse driving

record.

Proposition 6. Suppose individuals differ according to size of loss, the level of available

LMT is fixed, and individuals choose level of precaution and PRT to minimize expected loss.

Individuals with higher loss from an accident will choose both higher levels of precaution

and the PRT if these are complements. In that case we would observe lower accident

levels and better driving records for those who choose higher levels of the safety technology

(PRT). However, if the precaution and PRT are substitutes, it is possible that individuals

with higher loss from an accident will choose either a lower level of precaution or a lower
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level of PRT. Therefore, it is possible that we would observe worse driving records, but

better accident records, for those who hold higher levels of the safety technology (PRT).

The scenario in which individuals choose simultaneously their levels of precaution,

PRT, and LMT, comparative static results mirroring those in the above propositions

are more complex mathematically and do not generate any definitive derivative signs of

interest. Although the above analysis helps in understanding the intuition for the outcomes

when choice variables are made simultaneously, one must rely on empirical analysis to draw

any conclusions about changes in offsetting effects due to improved technologies for PRT

and LMT becoming available. Therefore, we relegate the exercise of comparative statics

determination to the appendix and move on to the empirical analysis in the following

section.

4 Empirical Application

In this section, we examine our theoretical predictions by adopting a detailed individual

level data of almost all passenger automobile liability insurance contracts sold in Taiwan

during 2011 and 2012. To maintain the homogeneity in the incentive on the demand in

safety equipment and the purpose of using the vehicles as much as is possible, only private

passenger vehicles are included. Our data comprises safety information of the insured

vehicles, the characteristics of the policyholders and the insurance experiences, including

claims experiences and bonus-malus adjustment. With this unique and complete data, we

can empirically investigate the relationship between the adoption in safety technology and

the accident rate.

It is important to note that the source of the negative externality in our problem differs

from the adverse selection problem in insurance. In that model, the externality arises due

to the insurer not being able to identify the risk level of consumers and so high risk types

can mimic low risk types which generates a negative externality which typically involves

low risk types receiving too little insurance coverage. In our problem, the externality

from offsetting behaviour associated with the voluntary adoption of safety technologies

arises whether the perpretrators’ identities are known or not. Of course, if behaviour

were observable, some agent (e.g., the government) could intervene in an effective way to

improve welfare.9

9Our paper follows closely the methodology in Hoy and Polborn (2015) which is essentially an appli-

cation of the phenomenon of moral hazard in teams. See Holmstrom (1982) for a general characterization

of this problem and Cooper and Ross (1985), Lanoie (1991), Pedersen (2003), and Risa (1992, 1995) for

useful applications.
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4.1 Data

Our data is acquired from Taiwan Insurance Institute (TII), which is a data and research

platform of the insurance industry governed by the Financial Supervisory Commission

in Taiwan. The TII data includes the type of insurance contracts, claims made, the

characteristics of the policyholders and the insured vehicles but the safety information

of the vehicles is absent. Thus, by matching the vehicle type, brand, model, and year

of manufacture recorded in the TII data, we hand collect the information regarding the

safety technology for each insured private passenger automobile via auto magazines, auto

manufacture reports and the web sites of all possible resources. To reduce the burden of

data collection, we focus on the top four vehicle brands in Taiwan, which accounts for

more than 80% of the market share. In total, we have 2,371,730 observations during the

data period 2011 to 2012. We are able to link some individuals present in the two years

as described below.

For the first part of the empirical analysis we use the complete set of observations.

For the second part of our empirical analysis, we extract only those observations based on

individuals present in the data set for both years and with relevant information available.

There are 1,786,490 observations from 893,245 individuals who are in both years of the

data. Thus, we lose 2,371,730 — 1,786,490 = 585,240 observations. Some of the excluded

individuals were insured in only one of the years 2011 and 2012. Of the 893,245 individuals

who we can track and identify whether they replace their vehicle, there are 17,002 owners

who purchased a new (or rather different) vehicle in 2012 and chose the same insurance

company as in 2011. For this group, we can determine whether they switched to a vehicle

with higher or lower or same quality of airbag and brake system.

Taken at face value, these numbers imply an unreasonably low fraction of individuals

purchasing a new vehicle in a given year of 1.9% (i.e. 17,002/893,245 = 0.019). On average,

about 8% of vehicle owners purchase a new car each year. The reason for this discrepancy is

that an over-represented set of individuals who make up the 585,240 excluded observations

purchased new cars at a disproportionately higher rate but have been excluded because

we cannot track the specific change in vehicle characteristics. Consistency implies that

approximately 20% (118,386) out of the 585,240 excluded observations purchased a new

car but the information is lost as they switched insurers; i.e., (17,002 + 59,193)/(893,245

+ 59,193) = 0.08.10

We use the claim on compulsory liability insurance as a proxy for traffic accidents .

10 In Taiwan, when people purchase a new car, the car dealer will “recommend” an insurance company

to the new car owner. Many car owners take up this recommendation. As a result, we lose the information

on these new car owners if they purchased the new car and accepted the recommendation to the target

insurance company in year 2012.

17



Compulsory liability insurance is designed to provide basic coverage for the third party’s

life as well as bodily injury caused by the usage of vehicles.11 Every vehicle must be

insured with this type of insurance and so our data set is comprehensive. In addition, we

only included accidents involving a third party. Therefore, problems involving unclaimed

accidents, a common feature of this data, are irrelevant to our study. Occupants of cars

with airbags will presumably less frequently suffer bodily injury or death when involved

with an accident. Including them would create a bias (see Harless and Hoffer (2003) for a

discussion of this issue which contaminates their data set). It is an advantage that we can

include only those accidents that involve a third party since the added protection of a LMT

on any car that causes the accident would create a bias. However, a vehicle which triggers

a third party claim creates no problem of bias based on whether it has a higher quality

airbag. To compensate in the event of insufficient coverage under compulsory insurance,

individuals can further purchase voluntary third party bodily injury or property damage

liability insurance, which respectively covers bodily injury or property damage sustained

by the third party.

Individuals with a higher degree of risk aversion may demand more insurance. There-

fore, we divide our sample into two subsamples: one includes observations covered by

voluntary third party bodily injury liability insurance (about 57%), and the other in-

cludes those without this type of additional insurance coverage (about 43% possess only

compulsory third party insurance). Note that the risk covered in voluntary third party

property damage liability insurance is different from the risk covered by compulsory liabil-

ity insurance. Thus, we do not divide our sample according to the decision on the choice

of voluntary third party property damage liability insurance.

As for many other countries, Taiwan has a bonus-malus system to provide an incentive

for careful driving. The bonus malus coefficients in compulsory insurance could be 0.7,

0.74, 0.82, 1, 1.1, 1.2, 1.3, 1.4, 1.5, and 1.6. New drivers start at 1. If they remain

claim free in the current policy year, then their bonus-malus coefficient become 0.82 in

the following year, which means that they will enjoy an 18% price discount. If they remain

claim free, then their coefficient will fall to 0.74 in the following year. The lowest coefficient

possible is 0.7, which implies a 30% price discount. If a new driver has at least one claim

in the current policy year, then the coefficient becomes 1.1 in the following year. Since

this variable is determined by past driving records, we treat bm as a proxy for the risk

type of an individual.

Two types of safety equipment are considered: airbag and braking system. Since

11Under the compulsory liablility insurance, the coverage for life is NT$1,600,000. For bodily injury,

the coverage depends on the degree of incapacity, ranging between NT$40,000 and NT$1,600,000. It also

covers medical expenses, including the costs of first aid and treatment with an upper-limit of NT$200,000.
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almost every vehicle has at least one airbag and every vehicle has at least a standard

anti-lock braking system, we examine the effect of the demand for high quality airbag and

braking systems on claims. The high quality airbag system means the airbag is equipped

in both front and back seats, while a high quality braking system means that the vehicle

is equipped not only with an anti-lock brake system, but is also equipped with traction

control system, vehicle stability control system, acceleration slip regulation as well as

down-hill assist control, and hill-start assist control. We view the high quality airbag

system as an improved LMT , and the high quality breaking system as an improved PRT .

We also consider the choice of purchasing a SUV rather than a car. We consider

two aspects of SUVs on safety. On one hand, SUVs have a size advantage and thus afford

protection to the driver and passengers of the vehicle. On the other hand, SUVs are heavy

vehicles, which usually have a high impact in a traffic accident. If another vehicle or a

pedestrian is hit by a SUV, there is a high chance that the passengers in the hit vehicle

or the pedestrian would be seriously injured. This has a positive effect on probability of a

claim involving third party bodily injury or death. Thus, SUVs could be viewed as having

properties of both a higher level of LMT (lower loss to its occupants should an accident

occur) and a lower level of PRT in that any accident is more likely to trigger a third party

claim for bodily injury or death. Our data includes information on the policyholders, such

as gender, marital status, and age. Other information on the insured vehicles are also

included, such as vehicle age, and the vehicle registration location. Table 1 shows the

definition of all variables used in our study.

As noted above, our sample is a two-year unbalanced panel data set which covers

years 2011 and 2012. Panels A, B, and C of Table 2 respectively show the basic statistics

of our variables for the whole sample, the subsample that is covered by voluntary third

party bodily injury insurance, and the subsample that is not covered by voluntary third

party bodily injury insurance. Panel A shows that about 47% of our research sample is

in year 2011. The average claim rate (claim = 1) is 1%. About 80% of the observations

have been rewarded by the bonus malus system and get a 30% discount (Dbm = 0). We

classify the rest 20% of the observations (Dbm = 1) as high risk type according to past

driving records. For safety equipment, about 10% of the observations have a high quality

airbag system (airbag_high = 1), 39% have a high quality braking systems (brake_high

= 1), and 8% of are SUVs (veh_suv = 1). Panel A further shows that fewer than 1%

of the vehicles are equipped with both a high quality airbag and a high quality braking

systems, whereas there are 51% of the vehicles are equipped with both standard quality

airbag and braking systems. Females (female = 1) account for 60% of the registered car

owners. About 75% of the insured are married. Age is highly concentrated in the 30

to 60 years old group (age3060 = 1). New cars (carage0 = 1) account for about 7% of
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the sample, and about 61% of the cars are more than 4 years old. From Panels B and

C, we see that the subsample with voluntary third party bodily injury insurance have a

28% higher claim frequency, have a (slightly) better bonus-malus score and are less likely

to have high quality airbag or breaking systems. These observations are suggestive of

individuals with higher insurance levels being of lower risk (i.e., advantageous selection in

the insurance context). However, much more attention to this issue is required to draw

any strong conclusions.

Table 3 reports the correlations between the proxies of accident risk (third party

claims), driver risk type (bonus-malus score) and the safety technologies for LMT and

PRT . We see that claim and Dbm are significantly positively correlated, as one would

expect, implying that individuals with worse accident history (higher bonus-malus coef-

ficient) have a higher chance to file a claim in a given year. The correlation coefficient

between claim and airbag_high and between Dbm and airbag_high is -0:005 and -0:004,

respectively. Both of the coefficients are significant. Since the high quality airbag systems

could be viewed as a LMT , this finding provides preliminary evidence for advantageous

recruitment with any offsetting effect not strong enough to counter the recruitment effect.

Table 3 also shows that brake_high is significantly negatively correlated with both Dbm

and claim. This supports the view that high quality braking systems are purchased by

more cautious drivers, which is also consistent with advantageous recruitment. Moreover,

the combined effect of adopting this high quality PRT (i.e., recruitment effect net of

any possible offsetting effect) is a reduction of the probability of a claim. Interestingly,

the correlation between veh_suv and claim is insignificant, but veh_suv is significantly

positively correlated with Dbm. One possible reason for the relationship could be that in-

dividuals with a high bonus-malus coefficient (high risk drivers) purchase SUVs to protect

themselves as well as any other passengers in the vehicle. However, the safety advantage of

SUVs is offset by the increased risk effect from drivers of SUVs. Of course, there are many

other possible explanations for all of these tentative conclusions. For example, people

who purchase SUVs may be from an age group which includes individuals with different

driving abilities. The following two subsections investigate these matters more thoroughly

through the use of probit regression equations.

In the first of these (subsection 4.2 below), we preform a probit regression with de-

pendent variable claims12 for the entire data set treated as a cross-section. In the second

exercise (subsection 4.3 below) we investigate the impact of changes in the quality level

of airbags and braking systems on drivers’ claim experience for those who purchase a new

car in 2012 in order to generate a more convincing test for offsetting behaviour.

12Recall that claims are from accidents involving bodily injuries and deaths to third parties as covered

by compulsory liability insurance.

20



4.2 Statistical Evidence: Part 1 - Crossectional Analysis

In this subsection we investigate the relationship between accident rates and the choice

of safety technologies based on our entire sample (treated as a cross-section). Doing so

provides a better understanding of the relationships between accident risk and vehicle

safety technologies than simple correlations. However, the results are still descriptive

in that we cannot separate recruitment and behavioural (offsetting) effects of improved

LMT and PRT technologies. We may tentatively identify how certain observables (e.g.,

age, marital status, gender) relate to the demand for improved safety technologies but

unobservable preference heterogeneity is not revealed in this exercise. The analysis is

still of interest since observing the combined effects of these forces on accidents (claims) in

conjunction with the analysis of the following two subsections help us to better understand

the various issues raised in this paper. We first employ the following Probit model:

Pr(claimit = 1 | airbag_highit, brake_highit, beh_suvi, bmit, Xit) (46)

= F (airbag_highitβ1 + brake_highitβ2 + veh_suvitβ3 + bmitβ4 +Xitβ5)

In Equation (46), claimit = 1 when the insured i has filed a claim based on compul-

sory automobile liability insurance during the policy year t, otherwise claimit = 0. F

denotes the cumulative distribution function of the Probit regression, and is assumed to

be normally distributed. The variables airbag_highit, brake_highit, and veh_suvit are

the safety technologies. bmit is the bonus-malus value of the insured i at time t. The

vector Xit denote the explanatory variables, including gender, marital status, age of the

policyholder, vehicle age, the vehicle registration location, and a year dummy (year2011)

to control the time effect. β’s are the corresponding coefficients.

Table 4 shows that for the whole sample, as well as in each subsample, the coeffi-

cient on airbag_high is significantly negative. This finding differs from some previous

research (e.g., Peterson, Hoffer, and Millner, 1995; Harless and Hoffer, 2003) which finds

that drivers of vehicles equipped with airbags are more likely to be at fault in accidents.

However, we find that the coefficient of airbag_high is significantly negative; i.e., drivers

in a vehicle equipped with high quality airbag systems are less likely to cause accidents.

In other words, our findings suggest that high quality airbag systems are associated with

advantageous recruitment and any offsetting effect that may exist is not sufficiently strong

to counteract the recruitment effect.

Table 4 also shows that the coefficient of brake_high is significantly negative in all

groups of samples, which is at least not inconsistent with advantageous recruitment. Treat-

ing the high quality braking system as a higher level of PRT means that adoption per se

of this technology should lead to a reduction in the probability of an accident. If there is

an offsetting effect, this is not strong enough to reverse the accident mitigation effect of

21



the higher quality PRT . There could be an adverse recruitment effect in this case if it is

not strong enough to reverse the net effect of the two forces described above. However,

we cannot conclude one way or the other about the recruitment effect from these results.

The coefficient for veh_suv is not significant. In other words, we do not find evidence

that choice of an SUV implies a change in the driver’s probability of an accident.

As expected, individuals with a higher bonus-malus coefficient have a higher probabil-

ity of sustaining an accident. On average, females have a higher accident rate than males.

Married individuals have a lower probability than singles. For different age groups, we

find that the young policyholders (younger than 25 years old) have the highest probability

of sustaining an accident. New cars and cars with age younger than 4 years old have a

higher probability of sustaining an accident than do cars older than 4 years old in the

whole sample and the subsample without voluntary third party bodily injury insurance.

The differences among different car age groups are not significant in the subsample with

voluntary third party bodily injury insurance.

4.3 Statistical Evidence: Part 2 - Panel Data Estimates

In this section we use the data only for those vehicle owners who were present in both

years of the sample period and purchased a new (different) vehicle in the second year.

By tracking whether they retained the same quality safety technologies (LMT and PRT

levels) or upgraded or downgraded we can estimate the impact of these decisions on

claims (accidents). Assuming that preferences do not change over the two years, any

observed change in claim experience resulting from a change in equipment is independent

of recruitment effects. If an individual purchases a new vehicle with an upgraded braking

system AND does not adjust behaviour, then we should observe a reduction in claim

probability. If there is offsetting behaviour (i.e., the individual drives less carefully), then

this will mitigate the intrinsic safety effect of the improved braking system. As long as the

mitigation is only partial, there will still be a negative relationship between the adoption of

the higher quality brake system and accidents caused and so a subsidy is in order. The size

of the subsidy, however, should be reduced according to the extent of any mitigation effect.

If the mitigation effect is more than 100%, then we would observe a positive relationship

between purchasing a vehicle with an improved braking system and the probability of a

claim. In this case a tax on cars with upgraded brakes would be in order.

If an individual purchases a new vehicle with an improved airbag system, there is

no intrinsic effect on safety and so any change in claim experience may be considered

attributable to behavioural change. From the theoretical perspective, we do expect at

least a small increase in the probability of claim. The size of the offsetting effect would

determine the size of the appropriate tax to deal with the negative externality.
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As noted in section 4 (Data), there are 17,002 individuals who switched vehicles in

2012. The relevant data on these vehicles, as well as other variables used in this section,

is summarized in Tables 5 and 7 with definitions of "new" variables given in Table 6. By

"new" cars, we mean new purchases including individuals who purchase a used vehicle in

2012. From Table 7, we see that the age of newly purchased vehicles is, on average, 2.25

years less (newer) than the vehicles previously owned. A larger fraction of new vehicles

had reduced quality braking systems (13.4% with increased quality and 17.8% reduced

quality) while more vehicles had increased quality airbags (9.2% with increased quality

and 5.5% decreased quality). 5.48% of new purchases represent a change from a car to a

SUV while 2.25% involved the reverse change.

We estimate the following logistic regression equation:

log

(

1− p

p

)

= incbrkβ1 + decbrkβ2 + incarbgβ3 + decarbgβ4 + incsβ5 + decsβ6 (47)

+ < < int_safe_size >> + delta_carage_β7 +XβX +∆Externality + ε(48)

and estimate separately the set of observations including an increase in claims in 2012 com-

pared to 2011 (riskier) and those observations including a decrease in claims in 2012 com-

pared to 2011 (lessrisky). The definition of “becoming riskier” includes: (1) riskier_clm:

no claim in first year and at least one claim in second year, (2) riskier_clmtimes: claim

times increase from first year to second year, (3) riskier_clmamt : increase in dollar amount

of claims. A similar set of definitions is used for the lessrisky variables.

The X vector includes variables already used (e.g., female, married, age2530,age3060,

ageabv60, carage0, carage1to4, city, north, south, east. We also include regional differences

in the safety variables which pose changes in the driving environment and so are described

as ∆Externality, which is a vector that includes the change in the mean value of changes

in safety equipment of vehicles, the mean value of the number of tickets issued in the

registration county, and so forth as described in Table 6.

In order to use the Logistic Regression, we compare separately those individuals dis-

playing a higher experience of claims to the those with no change in claims. So, for

example, we define the dummy variable riskier_clm which equals 1 for any individual

who experienced a claim in 2012 but did not in 2011 and assign a value of 0 otherwise.

Alternatively, we compare those individuals displaying a reduced claims’ experience to

those with no change in claims. In this case we define the dummy variable lessrisky_clm

which equals 1 for any individuals who experienced a claim in 2011 but not in 2012 and

assign a value of 0 otherwise. We then regress these dummy variables against the various

independent variables to determine whether adoption of either a higher or lower quality

brake system (or airbag system) is statistically related to an increased or decreased risk

of making claims (i.e., being the cause of an accident resulting in a third party claim for

23



bodily injury). For the sake of robustness, we also use as dependent variable a change in

the amount of claims created between the two years and the number of times a claim is

made)13. We find no important differences between the results.

In our regression that investigates possible reasons for increased claims (riskier driving

- Table 8), we find a statistically significant negative relationship between vehicles with

decreased quality airbag systems. This is consistent with classic offsetting behaviour as

people who become more exposed to risk of injury in their vehicles through purchase

of a vehicle with lower quality airbag system are less likely to create an accident claim.

The reverse, however, does not hold; i.e., there is no statistically significant relationship

between the variable incarbg and claims. There is no statistically significant relationship

between our measures of riskier driving and either the purchase of a vehicle with increased

or decreased quality braking systems. Of course, this does not mean there isn’t a change

in people’s driving behaviour. For example, a person who purchases a new vehicle with

improved brake system may drive less carefully because of this feature while the intrinsic

improvement in safety from the improved brakes effectively mitigates the reduced caution

in driving behaviour and so offsetting behaviour may be present.

In our regression that investigates possible reasons for a reduction in claims (less risky

driving - Table 9), there is a statistically significant relationship between the reduction

in claims and purchase of a vehicle with an improved brake system. As noted at the

beginning of this section, such a result is consistent with some offsetting behaviour if the

extent of the offsetting behaviour is not so strong as to reverse the beneficial effect on safety

from the improved braking technology. In any case, if the net effect is an improvement

in safety (reduction in claims), then a subsidy on vehicles with improved brake systems is

warranted. Perhaps surprisingly, there is no statistically significant relationship between

the purchase of a vehicle with a lower quality braking system and any of the measures of

improved (reduced) claims experience. This may be explained by individuals who purchase

vehicles with lower quality braking driving with even greater care to offset the intrinsic

reduction in safety from the change in brake system.

There are a few results of interest from other variables which are significantly sta-

tistically related to the dependent variables. The change in car age (i.e., the bigger the

difference - typically negative - in the age of the newly purchased car and the car owned in

2011) is positively related to our measures of reduced level of claims (e.g., lessrisky_clm)

and negatively related to our measures of increased level of claims (e.g., riskier_clm),

although not statistically significantly in the latter case. This could be due to drivers be-

coming more careful in how they drive their "newer" vehicles and/or due to overall increase

13There are only a few instances, for example, of a person having one claim in 2011 and two claims in

2012 that would trigger a value of 1 for the dummy variable riskier_clmtimes.
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safety (e.g., unmeasured characteristics such as better overall handling characteristics).

5 Discussion

A large number of empirical studies have investigated the effect of improvements in safety

technologies over a wide range of phenomenon. We have developed a model using a

classification of such technologies based on whether adopting the technology leads, ceteris

paribus, to a reduction in the probability of an accident or, conditional on an accident

occurring, reduces the extent of the consequences or size of loss due to the accident.

We refer to the former as a probability reduction technology (PRT ) and the latter as

a loss mitigation technology (LMT ). Our model also considers two possible sources of

heterogeneity among potential adopters of improved technologies. In one case we consider

that individuals differ by their perceived loss due to an accident while in the other, some

individuals display a higher cost of taking precautions to avoid accidents (i.e., effort to

drive more safely). In order to understand the relative safely levels of drivers who end

up adopting improved technologies compared to those who do not, both before and after

adoption, one must understand the reason for adoption (i.e., the source of heterogeneity in

preferences). We investigated these issues theoretically and discuss in what follows how to

draw policy conclusions based on observations driven by the various possibilities. We also

examine the challenges in interpreting data linking accident rates to adoption decisions

both from a theoretical perspective and through our empirical application.

Vehicle owners (drivers) are assumed to differ according either to their perceived loss

or concern with being involved in an accident or to their personal cost of taking preventive

actions (i.e., the extent of safe driving habits). These two dimensions of the model help

in unraveling the relationship between riskiness of adopters of the different types of safety

technologies both before and after adoption of improved safety technologies. For example,

individuals who perceive higher losses due to accidents will, at least ex ante to adoption,

drive more carefully and so be less likely to be involved in accidents. Such drivers will more

likely adopt either an LMT or PRT . If the extent of any offsetting behaviour is not too

large, then adopters will continue to display lower accident risk levels ex post to adoption.

However, individuals who possess a higher cost to safe driving behaviour will also be more

likely to adopt either type of technology but have higher accident rates ex ante. These

individuals who adopt an improved LMT will have further incentive to reduce their safe

driving habits and so have an even higher accident rate ex post to adoption. The effect of

adopting a higher quality PRT for either type of driver depends on whether the PRT is a

substitute or complement to safe driving behaviour (i.e., the offsetting effect may be the

typical one of reducing safe driving or have the opposite effect of increasing safe driving
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behaviour). Interpreting the relationship between accident rates and adoption of safety

technologies - the so-called recruitment effect - requires careful analysis of the relationship

between both ex ante and ex post accident rates of adopters versus non-adopters. It

is important to understand these relationships in order to draw appropriate conclusions

about the extent of offsetting effects from empirical analysis.

The classic interpretation of a negative externality arising from the offsetting effect due

to adoption of an LMT (such as seatbelts) arises from the reasonable presumption that

the inherent reduction in the negative consequences due to accidents reduces the marginal

value to exerting safe driving behaviour. More care must be made when considering adop-

tion of PRTs. If, for example, the source of a positive relationship between accident rates

and adoption of a PRT is due to a preference by those with a higher cost of careful driving

wanting to balance their higher risk of accident by use of the improved technology, then it

does not necessarily follow that there will be a negative externality effect resulting from

the improved technology despite the observed higher accident rate of adopters compared

to nonadopters. If the PRT is complementary to individuals’ own safe driving efforts,

then there will be an even greater impact on overall safety even if the accident rates of

adopters is observed to be higher than nonadopters. This will happen if the combined

effect of the PRT and enhanced safe driving efforts does not make adopters accident rates

fall below that of nonadopters which, given the assumption that adopters have a higher

cost of precaution, is possible. Even if the PRT and safe driving efforts are substitutes,

the net effect on adopters’ accident rates may still lead to a reduction in the probability

of them causing an accident. Therefore, despite a perception of an offsetting effecting,

there may exist an overall positive externality created by such technologies and so, from

a welfare perspective, such a technology should be subsidized in such cases. Of course, if

the overall effect of adoption of a PRT and resultant change in driving behaviour leads to

an increase in adopters’ probability of causing an accident, then a tax on the technology

is in order.

Suppose, on the other hand, that the reason for those who adopt a PRT is that they

perceive a higher loss due to any accident that may occur. Such individuals would, ex ante

to adoption, display lower accident rates than nonadopters. If the PRT is a complement

to safe driving habits, then a reverse offsetting effect would occur and the accident rate of

adopters would be even lower ex post to adoption. If the PRT and safe driving habits are

substitutes, then the usual offsetting effect can be expected. However, the ex post accident

rate for adopters may remain below that for nonadopters. This could be observed even

if the offsetting effect leads to an increase in the accident rate of adopters provided the

offsetting effect was not so strong as to lead to adopters to have a higher (ex post) accident

rate than the (ex ante and ex post) accident rate of nonadopters. In this scenario, the
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PRT creates a negative externality and so should be taxed even though adopters display

a lower accident rate than that of nonadopters.

As is evident from the above discussion, as well as the formal propositions in this

paper, one must take care in drawing conclusions from observations of accident rates and

vehicle (safety) characteristics in regards to the presence and extent of offsetting behaviour

in conjunction with recruitment effects as well as the type of heterogeneity of preferences

that exists in the population of vehicle owners. This is crucial information in determining

appropriate policy considerations in regards to the appropriate tax (or subsidy) to apply

to safety technologies as well as deciding which technologies to make mandatory. As

has been noted before (e.g., Harless and Hoffer, 2003), data which allows one to follow

individuals’ driving records and accident histories over time can be very useful in this

regard. We have analyzed an unbalanced panel data set to illustrate how our theoretical

analyses can guide one to understand better these important issues. Ignoring the panel

nature of the data, simple correlations indicate a negative relationship between accident

rates and both the adoption of higher quality airbags and higher quality brake systems.

According to the classic offsetting hypothesis, adopting a higher quality LMT is expected

to lead to a reduced level of safe driving care and so, ignoring possible recruitment effects,

a positive relationship between the quality of the technology and accident rates. The

observed negative correlation points towards advantageous recruitment (i.e., safer or less

risky drivers choose the better technology).

Drawing conclusions about PRTs is more complicated. Adoption of a higher quality

PRT by its nature leads to a reduction in the probability of an accident provided there is no

overwhelming offsetting effect. If the PRT is a complement to safe driving behaviour, then

one expects a reverse offsetting effect which strengthens the negative relationship between

the level of PRT and accident rate. However, if the reason for individuals purchasing a

higher quality PRT is due to having a higher cost of (own) precaution, the recruitment

effect may look different depending on whether contemporaneous or historical accident

rates are being observed. From our empirical analysis, we find a negative correlation

using either current or past measures of accident rates (riskiness of drivers) and so again

the negative correlations point toward advantageous recruitment.

There are many challenges to any study about the effects of safety vehicles for vehicles

that also apply to our work. As mentioned earlier in the paper, some safety features may

display both LMT and PRT effects. This is likely for higher quality brake systems. Also,

although our example of a LMT (high quality airbag) presumably decreases the harm to

occupants in any substantial impact, minor accidents may involve higher financial losses

for such vehicles as more complex airbag systems, if triggered unnecessarily, may be more

expensive to reset. Thus, the implication of the classic offsetting hypothesis that such a
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safety device would incentivize drivers to be less cautious may in fact be incorrect.

Another important challenge is to consider the role of insurance and traffic enforce-

ment. Safer vehicles may be less expensive to insure and this provides an incentive to

purchase such vehicles and so at least in part behaves as an appropriate subsidy, albeit

not necessarily in a complete manner. Also, insurers may use experience rating in a way

that lessens moral hazard, for example, by people who purchase vehicles with enhance

LMTs. To be fully effective in welfare terms, however, such experience rating would need

to be designed according to vehicle and driver types. Also, traffic enforcement is not likely

to involve policies, including fines, which differ according to safety features of vehicles.

More generally, when we refer to the individual’s level of precaution we mean things

such as attentiveness to road hazards while driving, maintaining alertness, driving at

safe speeds, and so forth. These are assumed unobservable to the social planner (or

government). Our analysis is designed to consider how such choices create externalities for

others under various scenarios of available PRT and LMT technologies and for individuals

with two possible sources of heterogeneous preferences which lead them to value such

technologies differently. Although certainly worthy of future research, we do not consider

the may direct and indirect measures used for imperfectly observing (and controlling)

individual choices of level of care or precaution. These include police enforcement of

traffic regulations (fines for speeding, following too closely, etc.) and measures such as

experience rating by insurers, that others have studied (e.g., Boyer and Dionne, 1987).

We leave aside these sorts of issues, although they are all well worth exploring in future

work.

Although our model advances the literature by allowing for two dimensions of prefer-

ences (cost of own effort towards safe driving and size of loss due to an accident), there are

many more possible dimensions that one could explore. Some of these may be approxi-

mated reasonably well by our chosen dimensions, but others deserve greater attention. For

example, our objective function implies risk neutrality. However, allowing for individuals

to vary in their perceived size of loss due to an accident may approximate a difference

in risk aversion with more risk averse individuals holding a higher degree of loss. Ad-

mittedly, though, the implications of risk aversion on choice of self-protection or level of

safety technologies is a complicated matter. The difficulty of determining the effect of

varying the degree of risk aversion on the optimal level of precaution is well known. It

would also be difficult to determine the effect of risk aversion on choice of a PRT . Since

increasing the degree of LMT reduces the size of loss and so increases income in the loss

state of the world, this may pose less problematic. Allowing for differences in income levels

would also create complications in our model.14 We also do not explore the possibility of

14Our data set does not have information on income levels.
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innate differences in driving ability that may be reflected in the probability of an accident

occurring (i.e., the D(p, θ) function).

There are many other alternative assumptions one could make about preferences. We

implicitly assume risk neutral expected utility preference. Many alternative behavioural

models could of course also be explored. Our model does, however, allow for weighted

probabilities. The factor (1 + υ) in the expected loss term, D(p, θ)(1 + υ)L(λ), which

reflects a multiplicative term on the size of the loss could also be treated as a weighting

factor on the probability of the loss state. Other more heuristic models have also been

suggested.

Another important consideration is whether individuals are well informed about the

relative safety features of different vehicles. There are many such features to understand

and trade off between models. Examples include visibility, handling, crash worthiness,

relative effectiveness of the myriad safety features (including so-called nanny devices)

that can be purchased between models of a given brand of vehicle and between brands.

Moreover, people may consider other features of a vehicle important that may have to be

traded off with safety features, such as storage compartments, comfort of seats, quality of

sound system, etc..

Finally, it can be difficult to assess the extent to which a feature is advantageous

in preventing high loss accidents. A good example is the decision to purchase a SUV.

Although its size is an advantage in reducing the extent of harm to occupants should an

accident occur, the size may be a disadvantage in avoiding an accident in the first place.

Being both larger and having a higher centre of gravity implies a higher rollover risk as

well as a longer stopping distance.

6 Conclusions

We have developed a model of decision making by owners/drivers of vehicles that allows

for two sources of heterogeneity in preferences as potential reasons why people purchase

vehicles with differing quality safety features. We also explicitly introduce two types

of such safety features. One type, such as high quality airbag systems, offer greater

protection against harms to individuals should an accident occur while the other, such as

high quality brake systems, offer intrinsic reduction in the probability of being involved

in an accident. We refer to these, respectively, as loss mitigation technologies (LMT ) and

probability reduction technologies (PRT ). We show that the demand for these two types of

technologies and the implications on the relationship between their adoption and accident

probabilities both ex ante to adoption (recruitment effects) and ex post (recruitment plus

offsetting behaviour effects) differs in interesting ways. We believe our model could, with
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extensions, be useful for studying the myriad of newly developed safety technologies for

vehicles as well as in other domains involving changes to safety protocols and technology.

Using data from the Taiwan Insurance Institute (TII), supplemented with detailed

information on insureds’ claims and driving records, we illustrate our model with an

empirical application involving these two types of safety features; i.e., quality of airbag

systems (a LMT ) and quality of braking systems (a PRT ). Both simple correlations and

cross-sectional regressions generated a negative statistical relationship between accident

claims caused by drivers of vehicles and high-quality airbags or high-quality brake systems

of those vehicles.15 Consider first the case of airbags. Although causality cannot be in-

ferred from these results, they are at least consistent with advantageous recruitment (i.e.,

less risky drivers are more likely to obtain vehicles with higher quality airbags). Given

the classical offsetting effect due to adoption of an LMT , which would generate a positive

relationship between the safety feature of high-quality airbag and level of safe driving, this

result in principle makes advantageous selection a plausible conclusion. Our regressions

based on the subset of owners present in both periods reveal a negative statistical relation-

ship between drivers becoming riskier and purchase of a new vehicle with lower quality

airbags which is consistent with the classic offsetting hypothesis (for a LMT ). There is,

however, no complementary effect for drivers who have purchased new vehicles that have

upgraded quality of airbags (i.e., there is no statistically significant relationship between

inc_arbg and increased claims experience).

Our results point in the direction of advantageous recruitment for both high-quality

airbags and high-quality brake systems, the LMT and PRT investigated here, and that

any offsetting effect from the adoption of high-quality brake systems is not strong enough

to reverse the inherent improvement in the accident rate due to the nature of the PRT .

On the basis of this finding, one can make the case that a subsidy on this PRT would

improve welfare.

7 Appendix

We now consider the scenario in which each individual chooses simultaneously his level

of precaution, PRT and LMT . Given what we have learned for the case of being able

to choose only one of PRT and LMT (i.e., singly), it is not surprising that performing

comparative statics leads in many cases to ambiguous results. For the case of heterogenous

cost of precaution (Model C1), we have that each individual chooses {p, λ, θ} to minimize

Ω(p, λ, θ) = D(p, θ)L(λ) + (1 + τ)c(p) + kR(θ) + kM (λ) (49)

15This is the case both for contemporaneous claims and historical claims as measured by the bonus

malus measure.
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For convenience, we assign variable numbers 1, 2, 3, to p, λ, θ, respectively, and so write

the first-order conditions for the optimization problem as follows.

F1(p, λ, θ) = DpL+ (1 + τ)c′ = 0 (50)

F2(p, λ, θ) = DLλ + k′

M = 0 (51)

F3(p, λ, θ) = DθL+ k′

R = 0 (52)

Upon totally differentiating the above system we get, using standard notation,









F11 F12 F13

F21 F22 F23

F31 F32 F33

















dp/dτ

dλ/dτ

dθ/dτ









=









−c′(p)

0

0









(53)

where

F11 = DppL+ (1 + τ)c′′ > 0, F12 = DpLλ > 0, F13 = DpθL? (54)

F21 = DpLλ > 0, F22 = DLλλ + k′′

M > 0, F23 = DθLλ > 0 (55)

F31 = DpθL?, F32 = DθLλ > 0, F33 = DθθL+ k′′

R > 0 (56)

Note that the sign of F13(F31), indicated by ?, is the same as the sign of Dpθ and so

depends on whether precaution and the PRT are substitutes or complements. From the

above, we have the following comparative statics results. Again, |F | > 0 and so signs are

the same as the signs of the numerators.

dλ

dτ
= c′[(DpLλ)(DθθL+ k′′

R)− (DpθL)(DθLλ)]/ |F | (57)

The term (DpLλ)(DθθL+ k′′

R) > 0 contributes to a positive relationship between λ and τ .

It follows that dλ
dτ

> 0 if Dpθ ≤ 0 (i.e., if own care and the PRT are complements). This

follows since a higher cost of p reduces the incentive to provide own care which in turn

reduces the effectiveness of θ (the PRT ) when they are complements. Lowering both p and

θ leads to an increase in the probability of loss (D) which in turn increases the marginal

value of the LMT and so any reduction in θ (in addition to a reduction in p) reinforces

the incentive to increase λ. However, if precaution and the PRT are substitutes, then a

lower choice of p due to a higher cost would lead to a higher productivity of θ which would

lead to a reduction in the loss probability. This is demonstrated by the following result

and explanation.

dθ

dτ
= −c′[(DpLλ)(DθLλ)− (DpθL)(DLλλ + k′′

M )]/ |F | > 0 (58)

The second term in brackets represents a positive effect of an increase in τ on θ when p and

θ are substitutes (Dpθ > 0). This accords with intuition since in this case any reduction
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in (more costly) p makes θ (PRT ) more effective in reducing the probability of loss. If p

and θ are complements (Dpθ < 0), then any reduction in p reduces the effectiveness of θ

and so in that case the second term represents a negative effect of an increase in τ on θ.

Note that any increase in the probability of loss due to either a decrease in p or θ would

increase the marginal value of the LMT. Given these instruments (λ and θ) are chosen

simultaneously, an induced increase in λ would reduce the size of the loss and so have

a a negative effect on the marginal productivity of θ. The first term in square brackets,

(DpLλ)(DθLλ), is positive and so captures this negative effect of an increase of τ on θ.

Therefore, the net effect of an increase in τ on θ depends on the relative strength of all of

these effects. Notice that this second unambiguously positive effect is stronger the higher

is the effect of increasing λ on the size of loss (i.e. on the magnitude of |Lλ|) and in fact

disappears as Lλ → 0 which corresponds to the results when θ is the only choice variable.

dp

dτ
= −c′[(DLλλ + k′′

M )(DθθL+ k′′

R)− (DθLλ)
2]/ |F | > 0 (59)

The part (DLλλ + k′′

M )(DθθL + k′′

R) (in square brackets) is positive and contributes to a

negative relationship between τ and p, the effect one would expect from simply having the

cost of own care increasing in τ . However, the term −(DθLλ)
2 reduces this effect and, if

strong enough, may even lead to a positive relationship between τ and p.

Proposition 7. Suppose individuals differ according to cost of precaution and choose (si-

multaneously) levels of PRT (θ) and LMT (λ) along with their level of precaution (p) to

minimize expected loss. Individuals who face higher cost of precaution increase their level

of LMT if the PRT is a complement to precaution (i.e., Dpθ < 0). The effect is inde-

terminate if precaution and the PRT are substitutes (Dpθ > 0). The relationship between

cost of precaution and the other variables of interest (precaution, p, and the PRT,θ) are

indeterminate.

We now develop Model 3B in which the heterogeneity is due to differential size of loss

should an accident occur. Recall that the objective function is

Ω(p, λ, θ) = D(p, θ)(1 + υ)L(λ) + c(p) + kR(θ) + kM (λ) (60)

and so the first-order conditions for the optimization problem are as follows.

F1(p, λ, θ) = Dp(1 + υ)L+ c′ = 0 (61)

F2(p, λ, θ) = D(1 + υ)Lλ + k′

M = 0 (62)

F3(p, λ, θ) = Dθ(1 + υ)L+ k′

R = 0 (63)
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Upon totally differentiating the above system we get, using standard notation,









F11 F12 F13

F21 F22 F23

F31 F32 F33

















dp/dυ

dλ/dυ

dθ/dυ









=









−DpL

−DLλ

−DθL









(64)

where

F11 = Dpp(1 + υ)L+ c′′ > 0, F12 = Dp(1 + υ)Lλ > 0, F13 = Dpθ(1 + υ)L? (65)

F21 = Dp(1 + υ)Lλ > 0, F22 = D(1 + υ)Lλλ + k′′

M > 0, F23 = Dθ(1 + υ)Lλ > 0 (66)

F31 = Dpθ(1 + υ)L?, F32 = Dθ(1 + υ)Lλ > 0, F33 = Dθθ(1 + υ)L+ k′′

R > 0 (67)

From the above, we have the following comparative statics results (noting that |F | > 0).

dp

dυ
=
{

−DpL[F22F33 − (F23)
2] +DLλ[F12F33 − F13F32]−DθL[F12F23 − F22F13]

}

/ |F |

(68)
dλ

dυ
=
{

DpL[F21F33 − F23F31]−DLλ[F11F33 − (F13)
2] +DθL[F11F23 − F21F13]

}

/ |F |

(69)
dθ

dυ
=
{

−DpL[F21F33 − F22F31] +DLλ[F11F32 − F12F31]−DθL[F11F22 − (F12)
2]
}

/ |F |

(70)

An increase in parameter ν leads to increased productivity of each choice variable. How-

ever, an increase in λ would reduce the marginal productivity of each of the other choice

variables, (p, θ). Similarly, an increase in either p or θ would reduced the marginal produc-

tivity of λ. Finally, an increase in θ would decrease or increase the marginal productivity

of p (or vice versa) depending on whether the two variables are substitutes or complements

(i.e., whether Dpθ is positive or negative, respectively). Given these relationships, none of

the comparative statics results can be signed definitively even if we make an assumption

about the sign of Dpθ.

Proposition 8. Suppose individuals differ according to size of loss and choose (simul-

taneously) levels of PRT (θ) and LMT (λ) along with their level of precaution (p) to

minimize expected loss. An increase in the loss size parameter (υ) increases the marginal

productivity of each choice variable. However, any increase in λ reduces the marginal pro-

ductivity of both precaution and the PRT. Moreover, any increase in one of precaution or

the PRT increases or decreases the marginal value of the other depending on whether they

are complements or substitutes. As a result, none of the signs of the comparative static

relationships are determinate.
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Table 1   Variable definitions: Set 1 

 

Variables Definition  

claim A dummy variable, it equals 1 when the insured have ever 

filed the claim in compulsory liability insurance within 

one policy year; otherwise it equals 0. 

bm The value of bonus malus coefficient 

Dbm A dummy variable, it equals 1 when the bonus malus 

coefficient of the insured is larger than 0.7; otherwise it 

equals 0. 

brake_high A dummy variable, it equals 1 when the insured vehicle is 

equipped with high quality brake system; otherwise it 

equals 0. The high quality brake system means the vehicle 

is equipped not only with anti-lock brake system, but also 

equipped with the traction control system\vehicle stability 

control system\acceleration slip regulation as well as 

down-hill assist control \the hill-start assist control. 

airbag_high A dummy variable, it equals 1 when the insured vehicle is 

equipped with high quality airbag system; otherwise it 

equals 0. The high quality airbag system means there are 

airbags equipped for both front seats and equipped for the 

back seats. 

high_brk_high_abg A dummy variable, it equals 1 when the insured vehicle is 

equipped with high quality brake system as well as high 

quality airbag system; otherwise it equals 0. 

high_brk_low_abg A dummy variable, it equals 1 when the insured vehicle is 

equipped with high quality brake system, but equipped 

with low standard airbag system; otherwise it equals 0. 

low_brk_high_abg A dummy variable, it equals 1 when the insured vehicle is 

equipped with low standard brake system, but equipped 

with high quality airbag system; otherwise it equals 0. 

low_brk_low_abg A dummy variable, it equals 1 when the insured vehicle is 

equipped with low standard brake system as well as low 

standard airbag system; otherwise it equals 0. 

veh_suv A dummy variable, it equals 1 when the insured vehicle is 

a sport utility vehicle (SUV); otherwise it equals 0. 

 

 



Table 1  Variable definitions: Set 1 (continued) 

 

Variables Definition  

female A dummy variable, it equals 1 when the insured is female; 

otherwise it equals 0. 

married A dummy variable, it equals 1 when the insured is in 

marriage status; otherwise it equals 0. 

age2530 A dummy variable, it equals 1 when the insured equals or 

older than 25 years old and younger than 30 years old; 

otherwise it equals 0. 

age3060 A dummy variable, it equals 1 when the insured equals or 

older than 30 years old and younger than 60 years old; 

otherwise it equals 0. 

ageabv60 A dummy variable, it equals 1 when the insured equals or 

older than 60 years old; otherwise it equals 0. 

carage0 A dummy variable, it equals 1 when the insured vehicle is 

brand new; otherwise it equals 0. 

carage1to4 A dummy variable, it equals 1 when the insured vehicle is 

more than 1 year and not over 4 years; otherwise it equals 

0. 

city A dummy variable, it equals 1 when the insured vehicle is 

registered in city area; otherwise it equals 0. 

north A dummy variable, it equals 1 when the insured vehicle is 

registered in northern part of Taiwan; otherwise it equals 

0. 

south A dummy variable, it equals 1 when the insured vehicle is 

registered in southern part of Taiwan; otherwise it equals 

0. 

east A dummy variable, it equals 1 when the insured vehicle is 

registered in eastern part of Taiwan; otherwise it equals 0. 

 



Table 2  Summary statistics  

 

 Mean Std Obs 

Panel A  Whole sample 

claim 0.0100 0.0995 2255157 

Dbm 0.2004 0.4003 2255157 

airbag_high 0.0952 0.2935 2255157 

brake_high 0.3939 0.4886 2255157 

veh_suv 0.0771 0.2667 2255157 

high_brk_high_abg 0.0012 0.0345 2255157 

high_brk_low_abg 0.3927 0.4883 2255157 

low_brk_high_abg 0.0940 0.2918 2255157 

low_brk_low_abg 0.5122 0.4999 2255157 

female 0.6008 0.4897 2255157 

married 0.7618 0.4260 2255157 

age2530 0.0440 0.2050 2255157 

age3060 0.8306 0.3751 2255157 

ageabv60 0.1144 0.3183 2255157 

carage0 0.0668 0.2497 2255157 

carage1to4 0.3227 0.4675 2255157 

city 0.6850 0.4645 2255157 

north 0.4405 0.4964 2255157 

south 0.3040 0.4600 2255157 

east 0.0421 0.2009 2255157 

year2011 0.4724 0.4992 2255157 

 



Table 2  Summary statistics (continued) 

 

 Mean Std Obs 

Panel B  Sample with voluntary third party bodily injury insurance 

claim 0.0110 0.1045 1286309 

Dbm 0.1975 0.3981 1286309 

airbag_high 0.0909 0.2874 1286309 

brake_high 0.3791 0.4852 1286309 

veh_suv 0.0957 0.2941 1286309 

high_brk_high_abg 0.0014 0.0374 1286309 

high_brk_low_abg 0.3777 0.4848 1286309 

low_brk_high_abg 0.0895 0.2854 1286309 

low_brk_low_abg 0.5315 0.4990 1286309 

female 0.6583 0.4743 1286309 

married 0.7533 0.4311 1286309 

age2530 0.0386 0.1926 1286309 

age3060 0.8485 0.3586 1286309 

ageabv60 0.1055 0.3072 1286309 

carage0 0.0786 0.2691 1286309 

carage1to4 0.3675 0.4821 1286309 

city 0.6872 0.4636 1286309 

north 0.4396 0.4963 1286309 

south 0.3042 0.4601 1286309 

east 0.0449 0.2070 1286309 

year2011 0.4600 0.4984 1286309 

 

 

  



Table 2  Summary statistics (continued) 

 

 Mean Std Obs 

Panel C  Sample without voluntary third party bodily injury insurance 

claim 0.0086 0.0926 968848 

Dbm 0.2042 0.4031 968848 

airbag_high 0.1009 0.3012 968848 

brake_high 0.4135 0.4925 968848 

veh_suv 0.0524 0.2229 968848 

high_brk_high_abg 0.0009 0.0302 968848 

high_brk_low_abg 0.4126 0.4923 968848 

low_brk_high_abg 0.1000 0.3000 968848 

low_brk_low_abg 0.4865 0.4998 968848 

female 0.5246 0.4994 968848 

married 0.7731 0.4188 968848 

age2530 0.0511 0.2202 968848 

age3060 0.8069 0.3947 968848 

ageabv60 0.1262 0.3320 968848 

carage0 0.0511 0.2202 968848 

carage1to4 0.2633 0.4404 968848 

city 0.6821 0.4657 968848 

north 0.4416 0.4966 968848 

south 0.3036 0.4598 968848 

east 0.0386 0.1925 968848 

year2011 0.4887 0.4999 968848 

 

 

 



Table 3 Correlation coefficients 

 

 claim Dbm airbag_high brake_high veh_suv 

claim  1.000      

Dbm  0.012***  1.000    

airbag_high -0.005*** -0.004***  1.000   

brake_high -0.004*** -0.072*** -0.253***  1.000  

veh_suv  0.0004  0.019***  0.036*** -0.144*** 1.000 

 



Table 4  Pooled Probit regression of compulsory liability claim 

 

 Whole sample With voluntary 

third party bodily 

injury insurance 

Without voluntary 

third party bodily 

injury insurance 

 Est. P value Est. P value Est. P value 

Intercept -4.7884 <.0001 -4.4624 <.0001 -5.1590 <.0001 

airbag_high -0.1805 <.0001 -0.1693 <.0001 -0.1643 <.0001 

brake_high -0.0540 0.0003 -0.0341 0.0681 -0.0866 0.0004 

veh_suv -0.0073 0.7748 -0.0329 0.2709 -0.0163 0.7348 

bm 0.8938 <.0001 0.8982 <.0001 0.9788 <.0001 

female 0.1328 <.0001 0.0563 0.0020 0.1750 <.0001 

married -0.1242 <.0001 -0.1592 <.0001 -0.0608 0.0230 

age2530 -0.2767 <.0001 -0.3356 <.0001 -0.2875 0.0004 

age3060 -0.3357 <.0001 -0.4301 <.0001 -0.3382 <.0001 

ageabv60 -0.3321 <.0001 -0.3906 <.0001 -0.3768 <.0001 

carage0 0.1226 <.0001 -0.0092 0.7863 0.2900 <.0001 

carage1to4 0.1631 <.0001 0.0288 0.1319 0.3370 <.0001 

city 0.0660 <.0001 0.0698 0.0004 0.0558 0.0253 

north -0.4957 <.0001 -0.5021 <.0001 -0.4619 <.0001 

south -0.0498 0.0039 -0.0728 0.0009 -0.0125 0.6587 

east -0.1529 <.0001 -0.1826 <.0001 -0.1057 0.0823 

year2011 0.0152 0.2568 -0.0114 0.5006 0.0902 <.0001 

-2LogL 250843.91 155185.99 95213.045 

Observations  2255157 1286309 968848 

  



Table 5   Overview of safety technology decisions (New vehicle purchases)# 

 

 suv suv+ABS small small+ABS 

increase airbag 17 0 566 1 

decrease airbag 4 0 414 0 

 suv suv+airbag small small+airbag 

increase brake 13 0 1612 1 

decrease brake 3 0 1912 0 

no change 9754    

 
#There are 2,706 observations not accounted for in this table. They are distributed into 

many descriptive cells, too numerous to include here.  



Table 6   Variable definitions: Set 2 

 

Variables Definition  

delta_clm 

 

 

delta_clmtimes 

 

 

delta_clmamt 

 

 

riskier_clm 

 

riskier_clmtimes 

 

riskier_clmamt 

 

lessrisky_X 

 

inc_brk 

equals clm_2 minus clm_1 (clm_1 and clm_2 are the 

dummy variables which represent whether there is claim 

filed in first or second year) 

equals clmtimes_2 minus clmtimes_1 (clmtimes_1 and 

clmtimes_2 represents the claim times in first year or in 

second year) 

equals clmamt_2 minus clmamt_1 (clmamt_1 and 

clmamt_2 represents the claim amount in first year or in 

second year) 

A dummy variable which equals 1 if delta_clm>0, 

otherwise 0. 

A dummy variable which equals 1 if delta_clmtimes>0, 

otherwise 0. 

A dummy variable which equals 1 if delta_clmamt>0, 

otherwise 0. 

A dummy variable which equals 1 if delta_X<0, otherwise 

zero � for X = clm, clmtimes, clmamt  

A dummy variable, it equals 1 when the car owner 

switched vehicle from a low quality brake system to a high 

quality brake system; otherwise it equals 0. 

dec_brk A dummy variable, it equals 1 when the car owner 

switched vehicle from a high quality brake system to a low 

quality brake system; otherwise it equals 0. 

inc_arbg A dummy variable, it equals 1 when the car owner 

switched vehicle from a low quality airbag system to a 

high quality airbag system; otherwise it equals 0. 

dec_arbg A dummy variable, it equals 1 when the car owner 

switched vehicle from a high quality airbag system to a 

low quality airbag system; otherwise it equals 0. 

inc_s A dummy variable, it equals 1 when the car owner 

switched vehicle to a sport utility vehicle (SUV); 

otherwise it equals 0. 

dec_s A dummy variable, it equals 1 when the car owner 

switched vehicle from a sport utility vehicle (SUV) to 

other type of vehicle; otherwise it equals 0. 



inc_brk*inc_s 

 

inc/dec_X*inc/dec_s 

 

 

delta_carage 

Interaction term = 1 if new vehicle has inc_brk and inc_s, 

otherwise = 0. 

Completes the set of interaction terms as described above 

depending on increase or decrease either brk or arbg along 

with increase or decrease s 

A variable which equals the age of the new vehicle (in year 

2012) minus the age of the old vehicle (in year 2011). 

deltam_brk A variable which equals the mean value of high quality 

brake system vehicles in the registration administrative 

area corresponding to each vehicle in year 2012 minus the 

mean value of high quality brake system vehicles in the 

registration administrative area corresponding to each 

vehicle in year 2011.  

deltam_arbg A variable which equals the mean value of high quality 

airbag system vehicles in the registration administrative 

area corresponding to each vehicle in year 2012 minus the 

mean value of high quality airbag system vehicles in the 

registration administrative area corresponding to each 

vehicle in year 2011. 

deltam_s A variable which equals the mean value of sport utility 

vehicles (SUV) in the registration county corresponding to 

each vehicle in year 2012 minus the mean value of sport 

utility vehicles (SUV) in the registration county 

corresponding to each vehicle in year 2011. 

deltam_tkt A variable which equals the mean value of the number of 

tickets in the registration county corresponding to each 

vehicle in year 2012 minus the mean value of the number 

of tickets in the registration county corresponding to each 

vehicle in year 2011. 

deltam_clm A variable which equals the mean value of claim 

probability in the registration county corresponding to 

each vehicle in year 2012 minus the mean value of claim 

probability in the registration county corresponding to 

each vehicle in year 2011. 

 

 

 

  



Table 7  Detailed Summary Statistics on Panel Data Set (New vehicle purchases) 

 

 Mean  StD 

delta_clm 0.0036  0.1401  

delta_clmtimes 0.0034  0.1432  

delta_clmamt 86.3870  61184.3400  

riskier_clm 0.0116  0.1073  

riskier_clmtimes 0.0116  0.1073  

riskier_clmamt 0.0118  0.1081  

increase_brake 0.1343  0.3410  

decrease_brake 0.1781  0.3826  

increase_airbag 0.0918  0.2887  

decrease_airbag 0.0548  0.2275  

increase_size 0.0565  0.2308  

decrease_size 0.0225  0.1482  

delta_carage -2.2557  6.1281  

female 0.5722  0.4948  

married 0.7355  0.4411  

age2530 0.0503  0.2187  

age3060 0.8348  0.3713  

ageabv60 0.1010  0.3013  

carage0 0.1800  0.3842  

carage1to4 0.3824  0.4860  

city 0.6825  0.4655  

north 0.4505  0.4976  

south 0.2987  0.4577  

east 0.0383  0.1919  

delta_mean_ABS 0.0114  0.0105  

delta_mean_airbag 0.0068  0.0035  

delta_mean_suv 0.0046  0.0141  

delta_mean_ticket -0.0002  0.0462  

delta_mean_clm -0.0001  0.0014  

 

  



Table 8    Logistic Regression (riskier_clm/clmtimes/clmamt) 

 

 Model 1 Model 2 

 coef P value coef P value 

Intercept -4.4502 <.0001 -114.6000 0.4636 

inc_brk 0.0020 0.9935 0.0084 0.9731 

dec_brk -0.0357 0.8741 -0.0390 0.8628 

inc_arbg 0.1114 0.8098 0.1154 0.8031 

dec_arbg -1.0528 0.0419 -1.0640 0.0399 

inc_s -0.0179 0.9763 -0.0204 0.9731 

dec_s 0.5123 0.3447 0.5137 0.3435 

inc_brk*inc_s -0.1177 0.9165 -0.1180 0.9163 

inc_brk*dec_s -0.3477 0.7014 -0.3563 0.6944 

dec_brk*inc_s -0.7644 0.3740 -0.7590 0.3775 

dec_brk*dec_s 0.9637 0.4112 0.9622 0.4120 

inc_arbg*inc_s -0.9362 0.4043 -0.9435 0.4006 

inc_arbg*dec_s -12.2443 0.9792 -12.2417 0.9792 

dec_arbg*inc_s 1.3452 0.2689 1.3459 0.2686 

dec_arbg*dec_s 1.5811 0.1947 1.6003 0.1895 

delta_carage -0.0160 0.2463 -0.0159 0.2498 

female 0.0345 0.8153 0.0359 0.8083 

married -0.0721 0.6602 -0.0776 0.6370 

age2530 0.4819 0.5307 0.4754 0.5364 

age3060 0.3032 0.6736 0.3050 0.6718 

ageabv60 0.7031 0.3428 0.7059 0.3409 

carage0 0.1855 0.4266 0.1922 0.4111 

carage1to4 0.0961 0.5972 0.0980 0.5905 

city -0.0379 0.8168 0.0128 0.9466 

north -0.5056 0.0525 4.8039 0.5231 

south 0.1094 0.6906 -4.6704 0.4875 

east -1.3178 0.0409 -2.1767 0.1228 

deltam_brk -1.3960 0.9111 1.0591 0.9374 

deltam_arbg -24.9420 0.5106 -15.5020 0.6947 

deltam_s 1.7572 0.8601 3.0193 0.7748 

deltam_tkt 1.6056 0.5267 1.6441 0.5387 

deltam_clm 21.1059 0.7637 14.1497 0.8588 

airbag_high_2 -0.1762 0.6416 -0.1784 0.6376 



brake_high_2 0.1008 0.5996 0.0997 0.6038 

veh_suv2 0.0920 0.8186 0.1011 0.8011 

mean_brk 2   279.4000 0.4790 

mean_arbg2   0.0000 . 

mean_suv 2   -4.4810 0.5986 

mean_tkt2   0.4901 0.8459 

mean_clm2   9.4466 0.9117 

 

  



Table 9    Logistic Regression (lessrisky_clm/clmtimes/clmamt) 

  

 lessrisky_clm lessrisky _clmtimes lessrisky _clmamt 

 coef P value coef P value coef P value 

Intercept -3.9595  <.0001 -3.9595  <.0001 -3.9614  <.0001 

inc_brk 0.4300  0.0786  0.4300  0.0786  0.4851  0.0440  

dec_brk -0.0178  0.9462  -0.0178  0.9462  -0.0188  0.9432  

inc_arbg 0.4494  0.1306  0.4494  0.1306  0.4586  0.1227  

dec_arbg -0.4896  0.2994  -0.4896  0.2994  -0.5199  0.2701  

inc_s -1.3866  0.1976  -1.3866  0.1976  -0.9595  0.2663  

dec_s -0.4842  0.6326  -0.4842  0.6326  0.2327  0.7482  

inc_brk*inc_s -12.7069  0.9848  -12.7069  0.9848  -13.0072  0.9849  

inc_brk*dec_s -0.0675  0.9627  -0.0675  0.9627  -0.8231  0.5123  

dec_brk*inc_s 1.0315  0.4117  1.0315  0.4117  0.2878  0.7817  

dec_brk*dec_s -11.9444  0.9930  -11.9444  0.9930  -12.6209  0.9923  

inc_arbg*inc_s -0.1694  0.8941  -0.1694  0.8941  0.5351  0.6124  

inc_arbg*dec_s -12.8803  0.9896  -12.8803  0.9896  -13.5697  0.9889  

dec_arbg*inc_s 2.9505  0.0567  2.9505  0.0567  2.5654  0.0685  

dec_arbg*dec_s -12.1934  0.9917  -12.1934  0.9917  -12.5094  0.9913  

delta_carage 0.0323  0.0660  0.0323  0.0660  0.0311  0.0730  

female 0.1840  0.3177  0.1840  0.3177  0.2202  0.2287  

married -0.1141  0.5676  -0.1141  0.5676  -0.1545  0.4297  

age2530 -1.4930  0.0150  -1.4930  0.0150  -1.4943  0.0148  

age3060 -1.0563  0.0157  -1.0563  0.0157  -1.0394  0.0174  

ageabv60 -1.4403  0.0080  -1.4403  0.0080  -1.3237  0.0130  

carage0 0.9162  0.0006  0.9162  0.0006  0.8640  0.0011  

carage1to4 0.1536  0.4855  0.1536  0.4855  0.1541  0.4791  

city -0.0788  0.7023  -0.0788  0.7023  -0.0527  0.7968  

north -0.0221  0.9386  -0.0221  0.9386  -0.0350  0.9021  

south 0.3672  0.2075  0.3672  0.2075  0.3439  0.2333  

east -0.0244  0.9587  -0.0244  0.9587  -0.0450  0.9238  

deltam_brk -27.1920  0.0619  -27.1920  0.0619  -26.9912  0.0604  

deltam_arbg 44.5352  0.2072  44.5352  0.2072  42.5135  0.2275  

deltam_s -30.1583  0.0050  -30.1583  0.0050  -29.1234  0.0064  

deltam_tkt 3.5103  0.2190  3.5103  0.2190  3.7310  0.1857  

deltam_clm 158.8000  0.0296  158.8000  0.0296  166.4000  0.0191  
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1 Introduction

Risk attitudes of an economic agent have long been a fundamental issue in economics. Under

expected utility, risk aversion equates to a negative second derivative of the utility function. The

attitudes associated with higher order derivatives, referred to as higher-order risk attitudes, are now

understood to be essential to economic decisions as well. For example, prudence (equated with a

positive third derivative under expected utility) entails aversion to greater downside risks (Menezes,

Geiss and Tressler 1980), and a stronger saving motive when future wealth becomes riskier (Kimball

1990). Temperance (equated with a negative fourth derivative under expected utility) implies less

willingness to take on risk in the presence of greater background risk (Kimball 1993), and higher

risk premium when the volatility of consumption growth increases (Gollier 2018).

While the direction of risk attitudes (equated with the sign of the appropriate derivative) serves

as a primitive determinant for economic decisions, the intensity of risk attitudes is indispensable for

quantitative analyses. For second-order risk attitude, Arrow (1971) and Pratt (1964) introduced the

coefficients of absolute and relative risk aversion. For third order, Kimball (1990) introduced the

coefficient of absolute prudence and linked it to the strength of the precautionary saving motives.

For fourth order, Kimball (1992) introduced the coefficient of absolute temperance, which is useful

for analyzing economic decisions involving two or more independent risks (Kimball 1993; Eeckhoudt,

Gollier and Schlesinger 1996; Gollier and Pratt 1996). The above manner of quantifying the intensity

of risk attitudes has been extended to all higher orders (Caballé and Pomansky 1996; Denuit and

Eeckhoudt 2010). The resulting sequence of coefficients, which can be universally named as the

coefficients of Arrow-Pratt absolute or relative risk aversion for a given order, play an important

role in a wide range of economic applications including investment (Guiso, Jappelli and Terlizzese

1996), saving (Eeckhoudt and Schlesinger 2008), asset pricing (Gollier 2001), bargaining (White

2008), auctions (Esö and White 2004) and so on.

Despite the importance of higher-order risk attitudes, there have been relatively few empirical

attempts to measure higher-order Arrow-Pratt coefficients of risk aversion. For third order, the

coefficient of relative prudence has been estimated assuming a life-cycle consumption model and

using savings data (Dynan 1993; Gourinchas and Parker 2002; Carroll and Kimball 2008). For the

fourth order, we are not aware of any empirical study using naturally occurring data to estimate
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coefficients of absolute or relative temperance. In the laboratory, Ebert and Wiesen (2014) jointly

measured the intensity of risk aversion, prudence, and temperance based on risk compensations

while Noussair, Trautmann and van de Kuilen (2014) rely on the number of prudent choices as a

measure of the degree of prudence, but neither of these papers are able to provide measures of the

Arrow-Pratt coefficients.

In this paper, we provide the first approach to measure higher-order Arrow-Pratt risk aversion co-

efficients using choices between compound lotteries. In a seminal paper, Eeckhoudt and Schlesinger

(2006) show apportioning zero mean risks, choosing between disaggregating and aggregating such

risks in compound lotteries, can be used to identify the sign of the nth derivative of utility.1 We

show that apportionment of non-zero-mean risks provides non-zero boundaries on the Arrow-Pratt

coefficients of risk aversion. That is, while Eeckhoudt and Schlesinger (2006) provide theoretical

justification for a method to determine the direction of higher-order risk attitudes, we provide a

theoretical justification for a method to measure the Arrow-Pratt coefficients of risk aversion.2

Our paper is related to the literature on comparative risk aversion. Under a choice-based

framework, Chiu (2005) and Denuit and Eeckhoudt (2010) construct lotteries such that the higher-

order intensity of risk aversion between two individuals can be compared through their lottery

choices.3 The major difference between our paper and previous work is that we adopt the technique

of risk apportionment. Furthermore, the approaches of both Chiu (2005) and Denuit and Eeckhoudt

(2010) require mixed risk aversion, whereas our approach can be applied to decision makers who

are risk seeking or imprudent or intemperate.

Our framework for identifying the intensity of higher-order risk preferences has several desir-

able properties. First, our method does not require any parametric assumption about the specific

functional form of the decision makers’ utility. While some empirical papers have tried to esti-

1This approach has served as the main method for studying higher-order risk preferences. Eeckhoudt, Rey and
Schlesinger (2007) rely on the approach when considering bivariate utility functions; Eeckhoudt, Schlesinger and
Tsetlin (2009) generalize risk apportionment to a broader class of lotteries; and Crainich, Eeckhoudt, and Trannoy
(2013) apply the method to mixed risk lovers. Also, the approach of Eeckhoudt and Schlesinger (2006) has become
a mainstream tool for experimental studies of higher-order risk preferences (e.g. Deck and Schlesinger 2010, 2014;
Haering, Heinrich and Mayrhofer 2020).

2Recently, Jindapon, Liu and Neilson (2021) and Schneider and Sutter (2021) promote alternative measures to
evaluate the strength of nth degree risk apportionment. However, the measures proposed in those papers differ from
the Arrow-Pratt measure of absolute and relative higher-order risk aversion. By contrast, our paper connects risk
apportionment with the Arrow-Pratt coefficients.

3There have been other approaches to comparing the intensity of higher-order risk attitudes across individuals as
well. For example, Jindapon and Neilson (2007) propose a comparative statics approach for nth-degree risk aversion
in an optimal effort decision. The approach of Liu and Meyer (2013) involves a comparison of matching probabilities.
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mate the intensity of higher-order risk attitudes (e.g. Dynan 1993 and Noussair, Trautmann and

van de Kuilen 2014), thus far such efforts have had to rely upon additional assumptions regarding

preferences, which arbitrarily confines the degrees of freedom to describe an individual’s behavior.

Second, our approach is simple, systematic and generalizable. It is simple in that it only involves

comparisons between two lotteries that are themselves composed of combinations of certain losses

and fifty-fifty lotteries. It is systematic in that it involves a series of incremental comparisons,

similar to the multiple price list approach popularized by Holt and Laury (2002) for measuring

second-order risk attitudes. It is generalizable in that it can be readily adapted to risk preferences

at any order, which stands in contrast to approaches such as Cohen and Einav (2007) whose ap-

proach is context-dependent and difficult to adapt to arbitrarily high orders of risk attitude. Finally,

our framework provides bounds on intensity rather than a mean based estimation as developed by

Noussair, Trautmann and van de Kuilen (2014).

As a demonstration of our approach, we implement it in a controlled laboratory experiment

and measure the intensity of the higher-order risk attitudes of our subjects. In the experimental

task, we ask subjects to apportion a sequence of nine risks including negative-mean, zero-mean, and

positive-mean risks. The observed patterns for the direction of second-, third-, and fourth-order risk

attitudes as identified by the apportionment of zero-mean risks are consistent with those reported

previously by Deck and Schlesinger (2014) and Noussair, Trautmann, and van de Kuilen (2014).

The modal behavior among our subjects is a mild degree of risk aversion consistent with a large

experimental literature, a mild degree of prudence consistent with the relatively small literature

attempting to measure the intensity of third order risk preferences (e.g. Noussair, Trautmann and

van de Kuilen 2014 and Dynan 1993), and a mild degree of temperance which is a novel finding in

the literature. However, we also observe a fraction of subjects who exhibit more extreme prudence

and temperance as well as sizable fractions of subjects who exhibit moderate to extreme levels of

imprudence or intemperance. Additionally, we extend Jindapon and Neilson (2007) to cases when

decision makers are risk-loving or imprudent to demonstrate the implications of our laboratory

findings.

Our approach also allows us to consider how degree of risk aversion are related across orders.

Among our subjects, their degrees of second and third order risk aversion are positive and significant

as are their degrees of third and fourth order risk aversion, but the greatest correlation is between
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second and fourth order degrees of risk aversion. Finally, we conduct a calibration exercise to

determine how well common utility functions match observed behavior. Ultimately, we find that

the behavior of most subjects can described with a exponential-power utility function.

2 Intensity of Higher-Order Risk Preferences

How to characterize the intensity of risk preferences within the expected utility framework is a

fundamental question that has been extensively investigated in the economics literature. To briefly

review the theoretical progress, let u(x) be a von Neumann-Morgenstern utility function of wealth

x that is defined on (0,∞) and continuously differentiable up to the desired order. For n = 1, 2, ...,

denote by u(n)(x) the nth derivative of u(x).

Arrow (1971) and Pratt (1964) introduce the coefficient of absolute risk aversion −u(2)(x)

u(1)(x)
as a

measure of second-order risk attitude, which is well used in risk-taking decisions, e.g., investment

and insurance choices. To examine the precautionary savings motive, Kimball (1990) introduces

the coefficient of absolute prudence −u(3)(x)

u(2)(x)
. The higher the coefficient of absolute prudence, the

higher the strength of the precautionary saving motives. Kimball (1992) introduces the coefficient

of absolute temperance −u(4)(x)

u(3)(x)
and shows that it is related to how strongly an individual is inclined

to avoid binding one risk with another unavoidable independent risk. This pattern is extended to

higher-order risk attitude by Caballé and Pomansky (1996) who define − u(n)(x)

u(n−1)(x)
as the coefficient

of the nth-order absolute risk aversion. Following Caballé and Pomansky’s terminology, −u(2)(x)

u(1)(x)
,

−u(3)(x)

u(2)(x)
and −u(4)(x)

u(3)(x)
can be relabeled as absolute risk aversion of second order, third order and

fourth order, respectively.4 As shown by Jindapon and Neilson (2007), given a non-monetary cost

of effort, the strength of the willingness to invest in effort to reduce risk depends on the coefficient

of nth-order absolute risk aversion.

In parallel, Pratt (1964) introduced the coefficients of relative risk aversion −xu(2)(x)

u(1)(x)
, while

relative prudence −xu(3)(x)

u(2)(x)
is proposed by Kimball (1990). Eeckhoudt and Schlesinger (2008) extend

these coefficients to relative temperance −xu(4)(x)

u(3)(x)
, as well as higher orders via defining −x u(n)(x)

u(n−1)(x)

as the coefficient of the nth-order relative risk aversion. They show that the condition −x u(n)(x)

u(n−1)(x)
≥

n − 1 is crucial to guarantee an increase in precautionary saving when there is an increase in risk

4Gollier (2018) labels absolute risk aversion of fifth order as absolute edginess when investigating aversion to risks
on the variance of consumption.
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in the return on saving.

In a seminal paper, Eeckhoudt and Schlesinger (2006) show that the sign of u(n)(x) can be

revealed with choices between simple 50-50 lotteries composed of pure losses and zero-mean risks.

However, their work remains silent on the intensity of nth-order risk preferences. In this section we

extend the approach of Eeckhoudt and Schlesinger (2006) for comparative higher-order risk aversion

with choices between simple lotteries.

2.1 Intensity of Second-Order Risk Aversion

Let w > 0 denote an initial wealth level and ε̃ be a zero-mean risk. An individual is risk averse on

a pre-specified interval [a, b] ⊂ (0,∞), if and only if for all lottery pairs supported on [a, b] taking

the form of w + ε̃ and w, w is always preferred to w + ε̃. Within the expected utility framework,

risk aversion on [a, b] is equivalent to u(2) ≤ 0 on [a, b] (Rothschild and Stiglitz 1970).

Replacing the zero-mean risk ε̃ with a general non-zero-mean risk δ̃, we can elicit a bound for

−u(2)(x)

u(1)(x)
from a choice between

A2 = w + δ̃ and B2 = w. (1)

Proposition 1. Let A2 and B2 take the form of (1). For u and v that are twice continuously

differentiable with u(1) > 0 and v(1) > 0, the following statements are equivalent:

(i) For all x ∈ [a, b], −u(2)(x)

u(1)(x)
≥ −v(2)(x)

v(1)(x)
;

(ii) For all A2 and B2 supported on [a, b], Ev(A2) = Ev(B2) always implies Eu(A2) ≤ Eu(B2).

All proofs are relegated to Appendix 7. Intuitively, Proposition 1 can be obtained from Pratt

(1964). To see this, one can rewrite δ̃ = Eδ̃ + (δ̃ − Eδ̃) where the first term is the mean and the

second term is a zero-mean risk. If under v one is indifferent between A2 and B2, it means that the

mean of the risk δ̃ is exactly the compensating premium necessary to bear the zero-mean risk δ̃−Eδ̃.

Since more risk aversion requires a greater compensating premium, B2 would be more preferable

than A2 under u.

Proposition 1 demonstrates that comparative risk aversion can be revealed with simply lottery

choices. In particular, Proposition 1 shows u is more risk averse than v, if and only if u always
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favors the risky lottery less than v. An analogous characterization of −u(2)(x)

u(1)(x)
≤ −v(2)(x)

v(1)(x)
is available

through reversing the inequality in statement (ii). In the special case where v is a linear (risk

neutral) utility function, the equation Ev(A2) = Ev(B2) amounts to requiring δ̃ to have a zero

mean, reproducing the equivalence of u(2) ≤ 0 with w always being preferred to w + ε̃.

The idea of comparing coefficients of risk aversion based on choice behavior was previously

explored by Jewitt (1989) and Chiu (2005). However, in both of those papers the second derivative

of the utility function is required to be negative. In contrast, our analysis imposes no condition on

the second derivative. Thus, relative to Jewitt (1989) and Chiu (2005), we extend the comparison

of risk attitudes to utility functions exhibiting risk seeking behavior while employing simpler lottery

pairs.

2.2 Intensity of Third-Order Risk Aversion

Let k > 0 be a constant and recall that ε̃ denotes a zero-mean risk. Denote by [x; y] a lottery

with a 50-50 chance of receiving either outcome x or outcome y, where x and y themselves may be

lotteries. According to Eeckhoudt and Schlesinger (2006), an individual is called prudent on [a, b],

if and only if for all lottery pairs taking the form of [w;w − k + ε̃] and [w + ε̃;w − k] supported on

[a, b], the latter is always preferred to the former. That is, a prudent individual prefers putting a

zero-mean risk at the higher wealth level than at the lower wealth level. Prudence captures aversion

to aggregating a loss with a zero mean risk. Within the expected utility framework, prudence on

[a, b] is equivalent to u(3) ≥ 0 on [a, b].

As we show in Proposition 2, replacing the zero-mean risk ε̃ with a general non-zero-mean risk

δ̃, we can elicit a bound for −u(3)(x)

u(2)(x)
from choices between

A3 =
[

w;w − k + δ̃
]

and B3 =
[

w + δ̃;w − k
]

. (2)

To do this, we need to distinguish between cases in which u(2) > 0 and u(2) < 0.

Proposition 2. Let A3 and B3 take the form of (2). For u and v that are continuously differentiable

up to the third order with u(2) 6= 0 and v(2) 6= 0, consider the following statements:

(i) For all x ∈ [a, b], −u(3)(x)

u(2)(x)
≥ −v(3)(x)

v(2)(x)
;
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(ii) For all A3 and B3 supported on [a, b], Ev(A3) = Ev(B3) always implies Eu(A3) ≤ Eu(B3);

(iii) For all A3 and B3 supported on [a, b], Ev(A3) = Ev(B3) always implies Eu(A3) ≥ Eu(B3).

When u(2) < 0 and v(2) < 0, (i) and (ii) are equivalent; when u(2) > 0 and v(2) > 0, (i) and (iii)

are equivalent.

Proposition 2 is analogous to Proposition 1, but for third-order risk attitude. Assuming risk

aversion, u is more prudent than v, if and only if u exhibits a stronger propensity to disaggregate the

loss and the risky lottery than v. An analogous characterization of −u(3)(x)

u(2)(x)
≤ −v(3)(x)

v(2)(x)
is available

through reversing the inequalities in statements (ii) and (iii). In the special case where v is a

quadratic (prudence neutral) utility function, the equation Ev(A3) = Ev(B3) amounts to requiring

δ̃ to have a zero mean.5 This reproduces the equivalence of u(3) ≥ 0 with preferring [w + ε̃;w − k]

over [w;w− k+ ε̃] and the equivalence of u(3) ≤ 0 with preferring [w;w− k+ ε̃] over [w+ ε̃;w− k]

as characterized by Eeckhoudt and Schlesinger (2006).

Chiu (2005) also uses choice behavior to compare coefficients of prudence. However, in Chiu’s

analysis the second and third derivatives of the utility function are required to be negative and

positive, respectively. Our result shows that it is possible to identify the intensity of prudence

without presupposing the signs of the second and third derivatives of the utility function although

our lotteries are special cases of those in Chiu (2005). That is, our approach can accommodate

utility functions exhibiting risk averse or seeking and prudent or imprudent behavior in the same

manner. Moreover, the choices can be presented as simple lotteries with equiprobable outcomes.

2.3 Intensity of Higher-Order Risk Aversion

Comparative risk aversion can be identified for any order with choices between simple lotteries

following the idea of risk apportionment. To do this, we first recall the lotteries introduced by

Eeckhoudt and Schlesinger (2006), whose purpose is identifying the direction of preferences. Let

{ε̃i} denote an indexed set of zero-mean risks that are mutually independent. For w > 0 and k < 0,

5To see this, we write Ev(A3)−Ev(B3) =
1
2
[Ev1(w+ δ̃)− v1(w)], where v1(x) = v(x− k)− v(x) is linear in x when

v(x) is quadratic.
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Eeckhoudt and Schlesinger define

Â1 = w − k, B̂1 = w,

Â2 = w + ε̃1, B̂2 = w,

and

Ân =
[

Ân−2 + ε̃Int(n/2); B̂n−2

]

, B̂n =
[

Ân−2; B̂n−2 + ε̃Int(n/2)

]

for n ≥ 3 where Int(n/2) denotes the greatest integer not exceeding n/2. Based on this definition,

we have

Â3 =
[

Â1 + ε̃1; B̂1

]

= [w − k + ε̃1;w] , B̂3 =
[

Â1; B̂1 + ε̃1

]

= [w − k;w + ε̃1] ,

Â4 =
[

Â2 + ε̃2; B̂2

]

= [w + ε̃1 + ε̃2;w] , B̂4 =
[

Â2; B̂2 + ε̃2

]

= [w + ε̃1;w + ε̃2] .

In the above, B̂1 and B̂2 represent a fixed state, while Â1 represents a certain loss relative to B̂1

and Â2 represents a risky state relative to B̂2. For n ≥ 3, B̂n and Ân are lotteries involving B̂n−2

and Ân−2 where B̂n attaches an independent zero-mean risk to B̂n−2 and Ân attaches that zero-

mean risk to Ân−2. Eeckhoudt and Schlesinger prove that (−1)n+1u(n) ≥ 0 if and only if for any

zero-mean risks B̂n is always preferred to Ân. Such a preference is termed as “risk apportionment”

of order n. Risk apportionment captures the aversion to combining “bad”—the additional pure risk

ε̃Int(n/2)—with “bad”—the more risky state Ân−2.

Our lotteries aimed at identifying the intensity of preferences are related to Eeckhoudt and

Schlesinger’s lotteries by replacing the zero-mean risk ε̃Int(n/2) with a general non-zero-mean risk δ̃.

Assuming independence between δ̃ and {ε̃i}, we define

A1 = w − k, B1 = w,

A2 = w + δ̃, B2 = w,

(3)

and

An =
[

Ân−2 + δ̃; B̂n−2

]

, Bn =
[

Ân−2; B̂n−2 + δ̃
]

, (4)

9



for n ≥ 3. Based on this definition, we have

A3 =
[

Â1 + δ̃; B̂1

]

=
[

w − k + δ̃;w
]

, B3 =
[

Â1; B̂1 + δ̃
]

=
[

w − k;w + δ̃
]

,

A4 =
[

Â2 + δ̃; B̂2

]

=
[

w + ε̃1 + δ̃;w
]

, B4 =
[

Â2; B̂2 + δ̃
]

=
[

w + ε̃1;w + δ̃
]

.

Allowing δ̃ to have a non-zero mean and letting

ε̃i = [−ki; ki] where ki > 0, (5)

we can explore the intensity of the nth-order risk aversion based on the choice between An and Bn.

Theorem 1. For n ≥ 2, let An and Bn be defined as in (3) and (4), with ε̃i specified in (5). For

u and v that are continuously differentiable up to order n with u(n−1) 6= 0 and v(n−1) 6= 0, consider

the following statements:

(i) For all x ∈ [a, b], − u(n)(x)

u(n−1)(x)
≥ − v(n)(x)

v(n−1)(x)
;

(ii) For all An and Bn supported on [a, b], Ev(An) = Ev(Bn) always implies Eu(An) ≤ Eu(Bn);

(iii) For all An and Bn supported on [a, b], Ev(An) = Ev(Bn) always implies Eu(An) ≥ Eu(Bn).

When (−1)nu(n−1) > 0 and (−1)nv(n−1) > 0, (i) and (ii) are equivalent; when (−1)nu(n−1) < 0 and

(−1)nv(n−1) < 0, (i) and (iii) are equivalent.

Theorem 1 generalizes Propositions 1 to 2 to higher orders. For example, the bound for tem-

perance measured by −u(4)(x)

u(3)(x)
can be elicited from the choice between A4 and B4. An analogous

characterization of − u(n)(x)

u(n−1)(x)
≤ − v(n)(x)

v(n−1)(x)
is available through reversing the inequalities in state-

ments (ii) and (iii). In the special case where v(n−1) ≡ 0, we can prove by induction that the equation

Ev(An) = Ev(Bn) amounts to requiring δ̃ to have a zero mean, reproducing the characterization of

(−1)n+1u(n) ≥ (≤)0 that B̂n is always more (less) preferable than Ân.
6

To our knowledge, Denuit and Eeckhoudt (2010) were the first to extend the equivalence be-

tween comparative risk aversion and a binary choice behavior to higher orders. Their lottery pairs,

6For example, on fourth order when v is a temperance neutral (cubic) utility function, we write Ev(A4)−Ev(B4) =
1
2
[Ev2(w+ δ̃)−v2(w)], where v2(x) =

1
2
[v(x−k)+v(x+k)]−v(x) is linear in x when v(x) is cubic. Thus, the equation

Ev(A4) = Ev(B4) amounts to requiring δ̃ to have a zero mean, reproducing the characterization by Eeckhoudt and
Schlesinger (2006) that u(4)

≤ 0 iff [w + ε̃1;w + ε̃2] is always preferred to [w;w + ε̃1 + ε̃2].
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however, are designed only for utility functions that have positive odd numbered derivatives and

negative even numbered derivatives up to the relevant order, which is a typical feature of the so-

called “mixed risk averse” utility functions (Caballé and Pomansky 1996). In contrast, we construct

lottery pairs by iteration of simple 50-50 lotteries, and hence impose no condition on the sign of

derivatives of up to n−1. The iterative approach also allows the sign of the nth derivative of utility

functions to be either positive or negative, and simplifies the choices to involve only 50-50 lotteries.

3 An Implementable Procedure

Theorem 1 provides a means to compare the nth-order absolute and relative risk aversion between

two utility functions. We can bound the nth-order absolute risk aversion of u by comparing u with

v1 and bound the nth-order relative risk aversion of u by comparing it with v2, where v1 and v2

satisfy

−
v
(n)
1 (x)

v
(n−1)
1 (x)

= θ1 and − x
v
(n)
2 (x)

v
(n−1)
2 (x)

= θ2, θ1, θ2 ∈ R,

respectively. While Theorem 1 is stated in terms of comparing the intensities of absolute risk

aversion, it works equally well for relative risk aversion when x > 0. Indeed, when comparing

u with v2 by Theorem 1, we get − u(n)(x)

u(n−1)(x)
≥ or ≤ −

v
(n)
2 (x)

v
(n−1)
2 (x)

= θ2
x , which is equivalent to

−x u(n)(x)

u(n−1)(x)
≥ or ≤ θ2. The structural assumptions on v1 and v2 serve as bases for bounding a

subject’s risk attitude, which depends on u. Thus, we do not assume that one’s utility function

u exhibits constant nth-order absolute or relative risk aversion and instead compare one’s utility

function to functions with those specific forms at a given level of wealth. In fact, our procedure

proposes no assumption on the form of individual’s utility function.

For a given order n, a subject faces a task that involves a series of risk apportionment choices

between An and Bn that systematically varies δ̃ holding other parameters fixed. Formally, for choice

j in a Task of Order n, we construct An and Bn following (3) and (4) with task-specific values of

w > 0, k > 0, ε̃i as in (5), and

δ̃j = [−h;h] + lj = [−h+ lj ;h+ lj ], (6)
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where h > 0, −h = l1 < l2 < ... < lJ−1 < lJ = h and J ≥ 3. As j increases from 1 to J , δ̃j moves

from [−2h; 0] to [0; 2h]. We use An(j) and Bn(j) to indicate explicitly the dependence of An and

Bn constructed in this way on j. Then, a Task of Order n is formulated as

Task of Order n = {(An(j), Bn(j)) : j = 1, ..., J}, (7)

in which we present subjects a sequence of lottery pairs and ask them to select their preferred option

in each pair.

To take a numerical third-order example, consider the series of 9 lottery pairs: (A3(j), B3(j)),

j = 1, 2, ..., 9 with A1 = 13, B1 = 23, h = 4 and lj+1− lj = 1. Thus, for j = 1, we have δ1 = [−8; 0],

and Choice 1 is between the lottery pair

A3(1) = [13 + [−8; 0]; 23] and B3(1) = [13; 23 + [−8; 0]].

For j = 2, we have δ2 = [−7; 1]. Choice 2 is between the lottery pair

A3(2) = [13 + [−7; 1]; 23] and B3(2) = [13; 23 + [−7; 1]].

For j = 9, we have δ9 = [0; 8] and Choice 9 is between the lottery pair

A3(9) = [13 + [0; 8]; 23] and B3(9) = [13; 23 + [0; 8]].

The lottery comparison of the form used by Eeckhoudt and Schlesinger (2006) occurs when j = 5,

yielding δ5 = [−4; 4] and a choice over the lottery pair

A3(5) = [13 + [−4; 4]; 23] and B3(5) = [13; 23 + [−4; 4]].

For any sequence of lotteries constructed through the process described above, for j = 2, ..., J−1,

there exist unique nth-order constant absolute and relative risk aversion coefficients, denoted by

12



Θ1(n, j) and Θ2(n, j) respectively, such that

Ev1(An(j)) = Ev1(Bn(j)) under θ1 = Θ1(n, j), and

Ev2(An(j)) = Ev2(Bn(j)) under θ2 = Θ2(n, j).

These coefficients make individuals with utility functions v1 or v2 indifferent between An(j) and

Bn(j).
7 It is shown in Lemma A3 in Appendix A that both Θ1(n, j) and Θ2(n, j) are strictly

increasing in j. As a convention, we set Θ1(n, 1) = Θ2(n, 1) = −∞ and Θ1(n, J) = Θ2(n, J) = ∞.

We can identify both upper and lower bounds on risk attitude at some wealth level from a single

task. This approach to providing bounds on risk attitude is justified by the following corollary.

Corollary 1. For n ≥ 2, consider a Task of Order n as in (7) that is supported on [a, b] ⊂ (0,∞).

Let u be a utility function that is continuously differentiable up to order n. When (−1)nu(n−1) > 0,

there exists a unique j∗ ≤ J − 1 such that the individual prefers Bn(j) to An(j) for j ≤ j∗, but

An(j) to Bn(j) for j ≥ j∗ + 1. When (−1)nu(n−1) < 0, similar behavior holds with the individual

preferring An(j) to Bn(j) for j ≤ j∗, but Bn(j) to An(j) for j ≥ j∗ + 1. For both cases, there exist

x1, x2 ∈ [a, b] such that

Θ1(n, j
∗) ≤ −

u(n)(x1)

u(n−1)(x1)
≤ Θ1(n, j

∗ + 1),

Θ2(n, j
∗) ≤ −x2

u(n)(x2)

u(n−1)(x2)
≤ Θ2(n, j

∗ + 1).

Corollary 1 demonstrates what we can infer from a single task. Let us recall the previous

example to illustrate Corollary 1. Suppose that an individual prefers B3(j) to A3(j) for j = 1 and

j = 2 and A3(j) to B3(j) for j = 3 to j = 9. The choices of B3(1) and A3(9) reveal the individual is

risk-averse. An individual with a degree of absolute prudence equal to -0.69 and relative prudence

equal to -14.26 would be indifferent between A3(2) and B3(2). That is Θ1(3, 2) = −0.69 and

Θ2(3, 2) = −14.26. Furthermore, an individual with a degree of absolute prudence equal to -

0.31 and relative prudence equal to -5.82 would be indifferent between A3(3) and B3(3). That is

Θ1(3, 3) = −0.31 and Θ2(3, 3) = −5.82. Thus, from Corollary 1, we know that the individual who

7Here, v1 and v2 are unique up to scaling and addition of polynomials up to order n − 2. Since the moments of
An and Bn are the same up to order n− 2, the scaling factor and the polynomial terms do not affect the subsequent
analysis.
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prefers B3(j) to A3(j) only for j ≤ 2 exhibits

−0.69 ≤ −
u(3)(x1)

u(2)(x1)
≤ −0.31 and − 14.26 ≤ −x2

u(3)(x2)

u(3)(x2)
≤ −5.82

for some x1 and x2 within [5, 31].

Corollary 1 does not impose any assumption about the functional form of u, so that risk attitude

elicited in a wealth range does not imply anything on risk attitude on other wealth ranges. To elicit

the bound of absolute or relative risk aversion of order n, there is no need to rely on separate

information about any risk attitude of a lower order.

A premise for this corollary to work is that u(n−1) does not vary in sign over the relevant

domain. Since risk aversion coefficients, − u(n)(x)

u(n−1)(x)
or −x u(n)(x)

u(n−1)(x)
, are definable only for segments

with u(n−1) 6= 0, this premise is not excessively demanding. Under this premise, the difference

between the expected utility of An(j) and that of Bn(j) changes monotonically with j, yielding

a single switch point from preferring Bn(j) to preferring An(j) under (−1)nu(n−1) > 0, or from

preferring An(j) to preferring Bn(j) under (−1)nu(n−1) < 0. As with other techniques for measuring

risk aversion, such as the multiple price list approach of Holt and Laury (2002), individuals whose

preferences are captured by standard functional forms for utility, should exhibit a single switch

point when going through the J choices of the task.

4 Experimental Design

To demonstrate the implementation of our procedure, we conducted a controlled laboratory ex-

periment. For illustrative purposes, our experimental investigation will focus on the second, third

and fourth order. For each order, we present subjects a task as described in (7), with each task

consisting of 9 choices involving J = 9 pairs of lotteries. In total, subjects were asked to make 27

choices (9 choices / order × 3 orders). At the end of the experiment, one of these 27 choices was

randomly selected and used to determine the subject’s earnings.

Before continuing, we note that having 9 choices for a task means subjects can be placed into

10 continuous bins that only overlap at their endpoints.8 The width of each bin depends on the

specific lotteries that are used in the task and one could construct a finer or coarser set of bounds

8The bins overlap at the endpoints as a subject could be indifferent for a given choice.
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Table 1: All Decision Tasks

Task of Option An(j) Option Bn(j) δ̃1 δ̃9 lj+1 − lj Average Payoff

Order 2 18 + δ̃j 18 [−8; 0] [0; 8] 1 18

Order 3 [13 + δ̃j ; 23] [13; 23 + δ̃j ] [−8; 0] [0; 8] 1 18

Order 4 [18 + [−5; 5] + δ̃j ; 18] [18 + [−5; 5]; 18 + δ̃j ] [−8; 0] [0; 8] 1 18

Note: This table reports the numerical payoffs used to construct tasks as formulated in (7). Recall that [x; y]
denotes a lottery where there is a 50% chance of receiving x and a 50% chance of receiving y. In An(j) and Bn(j),
δ̃j = [−h;h] + lj , with δ̃1 = [−2h; 0], δ̃9 = [0; 2h], and lj+1 − lj given in the second to the last column. For example,
in our Task of Order 3, δ̃1 is [−8; 0], δ̃2 is [−7; 1], and δ̃3 is [−6; 2], and so on.

by using more or fewer lotteries, respectively. This is also true for the multiple price list approach

for measuring second-order risk aversion popularized by Holt and Laury (2002).9

4.1 Construction of Tasks

For all tasks, δ̃1 = [−2h; 0] in Choice 1 only involves a loss, δ̃5 = [−h;h] in Choice 5 involves 50-50

of equal sized gain and loss, and δ̃9 = [0; 2h] in Choice 9 only involves a gain. Thus, for a Task of

Order n Choice 1 and Choice 9 reveal the direction of the (n−1)th-order risk attitude, while Choice

5 is consistent with Eeckhoudt and Schlesinger (2006) and reveals the direction of the nth-order risk

attitude.

Table 1 provides all 3 tasks used in the experiment, where payoffs are in US dollars. Our Task of

Order 3 is the basis for the numerical example used in the previous section. The numerical payoffs

in the tasks are designed such that risk attitudes associated with indifference between choices are

in the neighborhood of the risk attitudes that have been reported previously in the literature (e.g,

Holt and Laury 2002; Bliss and Panigirtzoglou 2004; Noussair, Trautmann and van de Kuilen 2014).

Thus, our specific tasks are not calibrated to identify particularly extreme levels of risk attitude,

although one could design tasks to partition more extreme risk attitudes using the same technique.

4.2 Steps for Making Choices

Our subjects face multiple choices in each task. To help subjects understand the relationship

between the choices on a task, all nine lotteries for a given order are displayed on the screen at the

9We also note that one could attempt to identify the δ̃ that makes a respondent indifferent between An versus
Bn, using a method similar to that of Becker, Degroot, and Marschak (1964). However, our approach only requires
subjects to make binary comparisons.
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Table 2: The Degree of Risk Aversion Making An(j) and Bn(j) Indifferent

Task of
Choice j

j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8
Panel A: Constant Absolute Degrees Θ1(n, j)

Order 2 -0.69 -0.31 -0.14 0.00 0.14 0.31 0.69
Order 3 -0.69 -0.31 -0.14 0.00 0.14 0.31 0.69
Order 4 -0.69 -0.31 -0.14 0.00 0.14 0.31 0.69

Panel B: Constant Relative Degrees Θ2(n, j)
Order 2 -11.81 -5.19 -2.27 0.00 2.40 5.72 12.96
Order 3 -14.26 -5.82 -2.36 0.00 2.21 4.97 10.48
Order 4 -13.44 -5.51 -2.31 0.00 2.30 5.28 11.21

Note: In this table, Panel A and Panel B report the constant degrees of nth-order absolute and relative risk aversion
that make An(j) and Bn(j) in Choice j within the Task of Order n indifferent. Here, n = 2, 3, 4 and j = 2, ..., 8.

same time. The subject then makes choices about apportioning the lotteries in order from δ̃1 to δ̃9.

Figure 1 provides an example of a subject facing Choice 5 in our Task of Order 3 where they are

asked to apportion δ̃5. Once the subject has made all 9 choices for a task, a button appears on the

screen enabling the subject to submit all 9 responses simultaneously. A subject is free to change

their decision regarding the apportionment of a lottery at any point prior to pressing the submit

button.10

The presentation of each choice follows Deck and Schlesinger (2014) and is meant to facilitate a

choice as deciding to combine “good” with “good” or to combine “good” with “bad.” For example,

in the fifth lottery shown in Figure 1 the decision is if one wants to combine a 50-50 lottery that

pays either -$4 or $4 with the bad $13 outcome or the good $23 outcome of an independent 50-50

lottery. A risk averse person would view the -$4 or $4 lottery as a bad while a risk-loving person

would view it as a good. A prudent person would opt to combine the -$4 or $4 lottery with the

$23 outcome. For a person who is risk averse this is combining a good and a bad, whereas for a

risk-loving person this is combining a good with a good. The top lottery shown in Figure 1 also

demonstrates how choice 1 an nth-order task each identify the subject’s (n− 1)th-order preferences.

The example task measures third-order risk attitude, but for the first choice the preferred option

10If a subject changes their decision for Choice i with i ≤ 8 the software proceeds to Choice i + 1 and continues
sequentially from that point. Additionally, the software imposes that a subject make a single switch on each task;
however, the subjects are not informed of this in the instructions. Rather, those that attempt to provide responses
that do not conform to a single switch rule are notified of this requirement. This allows us to identify how many
subjects naturally follow a single switch rule. 30% of subjects never exhibited behavior inconsistent with a single
switch. 47% and 8% of the subjects exhibited single switch only for the second and only for the second and third
order task, respectively. The other 15% of subjects did not exhibit single switch on the second order task.
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Figure 1: Subject Interface.

only depends on one’s second-order risk attitude since the 50-50 lottery with -$8 and $0 is a pure

loss. Similarly, the ninth choice, which is not visible in Figure 1 apportions the 50-50 lottery with

$0 and $8, which is a pure gain and thus depends only one’s second-order risk attitude.

4.3 Procedures

The study was conducted at The University of Alabama’s TIDE Lab. One hundred subjects were

recruited from the lab’s standing pool of volunteers.11 While many of the subjects had participated

in other unrelated studies, none had participated in a study about risk. The average salient earnings

were $18.74 (with a minimum of $7 and a maximum of $31). Subjects also received a $5 payment

for participating in the study.

Data were collected during fourteen sessions with subjects being recruited for 30 minutes. Each

session involved between 4 and 14 subjects; however, subjects did not interact with each other

during a session. At the start of a session, subjects were seated at individual computer stations

11Because the experiment is meant to demonstrate the implementation of the procedure laid out in the previous
section and to provide a general sense of the observed degrees of relative and absolute prudence and temperance rather
than testing specific hypotheses, the sample size is arbitrary and not based on statistical power.
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separated by privacy dividers. Subjects read general computerized instructions.12 The paid portion

of the study in which they completed the 3 tasks shown in Table 1 was self-paced. To facilitate

subject understanding, the tasks were presented in order. Task specific instructions were presented

just prior to the subjects making their decisions for that task. These instructions remained visible

on the left portion of the screen throughout the time the subject was making decisions.

One the subject completed all 27 choices over the 3 tasks, the computer randomly selected one

choice from one task to be used in determining the subject’s payment. Any 50-50 lottery required

to determine the outcome of the selected option was resolved through the use of a physical spinner

as had been explained previously to the subjects.13 Each subject complete a survey that consisted

of a single question about gender and was then paid in private and dismissed from the study.

5 Experimental Results

The main results of the experiment are captured in Figure 2, which presents histograms for each

order of the choice at which subjects changed their apportionment decisions. The relevant risk

attitudes associated with a particular switch point can be found in Table 2. But as preliminary

point, we note that the behavior we observe is consistent with the directional results of Deck

and Schlesinger (2014) and Noussair, Trautmann, and van de Kuilen (2014). Effectively, those

experiments only considered choices with zero mean lotteries (i.e. apportionment decisions of the

form in Choice 5 of each of our tasks) and we find that a majority of our subjects indicate a

preferences for Bn(5) over An(5) for all n = 2, 3, and 4.

Overall, 60% of our subjects made choices indicating some degree of 2nd order risk aversion. For

the second order task, the most common switching point was at Choice 6 indicating that 31% of the

subjects are slightly risk averse exhibiting 2nd order absolute risk aversion between 0.00 and 0.14

and 2nd order relative risk aversion between 0.00 and 2.40. Further, 75% of the subjects exhibiting

2nd order absolute risk aversion between -0.14 and 0.31 and 2nd order relative risk aversion between

-2.27 and 5.72 indicating that few subjects have extreme second order risk attitudes. As an aside,

we also report that 2nd order behavior did no differ by gender (p-value for χ2 test = 0.598).

12The instructions are available in the supplementary materials.
13The subjects were invited to inspect the spinner before beginning the paid portion of the experiment and again

before their final payoff was determined.
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Figure 2: Histogram of Switching in Task of Order n
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An approximately two-thirds majority of the subjects exhibited some degree of prudence. As

with the second order task, for the third order task the most common switching point was at Choice

6 indicating that 33% of the subjects are slightly prudent exhibiting 3rd order absolute risk aversion

between 0.00 and 0.14 and 3rd order relative risk aversion between 0.00 and 2.21. Unlike what was

observed for second order risk, on the third order tasks a sizeable fraction of the subjects exhibit

extreme attitudes. Only 57% of the subjects exhibiting 3rd order absolute risk aversion between

-0.14 and 0.31 and 3rd order relative risk aversion between -2.36 and 4.97, while 14% (13%) of the

subjects exhibit 3rd order absolute risk aversion below -0.69 (above 0.69) and 3rd order relative risk

aversion below -14.26 (above 10.48). We also note that there is no gender difference in third order

behavior (p-value for χ2 test = 0.266).

For the fourth order task, only a slight majority of 54% exhibited temperance. The modal

response was again to switch at choice 6 indicating that this 32% of the subjects exhibited 4th order

absolute risk aversion between 0.00 and 0.14 and 4th order relative risk aversion between 0.00 and

2.30. As with the prudence, the degree of temperance exhibited by the subjects is more extreme than

the degrees of second order risk aversion that were exhibited. Only 59% of the subjects exhibited

4th order absolute risk aversion between -0.14 and 0.31 and 4th order relative risk aversion between

-2.31 and 5.28. Finally, as with second and third order behavior, there is no difference in 4th order

behavior by gender (p-value for χ2 test = 0.582).

As detailed in Section 2, the degree of nth order risk aversion depends on the sign of the (n−1)th

derivative of the utility function. The structure of the tasks we implement is such that Choice 1

(or Choice 9) of a Task of Order n is sufficient to determine the sign of the (n − 1)th. Hence,

in Figure 3 we separate the behavior of the subjects based on their selection of An(1) or Bn(1).

Because every subject selected B2(1) rather than A2(1), indicating that all of our subjects exhibit

behavior consistent with a monotonically increasing utility function, the figure only shows behavior

for the Tasks of Orders 3 and 4. The top-right portion of Figure 3 shows that risk-averse subjects

most commonly switch at Choice 6. It also indicates that far more subjects switch at Choices 6

through 9 than at Choices 2 through 5. The top-left portion of Figure 3 indicates that risk-loving

subjects most commonly switch at Choice 6 as well. However, by contrast with what is observed

for risk-averse subjects, the numbers of risk-loving subjects who switch at Choices 6 through 9 is

similar to the number who switch at Choices 2 through 5.
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What is clear from the top portion of the figure and supported statistically is that those who are

risk averse are more likely to have greater degrees of absolute and relative prudence than are those

who are risk seeking (p-value for χ2 test = 0.027). However, as suggested by the lower portion of

the figure prudent and imprudent people do not exhibit substantially different degrees of absolute

and relative temperance (p-value for χ2 test = 0.596).

One implication of our results draws upon Jindapon and Neilson (2007) who examine com-

parative risk aversion in a model where decision makers can exert effort to shift an initial wealth

distribution to a preferred distribution. Specifically, Jindapon and Neilson (2007) showed that if

the initial distribution differs from the preferred distribution by a simple increase in 3rd degree risk,

then a risk-averse agent with preferences captured by the utility function u would invest more effort

than another risk-averse agent whose preferences are captured by the utility function v if and only

if u has a higher degree of absolute prudence than v.14 Appendix 7 extends Jindapon and Neilson

(2007) by assuming that agents are risk-loving instead of risk averse and showing that when the

initial distribution differs from the preferred distribution by a simple increase in 3rd degree risk,

then a risk-loving agent with utility function u would invest more effort than another risk-loving

agent with utility v if and only if u has a lower degree of absolute prudence than v. Note that

subjects who switch at Choice j + 1 has a higher degree of absolute prudence than subjects who

switch at Choice j regardless of second order risk preferences. Thus, in the top-right portion of

Figure 3 subjects who switch at Choice j+1 would exert more efforts than the subjects who switch

at Choice j or earlier whereas in the top-left portion of Figure 3 subjects who switch at Choice j+1

would exert less efforts than subjects who switch at Choice j or earlier.

Jindapon and Neilson (2007) and our Appendix 7 also provide a basis for understanding the

implications of observed 4th order behavior. Jindapon and Neilson (2007) showed that if the initial

distribution differs from the preferred distribution by a simple increase in 4th degree risk, then a

prudent agent with higher degree of absolute temperance is willing to exert more effort to pursue

the preferred distribution than is a prudent agent with a lower degree of absolute temperance.

Thus, in the bottom-right portion of Figure 3 subjects who switch at Choice j + 1 would exert

more effort than than subjects who switch at Choice j or earlier. Our Appendix 7 shows that an

imprudent agent with a lower degree of absolute temperance is willing to exert more effort to pursue

14See Appendix 7 for the definition of a simple increase (decrease) in 3rd degree risk.
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Figure 3: Histogram of Switching in Task of Order n Given Sign of (n− 1)th Order Risk Attitude

the preferred distribution than is an imprudent agent with a higher degree of absolute temperance.

Thus, in bottom-left portion of Figure 3 subjects who switch at Choice j+1 would exert less efforts

than subjects who switch at Choice j or earlier.

While not the main focus of our study, the within-subject nature of our data allows us to

examine how degrees of risk aversion are related across orders. Specifically, the correlation between

switching points on the Tasks of Orders 2 and 3 is 0.209 (p-value = 0.037) indicating that a greater

degree of absolute (relative) second order risk aversion is associated with a greater degree of absolute

(relative) prudence. Similarly, the degrees of absolute (relative) prudence and absolute (relative)

temperance are positively correlated among our subjects; the correlation between switching points

on the Tasks of Orders 3 and 4 is 0.258 (p-value = 0.010). But the strongest relationship that

we observer is between the degree of second order risk aversion and the degree of temperance; the

correlation between switching points on the Tasks of Orders 2 and 4 is 0.422 (p-value < 0.001).

That the connection between even order risk attitudes is stronger than the relationship between
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even and odd orders is consistent with the notion of people being mixed risk averters and mixed

risk seekers.

Finally, while our approach is non-parametric, we report a calibration exercise to determine

how well different utility functions describe observed behavior. For each subject for each utility

function, we identify the parameter values that best fit the observed behavior of the subject across

all three orders.15 Table ?? reports the mean and standard deviation of the subject specific model

parameters. For example, when considering the exponential utility function, the average value of

γ across the subjects is 0.15.16 The table also reports the mean and standard deviation of the

accuracy rate for a function when parameter values are subject specific. That is, allowing for each

subject to have a unique value of γ, on average 80% of a subject’s choices are consistent with the

exponential utility function. Among the utility functions listed in Table ??, the exponential-power

utility function has the greatest average accuracy at 91%.17

For behavior to be consistent with a well behaved utility function, then a subject should prefer

A1(5) to B1(5) iff they prefer A2(1) to B2(1) as both choices depend only on the sign of u(1).

Similarly, the choices between A2(5) and B2(5) and A3(1) and B3(1) both identify the sign of u(3).

If attention is restricted to those subjects who make consistent decisions over these two pairs of

choices, then exponential-power utility function’s average accuracy rate increases to 98% although

this performance is not substantially better than that of the power utility function that has an

accuracy rate of 95% among these subjects as shown in the top portion of Table ??. Interestingly,

as shown in the lower portion of Table ??, the subjects who are not consistent on either pair of

choices behave as if they are close to risk neutral on average, which imply they were indifferent for

all third and fourth order choices.

6 Conclusions

This paper introduces a simple and systematic procedure for identifying the intensity of risk atti-

tudes using the notion of risk apportionment. Our process is systematic in that it involves a series of

15Matlab code for the identification is available in the supplementary materials.
16This does not imply that 0.15 is the value of γ that best fits all of the data for the exponential utility function.
17Because options in the third order task have equal means and options in the fourth order task have equal means

and variances, we do not consider linear or quadratic utility functions as these wold imply indifference over all third
and fourth order choices and all fourth order choices, respectively.
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binary comparisons where each comparisons differs from the others in the same incremental manner.

The process is simple in that it only involves comparisons between two lotteries that are themselves

composed of combinations of certain losses and fifty-fifty lotteries. Further, our approach can be

used to identify both relative and absolute risk aversion of any arbitrary degree without relying

upon assumptions regarding the respondent’s underlying preference structure.

We also demonstrate the implementation of our approach in a laboratory setting. Consistent

with previous work, we find that a majority of our subjects are non-satiated, risk averse, prudent,

and temperate. Our approach allows us to go further and identify that the typical behavior of

our subjects is modest relative and absolute risk aversion, modest relative and absolute prudence,

and modest relative and absolute temperance. Further, we find that higher order degrees of risk

aversion are positively correlated, although the strongest relationship that we observe is between

second order risk aversion and prudence. Finally, our calibration exercise suggests that behavior is

generally consistent with the exponential-power utility function.
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Appendix A Mathematical Proofs

To prove our formal results, we first establish three technical lemmas.

Lemma A1. For u and v that are twice continuously differentiable with u(1) and v(1) having the

same sign, the following statements are equivalent:

(i) −u(2)(x)

u(1)(x)
≥ −v(2)(x)

v(1)(x)
for all x ∈ [a, b];

(ii) −u(1)(x)−u(1)(x−k)
u(x)−u(x−k) ≥ −v(1)(x)−v(1)(x−k)

v(x)−v(x−k) for all x, x− k ∈ [a, b] with k > 0.

Proof. Assume first that u(1) > 0 and v(1) > 0. Since (i) is a direct consequence of (ii) after

letting k → 0, we concentrate on the proof that (i) implies (ii). Statement (i) is equivalent to

u(x) = ϕ(v(x)), where ϕ is twice differentiable with ϕ(1) > 0 and ϕ(2) ≤ 0 (Pratt 1964). By the

mean value theorem, u(x) − u(x − k) = ϕ(v(x)) − ϕ(v(x − k)) = ϕ(1)(v(x − θk))[v(x) − v(x − k)]

with some θ ∈ (0, 1), and accordingly,

−
u(1)(x)− u(1)(x− k)

u(x)− u(x− k)
=−

ϕ(1)(v(x))v(1)(x)− ϕ(1)(v(x− k))v(1)(x− k)

ϕ(1)(v(x− θk))[v(x)− v(x− k)]

≥−
v(1)(x)− v(1)(x− k)

v(x)− v(x− k)
,

which follows from ϕ(1)(v(x)) ≤ ϕ(1)(v(x− θk)) ≤ ϕ(1)(v(x− k)).

To address the alternative case with u(1) < 0 and v(1) < 0, we introduce û = −u and

v̂ = −v, which satisfy û(1) > 0 and v̂(1) > 0. Because − û(2)(x)

û(1)(x)
= −u(2)(x)

u(1)(x)
, − û(1)(x)−û(1)(x−k)

û(x)−û(x−k) =

−u(1)(x)−u(1)(x−k)
u(x)−u(x−k) and similar equations also hold for v̂ and v, the result follows straightforwardly

by adapting the former analysis to û and v̂. Q.E.D.

Lemma A2 below extends Lemma A1 to higher orders.

Lemma A2. For n ≥ 3, let Ân and B̂n be the lotteries introduced by Eeckhoudt and Schlesinger

(2006) with w = 0 and ε̃i as in (5). For u and v that are continuously differentiable up to order n

with u(n−1) and v(n−1) having the same sign, define

un−2(x) ≡ Eu(x+ Ân−2)− Eu(x+ B̂n−2),

vn−2(x) ≡ Ev(x+ Ân−2)− Ev(x+ B̂n−2).
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The following statements are equivalent:

(i) − u(n)(x)

u(n−1)(x)
≥ − v(n)(x)

v(n−1)(x)
for all x ∈ [a, b];

(ii) −
u
(2)
n−2(x)

u
(1)
n−2(x)

≥ −
v
(2)
n−2(x)

v
(1)
n−2(x)

for all x+ Ân−2, x+ B̂n−2 ∈ [a, b].

Proof. For n = 3, u1(x) = u(x− k)− u(x) and v1(x) = v(x− k)− v(x). We apply Lemma A1 with

u(1) and v(1) to get the equivalence between (i) and (ii).

For n = 4, u2(x) =
1
2 [u(x− k1) + u(x+ k1)]− u(x) and v2(x) =

1
2 [v(x− k1) + v(x+ k1)]− v(x).

Accordingly, (ii) implies (i) after letting k1 → 0. To prove that (i) implies (ii), we apply Lemma A1

to u(2) and v(2), and obtain that (i) implies

−
u(3)(x)− u(3)(x− k1)

u(2)(x)− u(2)(x− k1)
≥ −

v(3)(x)− v(3)(x− k1)

v(2)(x)− v(2)(x− k1)
.

Similarly, applying Lemma A1 to û(x) ≡ u(1)(x) − u(1)(x − k1) and v̂(x) ≡ v(1)(x) − v(1)(x − k1)

leads to

−
û(1)(x+ k1)− û(1)(x)

û(x+ k1)− û(x)
≥ −

v̂(1)(x+ k1)− v̂(1)(x)

v̂(x+ k1)− v̂(x)
,

which yields (ii) as û(x+ k1)− û(x) = 2u
(1)
2 (x) and v̂(x+ k1)− v̂(x) = 2v

(1)
2 (x).

For n ≥ 5 the proof is by induction. Suppose that the equivalence between (i) and (ii) holds

true for all orders up to n− 1. For order n, recall that ε̃Int(n/2)−1 = [−kInt(n/2)−1; kInt(n/2)−1] and

un−2(x) =
1

4

[

un−4

(

x− kInt(n/2)−1

)

+ un−4

(

x+ kInt(n/2)−1

)]

−
1

2
un−4(x),

vn−2(x) =
1

4

[

vn−4

(

x− kInt(n/2)−1

)

+ vn−4

(

x+ kInt(n/2)−1

)]

−
1

2
vn−4(x).

Applying the equivalence for the fourth order to un−4 and vn−4, we obtain that (ii) is equivalent to

−
u
(4)
n−4(x)

u
(3)
n−4(x)

≥ −
v
(4)
n−4(x)

v
(3)
n−4(x)

for all x+ Ân−4, x+ B̂n−4 ∈ [a, b].

We further apply the equivalence for the (n − 4)th order to u(2) and v(2) to obtain that (ii) is

equivalent to (i) for order n. Q.E.D.
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Lemma A3. For n ≥ 2, consider a Task of Order n as specified in (7) that is supported on

[a, b] ⊂ (0,∞). For each j = 2, ..., J − 1, there exists a unique constant absolute risk aversion

coefficient Θ1(n, j) such that Ev1(An(j)) = Ev1(Bn(j)) under θ1 = Θ1(n, j). Moreover, Θ1(n, j)

increases strictly in j. The same statement holds true for Θ2(n, j), the constant relative risk aversion

coefficient such that Ev2(An(j)) = Ev2(Bn(j)).

Proof. We proceed under the assumption that (−1)nv
(n−1)
1 > 0 as the alternative case (−1)nv

(n−1)
1 <

0 can be addressed by adapting the analysis to −v1. By induction, we have v
(1)
1(n−2) > 0 and

Ev1(Bn(j))− Ev1(An(j)) = v1(n−2)(w)− Ev1(n−2)(w + δ̃j).

For j = 2, ..., J − 1, the existence and uniqueness of Θ1(n, j) follow from the monotonic-

ity of v−1
1(n−2)(Ev1(n−2)(w + δ̃j)) with respect to θ1 (Pratt 1964), together with the facts that

limθ1→−∞ v−1
1(n−2)(Ev1(n−2)(w + δ̃j)) = w + ess sup(δ̃j) and limθ1→∞ v−1

1(n−2)(Ev1(n−2)(w + δ̃j)) =

w + ess inf(δ̃j).

As j increases, Ev1(n−2)(w + δ̃j) increases strictly, but Ev1(n−2)(w) does not change. Thus,

for any j1 < j2, Ev1(n−2)(w) = Ev1(n−2)(w + δ̃j1) under θ1 = Θ1(n, j1) implies Ev1(n−2)(w) <

Ev1(n−2)(w + δ̃j2) under the same θ1, which further implies Ev1(n−2)(w) < Ev1(n−2)(w + δ̃j2) under

all θ1 ≤ Θ1(n, j1) by virtue of Proposition 1. Accordingly, to achieve Ev1(n−2)(w) = Ev1(n−2)(w+δ̃j2)

under θ1 = Θ1(n, j2), it must hold that Θ1(n, j2) > Θ1(n, j1), which proves the monotonicity of

Θ1(n, j) with respect to j.

When j = 1, Ev1(n−2)(w) > Ev1(n−2)(w + δ̃1) for any finite Θ1 ∈ R yielding the convention

Θ1(n, 1) = −∞. When j = J , Ev1(n−2)(w) < Ev1(n−2)(w + δ̃J) for any finite Θ1 ∈ R yielding the

convention Θ1(n, j) = ∞. Q.E.D.

In what follows, we prove our main results.

Proof of Proposition 1. To prove that (i) implies (ii), let F and G be the cumulative distribu-

tion functions of B2 and A2, respectively. Then, integration-by-parts yields Ev(B2) − Ev(A2) =
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∫ b
a v(1)(x)[G(x)− F (x)]dx and

Eu(B2)− Eu(A2)

=

∫ b

a

u(1)(x)

v(1)(x)

(

−
u(2)(x)

u(1)(x)
+

v(2)(x)

v(1)(x)

)

∫ x

a
v(1)(y)[G(y)− F (y)]dydx

+
u(1)(b)

v(1)(b)

∫ b

a
v(1)(x)[G(x)− F (x)]dx.

Since F intersects G from below once, Ev(B2) = Ev(A2) implies
∫ b
a v(1)(y)[G(y)− F (y)]dy = 0 but

∫ x
a v(1)(y)[G(y)− F (y)]dy ≥ 0 for all x ∈ [a, b], which in turn implies Eu(B2) ≥ Eu(A2).

To show that (ii) implies (i), we argue by contradiction. If −u(2)(x0)

u(1)(x0)
< −v(2)(x0)

v(1)(x0)
for some

x0 ∈ [a, b], then continuity implies −u(2)(x)

u(1)(x)
< −v(2)(x)

v(1)(x)
on (x0 − ε, x0 + ε)∩ [a, b] for some ε > 0. For

δ̃ supported on (x0 − ε, x0 + ε) ∩ [a, b], we can follow the proof for (i) implying (ii) to obtain that

Ev(B2) = Ev(A2) always implies Eu(B2) ≤ Eu(A2) and a strict inequality Eu(B2) < Eu(A2) holds

when δ̃ is not constant. This a contradiction to (ii). Q.E.D.

Proof of Proposition 2. For k > 0, recall u1(x) = u(x−k)−u(x) and v1(x) = v(x−k)−v(x). For

individuals with utility function u, the choice between A3 and B3 is based on comparing Eu1(A2)

and Eu1(B2) with a similar result holding for v. We apply Proposition 1 to obtain that (ii) is

equivalent to −
u
(2)
1 (x)

u
(1)
1 (x)

≥ −
v
(2)
1 (x)

v
(1)
1 (x)

for all x, x− k ∈ [a, b], and further apply Lemma A2 at the third

order to obtain that (ii) is equivalent to (i). Q.E.D.

Proof of Theorem 1. For n ≥ 3, let un−2 and vn−2 be defined as in Lemma A2. For an

individual with utility function u, the choice between An and Bn is based on comparing Eun−2(A2)

and Eun−2(B2). A similar statement holds for v. We apply Proposition 1 to obtain that (ii) is

equivalent to −
u
(2)
n−2(x)

u
(1)
n−2(x)

≥ −
v
(2)
n−2(x)

v
(1)
n−2(x)

for all x+An−2, x+Bn−2 ∈ [a, b], and further apply Lemma A2

to obtain that (ii) is equivalent to (i). Q.E.D.

Proof of Corollary 1. We assume (−1)nu(n−1) > 0 as the case (−1)nu(n−1) < 0 can be addressed

by adapting the above analysis to −u. Recall that for an individual with utility function u, the

choice between An(j) and Bn(j) is based on comparing Eun−2(w + δ̃j) and Eun−2(w). We prove

by induction that u
(1)
n−2 > 0. When j = 1, δ̃1 = [−2h; 0] is a first-degree deterioration relative to 0

and thus w is preferred to w + δ̃1 by un−2; when j = J , δ̃J = [0; 2h] is a first-degree improvement

relative to 0 and thus w + δ̃J is preferred to w by un−2. As j increases from 1 to J , Eun−2(w + δ̃j)
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increases but Eun−2(w) does not change, yielding a single point at which the individual switches

from preferring w to preferring w+δ̃j under un−2, or equivalently, from preferring Bn(j) to preferring

An(j) under u.

When the individual prefers Bn(j) to An(j) for j ≤ j∗ and prefers An(j) to Bn(j) for j ≥

j∗ + 1, we have Eu(Bn(j
∗)) ≥ Eu(An(j

∗)) and Eu(Bn(j
∗ + 1)) ≤ Eu(An(j

∗ + 1)). If otherwise

− u(n)(x)

u(n−1)(x)
< Θ1(j

∗) or − u(n)(x)

u(n−1)(x)
> Θ1(j

∗ + 1) for all x ∈ [a, b], then Theorem 1 would imply

Eu(An(j
∗)) > Eu(Bn(j

∗)) or Eu(An(j
∗ + 1)) < Eu(Bn(j

∗ + 1)), which is a contradiction. Q.E.D.

Appendix B Effort-Making Problem

Jindapon and Neilson (2007) examined comparative risk aversion in a model where decision makers

can exert effort to shift an initial wealth distribution (G) to a preferred distribution (F ). Given

that u and v are utility functions that exhibit risk-aversion and/or prudence, their paper provides

conditions on u and v for an individual whose preference is captured by u to exert more effort

than an individual whose preference is captured by v. In this appendix, we extend their model to

consider individuals who are risk loving and/or imprudent.

Assume that an individual with utility function u can invest in an effort e ∈ [0, 1] with a non-

monetary cost of effort c(e) where c′(e) > 0 and c′′(e) > 0 such that her wealth distribution will

become eF (x) + (1− e)G(x), where x ∈ [a, b]. Thus, the objective of the individual is as follows:

max
e∈[0,1]

∫ b

a
u(x)[edF (x) + (1− e)dG(x)]− c(e).

The first-order condition is

∫ b

a
u(x)d[F (x)−G(x)]− c′(e) = 0,

and the second-order condition holds automatically due to −c′′(e) < 0. Since the second-order

condition does not depend on the sign of u(2), there always exists a unique interior solution if
∫ b
a u(x)d[F (x)−G(x)] > 0, regardless of whether or not the individual is risk averse or risk loving.

Define F (2)(x) =
∫ x
a F (t)dt and G(2)(x) =

∫ x
a G(t)dt. Following Jindapon and Neilson (2007),

we assume that F differs from G by a simple decrease in third order risk, i.e., F (2)(x) crosses G(2)(x)
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only once from below and EF (x) = EG(x). Taking integration by parts, the first-order condition

becomes

∫ b

a
[−u(2)(x)][G(2)(x)− F (2)(x)]dx− c′(e) = 0.

To compare two individuals with utility functions u and v, denote the optimal effort levels

corresponding to u and v by e∗u and e∗v, respectively.

Proposition B1. Regarding the effort-making problem, we have:

(i) Under u(2) < 0 and v(2) < 0, e∗u ≥ e∗v for any F and G such that F differs from G by a simple

decrease in third degree risk, if and only if −u(3)(x)

u(2)(x)
≥ −v(3)(x)

v(2)(x)
for all x ∈ [a, b];

(ii) Under u(2) > 0 and v(2) > 0, e∗u ≥ e∗v for any F and G such that F differs from G by a simple

decrease in third degree risk, if and only if −u(3)(x)

u(2)(x)
≤ −v(3)(x)

v(2)(x)
for all x ∈ [a, b].

Statement (i) in the above proposition is owing to Jindapon and Neilson (2007). Here, we

examine the “if” part of statement (ii). Assume F (2)(x) ≤ G(2)(x) for x ≤ x0 and F (2)(x) ≥ G(2)(x)

for x ≥ x0, and scale u and v so that u(2)(x0) = v(2)(x0). In light of the first-order condition, e∗u ≥ e∗v

if and only if

∫ b

a

[

−
u(2)(x)

u(2)(x0)
+

v(2)(x)

v(2)(x0)

]

[G(2)(x)− F (2)(x)]dx ≥ 0.

If −u(3)(x)

u(2)(x)
≤ −v(3)(x)

v(2)(x)
for all x ∈ [a, b], then it holds u(2)(y)

u(2)(z)
≤ v(2)(y)

v(2)(z)
for all z ≥ y. Accordingly, we

have F (2)(x) ≤ G(2)(x) and u(2)(x)

u(2)(x0)
≤ v(2)(x)

v(2)(x0)
for x ≤ x0 and F (2)(x) ≥ G(2)(x) and u(2)(x)

u(2)(x0)
≥ v(2)(x)

v(2)(x0)

for x ≥ x0, which in turn implies the desired inequality. The “only if” portion of the statement can

be proved using the same approach as in the proof of Theorem 3 in Jindapon and Neilson (2007).

By the same token, we can extend the above analysis to the fourth order. We say F differs from

G by a simple decrease in fourth degree risk, if F (3)(x) =
∫ x
a F (2)(t)dt crosses G(3)(x) =

∫ x
a G(2)(t)dt

only once from below, and moreover, EF (x) = EG(x) and EF (x
2) = EG(x

2) hold. The result is

formally stated as follows, and the proof is omitted.

Proposition B2. Regarding the effort-making problem, we have:
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(i) Under u(3) > 0 and v(3) > 0, e∗u ≥ e∗v for any F and G such that F differs from G by a simple

decrease in fourth degree risk, if and only if −u(4)(x)

u(3)(x)
≥ −v(4)(x)

v(3)(x)
for all x ∈ [a, b];

(ii) Under u(3) < 0 and v(3) < 0, e∗u ≥ e∗v for any F and G such that F differs from G by a simple

decrease in fourth degree risk, if and only if −u(4)(x)

u(3)(x)
≤ −v(4)(x)

v(3)(x)
for all x ∈ [a, b].
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Abstract 

 

 We characterize third-order risk preference in expected utility theory by utility 

transformations and by rankings of risk-preference measures.  At the second order, a risk-

averse transformation is exactly opposite to a risk-loving transformation, and is replicated 

by the ranking of Arrow-Pratt measures r.  However, at the third order, transformations 

that introduce aversion correspond to rankings by utility measures that are not opposites, 

as u being more averse than risk-neutral utility i is equivalent to Kimball’s prudence 
measure p being positive, but i being less averse than u requires that p exceed three times 

r.  We resolve this paradox and shed light on previously reported comparative statics 

predictions based these extremes. 
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1 Introduction 

 In expected utility theory, risk preferences are dictated by the derivatives of the 

von Neumann-Morgenstern utility function u defined on income 0y .  As any utility 

function u is a transformation   of risk-neutral utility yyi =)( , these derivatives are 

exactly those of the transformation generating u.  Assuming that marginal utilities are 

always positive, reflecting non-satiation, direction of nth-order risk preference is 

indicated by the sign of the nth utility derivative divided by the first.  Thus, at the second 

order, aversion to bearing risk for )(iu =  is identified with a positive Arrow-Pratt index 

uuru −= / , because decision makers with concave utility )0( u  always dislike any 

increase in risk [Rothschild & Stiglitz (1970)].1  At the third order, direction is indicated 

by the sign of the measure uudu = / , introduced by Crainich & Eeckhoudt (2008), 

because these decision makers always dislike any increase in downside risk [Menezes et 

al. (1980)].   

 As emphasized by Eeckhoudt (2012), risk preference refers to both direction and 

intensity.  At the second order, a transformation of utility )(v  increases the intensity of 

risk aversion if and only if   is itself risk averse, that is, 0r  [Pratt (1964)], and 

successive risk-averse transformations produce a strict partial ordering of utilities by 

greater risk aversion.  At the third order, however, successive downside risk-averse 

                                                         
1 To accommodate the definitions of increased risk and increased downside risk, we 

assume that income y belongs to a nonempty, compact positive interval.  Throughout, 

inequalities are assumed to hold for all incomes in the interval, and we use primes to 

denote derivatives.  
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transformations, satisfying 0d , do not necessarily yield strict partial orderings.2 This 

deficiency is remedied if the transformations are required to be risk averse as well as 

downside risk averse.  With 0r  and 0d , successive transformations yield an 

ordering of utilities by greater risk-averse and downside risk-averse preference [Keenan 

& Snow (2016)]. 

 When the reference for comparison v is risk neutral, we find that utility )(iu =  

is risk averse and downside risk averse if and only if 0= rru  and 0= ddu .  

These conditions are equivalent to 0ur  and 0up , where uupu −= /  is  the index 

of prudence introduced by Kimball (1990), since uuu rpd = .  However, we also find that 

risk-neutral utility is less risk averse and less downside risk averse than )(iu =  if and 

only if 0ur  and 03 − uu rp .  Thus, the measure conditions required for less aversion 

are stronger than those required for greater aversion. 

 In this paper, we resolve this paradox between greater and less aversion, and in so 

doing develop a complete characterization of downside risk preference that encompasses 

greater and less aversion.  In the next section, we characterize direction and intensity for 

third-order risk preference, and conditions necessary and sufficient for strict partial 

orderings by greater intensity in terms of restrictions on the risk preferences of utility 

transformations.  It is rarely possible to determine the transformation that converts the 

                                                         
2 A strict partial ordering is asymmetric and transitive.  Lacking these properties, a 

ranking of utilities cannot consistently yield unambiguous comparative statics 

predictions.  A case in which a ranking by 0d  is symmetric rather than asymmetric is 

provided by utility yiu /1)( −==  and utility uui /1)( −== , which are downside 

risk-averse transformations of each other.  Liu & Meyer (2012) provide examples 

illustrating both intransitivity and symmetry.  
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risk preferences of one utility function into those of another.  Hence, a characterization of 

risk preference defined in terms of utility transformations is lent tractability when it has a 

parallel representation in terms of utility measures as illustrated by the preceding 

discussion.  At the second order, this role is served by the Arrow-Pratt index ur , which 

indicates direction and intensity, and yields partial orderings of utility functions by 

greater risk aversion.  Characterizing conditions for downside risk preference defined in 

terms of utility measure are identified in section 3. 

 In section 4, we investigate reversibility for third-order risk preference, an 

intrinsic although seldom recognized property of greater risk aversion.  Specifically, 

reversing the risk preference embodied in a transformation from averse to loving, 

reverses the resulting utility ranking.  For greater downside risk aversion, reversibility 

ensures that predictions for less aversion reverse those for greater aversion.  Hence, by 

ensuring reversibility, we resolve the conflict between the conditions for greater and less 

aversion outlined above. 

 Finally, a complete characterization identifies a comparative statics thought 

experiment that identifies greater aversion toward bearing risk.  At the second order, this 

role is served by the risk premium, the decision maker’s willingness to pay to avoid risk, 

which is always greater after a risk-averse transformation of utility.  At the third order, it 

is common to associate downside risk aversion with prudence and greater prudence with 

greater downside risk aversion, as observed by Crainich & Eeckhoudt (2008).  In section 

5, we contrast direction and comparative statics predictions for greater prudence and 

greater downside risk aversion.  Conclusions are offered in section 6. 
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2 Direction, Intensity, and Ordering for Downside Risk Preference 

 We begin with a transformation of utility v, )(vu = , and the relationship 

between the attitude toward risk-bearing embodied in the transformation   and the risk 

aversion measures for v and u, 

  vu rvrr +=  , (1) 

obtained by dividing the second derivative of u by its first.  Unless otherwise specified, 

the risk preferences assumed for the transformation   are independent of those for either 

the final utility u or the reference utility v.  Equation (1) shows that, in contrast, second-

order risk preference for u is conditional on the second-order preference of both the 

transformation and the reference utility. 

 However, whether v or u is chosen as the reference has no bearing on either the 

direction of risk preference for u or its preference intensity relative to v, both as indicated 

by their Arrow-Pratt measures.  Thus, with the inverse transformation denoted by 

1−= , we have )(uv = , and 

  uv rurr +=  . (2) 

Together, equations (1) and (2) imply 

   −= /rr , (3) 

indicating that   is risk averse if and only if its inverse   is risk loving.  For the special 

case in which the reference v is risk neutral, utility )(iu =  takes on the risk preferences 

of  . 

 Extending the link between risk-averse transformations )0( r  and greater risk 

aversion from the second to the third order ties downside risk-averse transformations 
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)0( d  to greater downside risk aversion [Keenan & Snow (2002), (2009)].  However, 

as noted, a ranking of utility functions by successive transformations satisfying 0d  is 

not necessarily either asymmetric or transitive, and therefore cannot produce reliable 

comparative statics predictions.  By requiring that the transformations are risk averse as 

well as downside risk averse, that is, 

  0r  and 0d , (4) 

rankings generated by these transformations are asymmetric and transitive, and therefore 

constitute strict partial orderings [Keenan & Snow (2016)]. 

 When the reference utility is risk neutral, the inequality conditions stated at (4) 

imply that utility )(iu =  exhibits risk averse and downside risk averse preferences, 

0= rru  and 0= ddu .  Accordingly, we associate conditions (4) with direction 

of downside risk-averse preference.  When the reference utility v satisfies these direction 

conditions, we associate transformations satisfying conditions (4) with greater intensity of 

downside risk-averse preference and with orderings by greater downside risk aversion. 

 

3 Measures for Downside Risk Preference 

 To derive measure representations of the transformation conditions 0r  and 

0d , we obtain 

  vvu dvrrvdd ++=  32  (5) 

from the first and third derivatives of )(vu = , then substitute for r  from equation (1), 

add and subtract 23 ur , and rearrange terms to arrive at 
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    222 /])(3)3()3[( vrrrrdrdd vuuvvuu −+−−−= . (6) 

To consolidate notation, we introduce the measure 

  23 vvv rdD −= . (7) 

The following is now an immediate consequence of equations (1) and (6), equating 

inequality restrictions (4) for greater downside risk aversion with restrictions on utility 

measures. 

 

Proposition 1   [Keenan & Snow (2022)] Given )(vu = , we have 

 0r  and 0d  if and only if vu rr   and 0)(3)( −+− vuuvu rrrDD . 

 

 Thus, a ranking of utility functions defined by transformations that are risk averse 

and downside risk averse is equally represented by restrictions on the changes in the 

utility measures r and D.  The Proposition identifies restrictions sufficient for 0r  and 

0d  as, with 0vr , if both  vr  and vD  increase after )(vu =  replaces v, then 

0r  and 0d ,  implying that the transformation increases downside risk aversion. 

 

4 Reversibility for Downside Risk Preference 

 A transformation of utility that increases risk aversion is reversible since the 

transformation must be risk averse and its inverse, a risk-loving transformation, yields the 

reverse ranking by less risk aversion.  As a complement to Proposition 1, the following is 

a further consequence of equations (1) and (6) establishing reversibility for an ordering 

by greater downside risk-averse preference. 
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Proposition 2   [Keenan & Snow (2022)] Given )(vu = , we have 

 (a) 0r  and 0d  if and only if vu rr   and 0)(3 −+− vuuvu rrrDD ; 

 (b) 0r  and 0d  if and only if vu rr   and  0)(3 −+− vuuvu rrrDD .  

 

 Part (a) restates Proposition 1 characterizing greater downside side risk aversion, 

while part (b) reverses the inequality conditions (4) and characterizes less downside risk 

aversion.  The two parts provides sufficient conditions in terms of the measures r and D 

for greater and less aversion, respectively.  By exploiting the relation vvv rpd = , we can 

rewrite equation (7) as )3( vvvv rprD −= .  Then the final inequality in part (a) is 

satisfied if )3()3( vvvuuu rprrpr −− , while the reverse inequality is sufficient for the 

final inequality in part (b). 

 

Corollary 1   Given )(vu = , we have 

 (a) if 0 vu rr  and 033 −− vvuu rprp , then 0r  and 0d ; 

 (b) if vu rr 0  and vvuu rprp 330 −− , then 0r  and 0d . 

 

Thus, conditional on 0vr  and 03 − vv rp , if these measures both increase when 

)(vu =  replaces v, then   increases downside risk aversion, and   reduces downside 

risk aversion if 0ur  and 03 − uu rp , and both increase when the reference utility v 

replaces the final utility u. 
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 Reversibility for transformation   at the third order, however, does not imply 

reversibility for its inverse 1−= , as it does at the second order where reversibility 

follows from equation (3).  For the inverse transformation, d  is given by 

    ,/])(3)[( 2urrrDDd uvvuv −+−=  (8) 

in parallel with equation (6).  The next result characterizes reversibility at the third order 

for the inverse transformation  . 

 

Proposition 3   Given )(uv = , we have 

(a) 0r  and 0d  if and only if vu rr   and 0)(3 −+− vuvvu rrrDD ; 

(b) 0r  and 0d  if and only if vu rr   and 0)(3 −+− vuvvu rrrDD . 

 

 The inequality restrictions imposed in Propositions 2 and 3 differ precisely 

because the reference and final utilities differ in their preference intensity with respect to 

risk aversion.  Assuming that v and u are risk averse, the inequalities in part (a) of 

Proposition 3 imply those in part (a) of Proposition 2, since in both instances we then 

have 0 vu rr  and therefore 0)()( −− vuvvuu rrrrrr , while those in part (b) of 

Proposition 2 imply those in part (b) of Proposition 3, as in that case we have  

)()(0 vuvvuu rrrrrr −− .  Thus, the inverse   being a downside risk-loving 

transformation implies that   is a downside risk-averse transformation, but not vice 

versa, while   being a downside risk-loving transformation implies that   is a downside 

risk-averse transformation, but not vice versa. 
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 For the special case in which the reference utility v is risk neutral, Propositions 2 

3 imply the following paradox, described in the introduction, after exploiting the relations 

vvv rpd =  and uuu rpd = . 

 

Corollary 2   Given )(iu =  and )(ui = , we have 

 (a) 0r  and 0d  if and only if 0ur  and 0up ; 

 (b) 0r  and 0d  if and only if 0ur  and 03 − uu rp . 

 

 Part (a) states that )(iu =  is more downside risk-averse than i if and only if 

0ur  and 0up , while part (b) states that )(ui =  is less downside risk averse than u. 

Clearly, the difference between the characterizing measure conditions for the two parts is 

traceable to the fact that Propositions 2 and 3 are not equivalent.  Moreover part (b) is the 

stronger condition, since the transformation conditions 0r  and 0d  imply 0r  

and 0d . 

 However, part (b) can also be viewed as an alternative to part (a) as a definition of 

greater downside risk aversion.  Exploring this avenue reveals several logical 

inconsistencies, among them that compensated increases in downside risk for utility 

)(iu =  are not necessarily liked by utility i, which is neutral to all changes in risk 
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Keenan & Snow (2023)].3  Here we take a complementary tack, and observe that the 

necessary and sufficient conditions for 0d  can be written as 

  0)(3)(3 −−−=−+− vuvvuvuuvu rrrddrrrDD . (9) 

Given 0vr  and 0r , the inequality condition 0− vu dd  is necessary for 0d , 

and is also sufficient for the special case in which iv =  leading to the characterization 

0ur  and 0up  in part (a) of Corollary 2, indicating direction of risk preference for u 

with respect to risk aversion and prudence.  Since )(ui =  is less downside risk averse 

than u implies that )(iu =  is more downside risk averse than i, the conditions 0ur  

and 03 − uu rp  with intensity of preference aversion with respect to downside risk.  

These observations lead us to examine prudence and downside risk aversion with respect 

to direction and intensity. 

 

5 Comparative Statics for Prudence and Downside Risk Aversion 

 Whereas we have identified risk-averse utility functions with dislike of mean 

preserving spreads in the distribution for income, Arrow (1965) and Pratt (1964) link risk 

aversion to a positive risk premium whose magnitude increases with greater risk 

aversion.  Insofar as the premium approach to characterizing either direction or intensity 

of risk preference relies on the absence of risk as the benchmark, this approach is not 

applicable beyond the second order.  In this section, we contrast prudence and downside 

risk aversion with respect to the direction of preference imparted by a transformation of 

                                                         
3 A compensated increase in downside risk is a shift the distribution for income y that 

induces an increase in downside risk for utility )(yu , and must compensate for the 

decline in expected utility experienced by a downside risk-averse utility.  
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risk-neutral utility and intensity of preference as reflected in characteristic comparative 

statics predictions. 

 While part (a) of Corollary 2 shows that downside risk aversion implies positive 

prudence when the reference utility is risk neutral, the implication is not valid when the 

reference is downside risk averse in the sense that vv rp 3−  is positive. 

 

Proposition 4   [Keenan & Snow (2010)] Given )(vu = , for all increasing 

transformations  , we have 

 (a) 0r  and 0d  implies vu pp   if and only if 03 − vv rp ; 

 (b) 0r  and vu pp   implies 0d  if and only if 03 − vv rp . 

 

When the reference is risk neutral, these necessary and sufficient conditions are satisfied, 

and we have 0up  in both cases.  Thus, introducing downside risk aversion introduces 

prudence, although the converse is not true, since risk-loving and downside risk-loving 

utility displays positive prudence. 

 When the reference utility is risk averse, one finds that transformations increasing 

prudence also increase risk aversion. As shown by Kimball, just as an increasing, 

concave transformation of (an increasing) utility function increases risk aversion, an 

increasing, convex transformation of a decreasing marginal utility, )(vu =  , increases 

prudence.  Given 0vr , calculation shows )/(  vrr vu =  and 1/   v , implying that 

risk aversion increases.  Thus, greater preference intensity for the preference directions 

0ur  and 0up  is identified with greater risk aversion and greater prudence. 
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 The contrast between greater prudence and greater downside risk aversion is 

illustrated by the simple two-period saving problem with time-separable preferences 

described by Eeckhoudt et al (2005).  The decision maker chooses saving s to maximize 

expected utility given by  +++− )()()(  dFsyvsyv , where utility present and future 

utility functions are the same, both the interest rate and the subjective rate of time 

preference are set equal zero, y  is the sure value of endowed income in both periods, and 

F is the cumulative distribution function for a zero-mean additive risk to future income, 

 .  Analysis of this problem by Leland (1968) showed that the introduction of an 

additive risk to future income increases saving by a “precautionary” amount if the 

decision maker exhibits risk aversion and downside risk aversion, that is, if 0ur  and 

0ud , implying positive risk aversion and positive prudence, 0ur  and 0up .  

Optimal saving in the absence of risk is equal to zero, and therefore in the presence of 

risk, optimal saving is entirely precautionary. 

 Kimball (1990) introduced the measure of prudence to characterize the 

precautionary motive in saving, in direct parallel with the characterization direction and 

intensity for risk aversion.  Optimal precautionary saving for v, denoted by vs , satisfies 

the first-order condition, 0)()( = +++−− dFsyvsyv vv  , or equivalently 

  )()( vvv syvsyv −+=− , (10) 

where v  is the prudence premium for v.  By analogy with risk aversion and the risk 

premium, the prudence premium reflects the direction and intensity of the prudence 

measure vp .  Solving for vs  yields 2/vvs = .  Hence, precautionary saving is positive 

and increases with positive and increasing prudence. 
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 Although the response of saving to the introduction of future-income risk is 

dictated by the direction and intensity of prudence, the same is not true for increases in an 

existing risk.  Assume that an increase in the shift parameter   for the distribution 

function ),( F  induces a mean preserving spread, denoted by ),( F .  The effect on 

precautionary saving is given by 2/)/(/  = vv dds , where equation (10) yields 

  
,ˆ/

ˆ//

vddFv

vdFvv

 −=

 −=









 (11) 

where the second line follows using integration by parts twice, and )(ˆ vvsyvv −+= .  

For the increase in saving to be greater for utility u than for v, we must have 

  0
ˆˆ

 










−



=



−








 

 ddF
v

v
p

u

u
p vu

vu , (12) 

where )(ˆ uusyuu −+= .  However, greater prudence for u than for v is not sufficient 

for this inequality, and therefore does not imply that a greater increase in precautionary 

saving in response to an increase in future-income risk. 

 A contrasting thought experiment introduced by Crainich & Eeckhoudt (2008) 

yields a complementary but distinct comparative statics prediction concerning the change 

in the interest rate required to maintain optimal saving equal to zero when future-income 

risk is introduced.  Let vm  denote the compensating (gross) interest rate for v under 

which optimal saving is equal to zero when future income risk is present, defined by the 

first-order condition 

  0),()()( = ++−  dFyvmyv v . (13) 
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In the absence of risk, 1=vm .  Assume that ),( F  denotes a simple mean preserving 

spread with single crossing at 0= .4  When initially there is no risk, F  represents an 

introduction of risk, and otherwise F  represents an increase in risk with a positive 

cumulative increase in probability below the mean balanced by a cumulative reduction 

above the mean.  The effect of an increase in   on the compensating interest rate 

  
vddFv

vdFvddmv

 −=

 =

/

//









 (14) 

is obtained from equation (13) using integration by parts twice, where )(yvv = .  Since 

the partial integrals on the third line are non-negative, the compensating interest rate falls 

below one when risk is introduced if 0vd , which is implied by 0vr  and 

03 − vv rp . 

 Replacing v with )(vu =  yields 

  
,//)2(

//

3
vdFvvddFvvv

udFuddmu

 ++ =

 =











 (15) 

where the second line is obtained using integration by parts, and ))(( yv = .  Since the 

partial integrals are nonnegative, the first integral is positive if v is risk averse and the 

transformation satisfies 0r  and 0d .  Hence, we have  ddmddm vu //  , and 

the compensating interest rate falls, if the final integral in equation (15) is at least as great 

as equation (14), that is, if 

  0)/1(  −   dFv . (16) 

                                                         
4 A simple, or single mean preserving spread satisfies a single crossing property such that 
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As a simple mean preserving spread with single crossing at zero, F  changes sign from 

positive to negative at zero as   increases, while 0  implies that  − /1  behaves 

in the opposite manner.  Hence, if   is downside risk averse, then utility )(vu =  

requires a greater decline in the interest rate than v for saving to remain constant after the 

introduction of, or a simple increase in, future-income risk. 

 

Proposition 5   Given )(vu =  and a single-crossing increase in future-income risk 

induced by 0d , we have, 

 (a)  ddmddm vu //   if 0r  and 0d ; 

 (b)  ddmddm vu //   if 0r  and 0d . 

 

 Part (a) shows that greater downside risk aversion implies a stronger reaction to to 

introductions or simple increases in future-income risk as measured by the decline in the 

interest rate required to maintain saving constant [Keenan & Snow (2016)].  Part (b) 

follows since   is reversible, and demonstrates the reverse, that less downside risk 

aversion implies a weaker reaction to these increases in income risk.  Thus, in contrast 

with greater prudence, greater downside risk aversion holds unambiguous comparatives 

statics implications for some mean preserving spreads of an existing risk as well as for 

introduction of risk into initially riskless saving decisions. 

 

 

                                                                                                                                                                        

0)]([),( =F  as 0)]([ =  [Rothschild & Stiglitz (1970]. 
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6 Conclusions 

 We characterize downside risk preference in expected utility theory with respect 

to direction and with respect to intensity for both greater and less aversion in terms of the 

risk preferences utility transformations.  Downside risk preference is inherited from a 

transformation of risk-neutral utility, with the direction of third-order preference 

indicated by the sign of the third derivative.  However, to obtain a strict partial ordering 

of utility functions by intensity of third-order risk preference requires specifying the 

transformations’ second-order risk preferences as well as their third-order preferences.  

An ordering by greater third-order risk aversion is obtained when transformations are risk 

averse and downside risk averse, and the ordering is representable in terms of inequality 

restrictions on the utility measures of risk aversion vr  and prudence vp .  Moreover, 

reversing the preference directions from averse to loving yields an ordering by less third-

order risk aversion.  In particular, positive and increasing (decreasing) values for the 

measures vr  and vv rp 3−  are sufficient conditions for greater (less) downside risk 

aversion.  Finally, we show that, the decline in the interest rate needed to maintain 

constant precautionary saving increases with greater downside risk aversion with the 

introduction of a zero-mean income risk or with a simple increase in risk with single 

crossing at zero. 

 Reversibility unlocks the paradox outlined in the introduction.  Transformations 

that increase downside risk aversion are reversible, since the restrictions on vr  and vp  

that characterize these transformations are reversed when love replaces aversion.  For the 

same reason, their inverse transformations are reversible, but the reference utility v and 

final utility u switch roles thereby altering the characterizing inequality restrictions on the 
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utility measures.  As a consequence, we find that a transformation introducing downside 

risk averse preference necessarily introduces positive prudence, 0up , while its inverse 

eliminates downside risk averse preference only if 03 − uu rp , the difference being an 

artifact of the switch in direction to and from utility u. 
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The many faces of multivariate risk-taking

1 Introduction

Risk attitudes are without doubt a crucial determinant of economic and financial decision-

making. Many decisions under risk involve more than a single attribute (see Keeney et al.,

1993). Treatment decisions have financial consequences but also affect people’s health. After

filing one’s taxes, people may be uncertain about the size of the refund but also about how

long they will have to wait to obtain it. In times of a public health crisis, policymakers have to

weigh the economic costs of containment measures against the loss of life. These examples also

illustrate that some attributes are desirable like money, consumption or health, while other

attributes are undesirable like waiting time, costs or the number of fatalities. The distinction

between desirable and undesirable attributes plays a key role in our paper.

While many economists have traditionally been thinking of risk attitude as risk-averse or

risk-loving, so-called higher-order risk attitudes are receiving increased attention. In the early

models of precautionary saving by Leland (1968), Sandmo (1970) and Drèze and Modigliani

(1972), which were later revisited by Kimball (1990), a third-order attitude called prudence

guarantees that income risk leads to precautionary saving. A fourth-order attitude called

temperance ensures less risk-taking in the presence of greater background risk (Kimball, 1993).

Although first received with some skepticism, the notions of prudence and temperance have

now been widely accepted in the economic analysis of decision-making under risk.1

More generally, Ekern (1980) defines the notion of Kth-degree risk aversion as an aversion

to Kth-degree risk increases where K is an integer. While general, his integral conditions

lack intuition and it remains unclear how to test for higher-order risk attitudes in the data.

A breakthrough came with the impactful works of Eeckhoudt and Schlesinger (2006), Eeck-

houdt et al. (2007) and Eeckhoudt et al. (2009), who provide a simple and intuitive way of

understanding higher-order risk preferences via risk apportionment. Two basic types of ap-

portionment preferences arise from their analysis, “combining good with bad” and “combining

good with good and bad with bad” (Deck and Schlesinger, 2014).

In this paper, we provide new results on multivariate risk-taking. We use the powerful tools

of risk apportionment but explicitly distinguish between desirable and undesirable attributes

in our analysis. Our first contribution is to revisit the concepts of correlation aversion, cross-

prudence and cross-temperance (see Eeckhoudt et al., 2009). As Deck and Schlesinger (2014)

say, “restricting any analyses within economic applications to only the first four orders seems

a reasonable approximation.” We start with such an approximation and provide definitions of

correlation aversion, cross-prudence and cross-temperance in terms of simple lotteries. When

one or both attributes are undesirable, some of these definitions need to be adjusted, and

we explain how and why. In the expected utility model, these simple lottery preferences pin

1 Noussair et al. (2014) summarize the many ways in which prudence and temperance affect economic behavior.
Applications include auctions, bargaining, ecological discounting, precautionary saving, investment, rent-
seeking, and prevention.
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The many faces of multivariate risk-taking

down the sign of specific cross-derivatives of the utility function. The approach with simple

lotteries has the advantage that it remains valid even when expected utility falls short from

a descriptive standpoint (see Starmer, 2000).2

Our second contribution is to provide a general characterization of risk apportionment

preferences in the bivariate setting under expected utility. We revisit the univariate case and

explain how to accommodate undesirable attributes. All we need to do is to adjust the “seed

lotteries,” and the rest of Eeckhoudt and Schlesinger’s (2006) risk apportionment theory stays

intact. For an undesirable attribute, decision-makers who prefer to combine good with bad

have all subsequent derivatives of the utility function negative. Decision-makers who prefer

to combine good with good and bad with bad have subsequent derivatives alternating in sign

but starting with a negative instead of a positive (Ebert, 2020). For a desirable attribute,

combining good with bad is characterized by alternating signs whereas combining good with

good and bad with bad is characterized by a consistent positive sign. A reversal occurs when

going from a desirable to an undesirable attribute.

Once we have the univariate apportionment lotteries in place, we characterize risk appor-

tionment preferences across attributes. We use Eeckhoudt et al.’s (2009) approach of appor-

tioning Ekern (1980) risk increases and determine the signs of successive cross-derivatives of

the utility function in three cases. We consider two desirable attributes, one desirable and

one undesirable attribute, and two undesirable attributes. The orders of the risk changes

play different roles in the three cases, and these roles are determined by the apportionment

preferences on the individual attributes. In the expected utility model, it is easy to show that

all three cases can be reconciled with each other. Hence, our results are fully consistent.

Our third contribution is to relate our findings to popular multivariate models. We discuss

multiplicatively separable utility and equivalent monetary utility. In the separable case, the

apportionment preference across attributes is very easy to characterize. If the component

utility functions have the same sign, the decision-maker prefers to combine good with good

and bad with bad. If they have opposite signs, she prefers to combine good with bad. This

insight allows us to construct any of the eight combinations of risk apportionment preferences

studied in this paper for applications.

We proceed as follows. Section 2 outlines the model, defines risk apportionment, and

revisits the single-attribute case. Section 3 defines correlation aversion, cross-prudence and

cross-temperance while distinguishing between desirable and undesirable attributes. Section 4

provides the general theory. Section 5 connects the apportionment preference across attributes

to signs of cross-derivatives of the utility function and reconciles all three cases. Section 6 re-

lates our analysis to Gollier’s (2021) generalized risk apportionment theory. Section 7 presents

specific multivariate models and shows how to implement different combinations of apportion-

ment preferences in applications. A final section concludes.

2 One such example is the recent work by Eeckhoudt et al. (2020) who characterize risk apportionment over
a single attribute in Yaari’s (1987) dual theory of choice under risk.
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2 The model

2.1 Preliminaries

We analyze bivariate preferences. Our analysis can be extended to higher dimensions by fixing

all but two of the attribute levels. Let (x, y) denote a nonnegative vector of attributes with

x ∈ [0, x] and y ∈ [0, y]. The domain of attribute bundles is then given by D = [0, x]× [0, y].3

Previous literature has mainly focused on the case that x and y both represent desirable

attributes, for example, if we interpret x as consumption or final wealth and y as health or

quality of life. We refer to this case as DD where D is shorthand for “desirable.” We revisit

this case as a benchmark and provide some extensions. The decision-maker (DM) is better

off when x increases, when y increases, or when both increase.

We can also consider situations in which x is desirable and y is undesirable. For example,

x can be a monetary payoff and y the time it takes to receive it (waiting time). DMs prefer

higher values of x but lower values of y. This setting is studied in Ebert (2020) under the

assumption that only y is uncertain and x is deterministic. Households face uncertainty

regarding the value of their investments, for which they prefer higher over lower outcomes,

and at the same time uncertainty over potential losses arising from auto and home ownership

or legal liability. For the second attribute, they clearly prefer lower over higher outcomes. We

label this case as DU where U abbreviates “undesirable.” The ordering assumption that the

first attribute is desirable and the second one undesirable is without loss.

Finally we consider the case that both x and y are undesirable and label it as UU. For the

sake of example, imagine a policymaker in times of a public health crisis who considers the

stringency of lockdown measures. These measures affect the economy, potentially resulting

in unemployment and loss of livelihood, but they curb the spread of infectious diseases, thus

mitigating the number of hospitalizations and fatalities. If x denotes unemployment and y

the number of fatalities, then both are undesirable because lower outcomes are preferred over

higher ones for each of the two attributes.

2.2 Risk apportionment

Eeckhoudt and Schlesinger (2006) develop the notion of risk apportionment and Eeckhoudt

et al. (2009) apply it to stochastic dominance. Consider a DM who faces two independent

stochastic changes that are unfavorable but unavoidable. If the DM would rather be exposed

to the two changes in separate states, she exhibits a preference for combining good with bad.

More formally, she prefers the 50-50 lottery that allocates one of the changes to one state and

the other change to the other state over the 50-50 lottery that allocates both changes to the

same state. The preferred lottery combines a relatively good outcome with a relatively bad

outcome in each state whereas the dispreferred lottery has both good outcomes in the same

3 A bounded domain avoids issues of sign permanence, see Scott and Horvath (1980) and Menegatti (2001).
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state and both bad outcomes in the other state. We refer to this preference as combining

good with bad or a preference for harms disaggregation, in short d for “disaggregate.”

Some DMs may have the reverse preference and rather face the two unfavorable changes

in the same state than in different states. They prefer the 50-50 lottery that allocates both

changes to the same state over the 50-50 lottery that allocates one of the changes to one state

and the other change to the other state. Consequently, these DMs prefer to combine the two

relatively good outcomes in one state and the two relatively bad outcomes in the other state

instead of combining relatively good with relatively bad outcomes in the same state. We refer

to this preference as combining good with good and bad with bad or a preference for harms

aggregation, and abbreviate it with a for “aggregate.”4

In the univariate context, DMs who always prefer to disaggregate harms are called mixed

risk-averse whereas DMs who always prefer to aggregate harms are called mixed risk-loving.

Mixed risk aversion was first introduced by Caballé and Pomansky (1996) and Brockett and

Golden (1987) whereas mixed risk lovers have not received much attention until recently, see

Crainich et al. (2013) and Ebert (2013). In a laboratory experiment, Deck and Schlesinger

(2014) provide evidence that the behavior of subjects classified as risk-averse is indeed con-

sistent with mixed risk aversion while the behavior of subjects classified as risk-loving is

consistent with mixed risk loving. Haering et al. (2020) confirm this dichotomy in different

countries and with high stakes, and show that it is strengthened when lotteries are displayed

in compound form instead of reduced form.5

In the bivariate context, DMs have an apportionment preference pertaining to each at-

tribute individually and also an apportionment preference across attributes. Imagine a DM

who always prefers to disaggregate harms. We label this preference as dd-d, where the first

letter refers to the preference on the first attribute, the second letter to the preference on

the second attribute, and the third letter to the preference across attributes. The example

of wealth and health illustrates that a focus on dd-d is too narrow. A common combination

of assumptions is risk aversion over wealth, risk aversion over health, and correlation loving

over wealth and health. In our notation, this corresponds to dd-a because a DM with such

a preference prefers to disaggregate harms pertaining to either wealth or either health but

combines good with good and bad with bad when it comes to a sure reduction in wealth and

a sure reduction in health. Following this reasoning, there is a total of eight possible combi-

nations, dd-d, dd-a, da-d, da-a, ad-d, ad-a, aa-d and aa-a. We take these combinations as the

primitive in our paper. We hope that our research will stimulate future empirical studies to

investigate the relative prevalence of these preferences in the data.

4 Of course, a DM’s preference may not follow either of the two patterns, or one of the patterns in some cases
and the other one in other cases. In this paper, we focus on preferences that are consistent.

5 Bleichrodt and van Bruggen (2021) find a reflection effect for higher-order risk preferences similar to the
reflection effect identified by Kahneman and Tversky (1979). Behavior in their experiment is, in general,
not consistent with a preference for combining good with bad or good with good and bad with bad.
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2.3 Relation to utility of univariate apportionment preferences

Before we consider multivariate risks, we recollect the relation to utility of attribute-specific

risk apportionment preferences. To interpret the signs of successive derivatives of the utility

function in terms of higher-order risk attitudes, we recall Ekern’s (1980) definition of risk

increases. Let K ∈ N be a whole number and let W1 and W2 be two random variables with

values in [0, w]. Denote by F
(1)
1 and F

(1)
2 their respective cumulative distribution functions.

For k ∈ N, define the functions F
(k)
1 on [0, w] recursively by setting F

(k+1)
1 (w) =

∫ w
0 F

(k)
1 (t) dt

for w ∈ [0, w], and likewise for W2. We state the following definition.

Definition 1 (Ekern,1980). W2 has more Kth-degree risk than W1 if:

(i) F
(k)
1 (w) = F

(k)
2 (w) for all k = 1, . . . ,K,

(ii) F
(K)
1 (w) ≤ F

(K)
2 (w) for all w ∈ [0, w].

Condition (i) ensures thatW1 andW2 have the same first (K−1) moments. Condition (ii)

implies that theKth moment is larger forW2 than forW1 when sign adjusted by (−1)K . Well-

known special cases include first-order stochastic dominance for K = 1, a mean-preserving

increase in risk for K = 2 (see Rothschild and Stiglitz, 1970), a mean-variance-preserving

increase in downside risk for K = 3 (see Menezes et al., 1980), and a mean-variance-skewness-

preserving increase in outer risk for K = 4 (see Menezes and Wang, 2005).

Under expected utility a unambiguous preference overKth-degree risk increases pins down

the sign of the Kth derivative of the utility function. We formalize this in the next result.

Lemma 1. Let q : [0, w] → R be a real-valued function that is K times continuously differen-

tiable. The following two conditions are equivalent.

(i) For all pairs (W1,W2) such that W2 has more Kth-degree risk than W1, we have

Eq(W1) ≥ Eq(W2).

(ii) For all w ∈ [0, w], we have (−1)K+1q(K)(w) ≥ 0.

Ekern (1980) showed that (ii) implies (i). Following the argument in Denuit et al. (1999),

Jouini et al. (2013) also prove the reverse implication. Ekern (1980) calls DMs who dislike

any increase in Kth-degree risk Kth-degree risk-averse. Analogously, we call DMs who like

any increase in Kth-degree risk Kth-degree risk-loving. When preferences have an expected-

utility representation with a smooth utility function, we can connect the DM’s apportionment

preference on the individual attributes to the notion of Kth-degree risk attitudes.

Let u(x, y) represent the DM’s preferences and consider the DD case, u(1,0) ≥ 0 and

u(0,1) ≥ 0. As shown in Eeckhoudt and Schlesinger’s (2006) main theorem, if the DM prefers

to combine good with bad on x, then (−1)M+1u(M,0) ≥ 0 for all M ≥ 1. She is then Mth-

degree risk-averse on the first attribute at all orders M . This holds for dd-d, dd-a, da-d and

da-a DMs. If the DM prefers to combine good with good and bad with bad on x instead, then
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u(M,0) ≥ 0 for allM ≥ 1, see Deck and Schlesinger (2014). She is thenMth-degree risk-averse

on the first attribute for all M that are odd, and Mth-degree risk-loving on the first attribute

for all M that are even. This holds for ad-d, ad-a, aa-d and aa-a DMs. The same applies,

mutatis mutandis, to the DM’s apportionment preference over y.

Let us now move to the DU case, u(1,0) ≥ 0 and u(0,1) ≤ 0. The signs of the unidirectional

derivatives of u regarding the first attribute are unaffected when going from DD to DU.

For the second attribute, we follow in Eeckhoudt and Schlesinger’s (2006) and Deck and

Schlesinger’s (2014) footsteps. If the DM prefers to combine good with bad on y, we now find

u(0,N) ≤ 0 for all N ≥ 1. She is then Nth-degree risk-loving on the second attribute when

N is odd and Nth-degree risk-averse on the second attribute when N is even. This holds

for dd-d, dd-a, ad-d and ad-a DMs. If the DM prefers to combine good with good and bad

with bad on y instead, we have (−1)N+1u(0,N) ≤ 0 for all N ≥ 1. She is always Nth-degree

risk-loving on the second attribute. This holds for da-d, da-a, aa-d and aa-a DMs.

The signs of u(0,N) coincide with Ebert’s (2020) results who studied the first four orders in

the context of discounting. We show in Appendix A.1 how to obtain all signs via Eeckhoudt

et al.’s (2009) approach of apportioning risk increases. As in the DD case, DMs agree on odd-

order risk preferences but disagree on even-order risk preferences. However, odd-order risk

increases on y switch from being favorable to unfavorable and from unfavorable to favorable

when going from the DD case to the DU case. The reason is that lower values of y are pre-

ferred over higher ones when y is undesirable. When combined with the DM’s apportionment

preference, this affects her higher-order risk attitude at all odd orders.6

3 Lottery preference and relation to utility:

Correlation aversion, cross-prudence and cross-temperance

3.1 Two desirable attributes (case DD)

We begin with the DD case so that both x and y are desirable. For each attribute, an

unfavorable change is then a reduction or a sure loss. We have seen in Section 2.3 that a DM

is averse to mean-preserving spreads on a particular attribute if her apportionment preference

on that attribute is combining good with bad. If it is combining good with good and bad

with bad instead, the DM likes mean-preserving spreads on that attribute. Zero-mean risks

can thus be unfavorable or favorable changes compared to the status quo depending on the

DM’s apportionment preference.

We now characterize the DM’s apportionment preference across attributes with the help

of simple lotteries as in Eeckhoudt et al. (2007). For positive constants k > 0 and ℓ > 0,

6 Menegatti and Peter (2021) observe a similar reversal when comparing the comparative statics of a risky
benefit with that of a risky cost. Courbage and Rey (2016) notice a reversal as well when looking at the
effect of changes in risky health losses on decision thresholds for preventive treatment.
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a DM is called correlation averse if she prefers the lottery [(x − k, y); (x, y − ℓ)] over the

lottery [(x − k, y − ℓ); (x, y)] for all (x, y) ∈ D such that x − k ≥ 0 and y − ℓ ≥ 0, and

correlation loving if she always has the reverse preference. When both attributes are desirable,

correlation aversion is consistent with a preference to disaggregate harms across attributes

whereas correlation loving represents a desire to aggregate harms across attributes. In terms

of our risk apportionment taxonomy, dd-d, da-d, ad-d and aa-d DMs are correlation averters

whereas dd-a, da-a, ad-a and aa-a DMs are correlation lovers. The apportionment preference

on the individual attributes plays no role for this classification.

Let ε̃ be an arbitrary zero-mean risk on x. Eeckhoudt et al. (2007) call a DM cross-prudent

in y if she prefers the lottery [(x + ε̃, y); (x, y − ℓ)] over the lottery [(x + ε̃, y − ℓ); (x, y)] for

all (x, y) ∈ D such that Supp[x + ε̃] ⊆ [0, x] and y − ℓ ≥ 0, and cross-imprudent in y if she

always has the reverse lottery preference.7 There are now two ways to interpret this lottery

preference. If the DM prefers to disaggregate harms on x, then the zero-mean risk ε̃ is a harm

relative to zero and cross-prudence in y represents a preference to disaggregate harms across

attributes. This is Eeckhoudt et al.’s (2007) interpretation. If, however, the DM prefers to

aggregate harms on x, then ε̃ is preferred over zero and cross-prudence in y is a preference

to aggregate harms across attributes. So dd-d, da-d, ad-a and aa-a DMs are cross-prudent

in y whereas dd-a, da-a, ad-d and aa-d DMs are cross-imprudent in y. What matters is

whether the apportionment preference on x is aligned with the apportionment preference

across attributes or not. The apportionment preference on the second attribute y is irrelevant

because a sure loss of ℓ on the second attribute is always unfavorable in the DD case.

Now let δ̃ be an arbitrary zero-mean risk on y. Eeckhoudt et al. (2007) call a DM cross-

prudent in x if she prefers the lottery [(x, y+ δ̃); (x−k, y)] over the lottery [(x−k, y+ δ̃); (x, y)]

for all (x, y) ∈ D such that Supp[y + δ̃] ⊆ [0, y] and x − k ≥ 0, and cross-imprudent in x

if she always has the reverse lottery preference. There are again two ways to interpret this

lottery preference. The first one by Eeckhoudt et al. (2007) relies on the zero-mean risk δ̃

being a harm relative to zero. The second one is for the case that δ̃ is preferred over zero.

For cross-prudence in x, what matters is the apportionment preference on y relative to the

apportionment preference across attributes. If they are aligned, we obtain cross-prudence in x,

which is the case for dd-d, da-a, ad-d and aa-a DMs. If they are not aligned, we obtain cross-

imprudence in x, which is the case for dd-a, da-d, ad-a and aa-d DMs. For cross-prudence in

x, the apportionment preference on x does not play a role because a sure loss of k on the first

attribute is always bad in the DD case.

Let ε̃ be an arbitrary zero-mean risk on x, let δ̃ be an arbitrary zero-mean risk on y, and

let ε̃ and δ̃ be independent. Eeckhoudt et al. (2007) call a DM cross-temperate if she prefers

the lottery [(x+ ε̃, y); (x, y + δ̃)] over the lottery [(x+ ε̃, y + δ̃); (x, y)] for all (x, y) ∈ D such

7 We adopt Eeckhoudt et al.’s (2007) notation and let Supp[x + ε̃] denote the support of the probability
distribution function associated with the random variable x + ε̃. We assume that the realizations of ε̃ are
between −x and x− x almost surely to remain in the domain of the first attribute.
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that Supp[x + ε̃] ⊆ [0, x] and Supp[y + δ̃] ⊆ [0, y], and cross-intemperate if she always has

the reverse lottery preference. The interpretation of this lottery preference now depends on

all three apportionment preferences. If the DM prefers to disaggregate harms on x and y

individually, the lottery preference is consistent with a desire to disaggregate harms across

attributes. This is Eeckhoudt et al.’s (2007) interpretation. However, this lottery preference is

also consistent with disaggregating harms across attributes when the DM prefers to aggregate

harms on x and y individually. The difference is that the harm is now not to receive the

zero-mean risk. Let the individual apportionment preferences on x and y not be aligned,

and assume the DM prefers to disaggregate harms on x but prefers to aggregate harms on

y. Then, ε̃ is a harm relative to zero but δ̃ is preferred over zero. The lottery preference for

cross-temperance can now be understood as a preference to aggregate harms across attributes.

In summary, when the individual apportionment preferences are aligned, cross-temperance

represents a desire to disaggregate harms across attributes. When, however, the individual

apportionment preferences are not aligned, it represents a desire to aggregate harms across

attributes. So dd-d, da-a, ad-a and aa-d DMs are cross-temperate whereas dd-a, da-d, ad-d

and aa-a DMs are cross-intemperate.

When the DM’s preferences can be represented with a bivariate utility function u(x, y),

Eeckhoudt et al. (2007) show that correlation aversion, cross-prudence in x and y, and cross-

temperance can be characterized via the sign of specific cross-derivatives of the utility function.

We use u(M,N)(x, y) to denote ∂M+Nu(x, y)/∂Mx∂Ny forM ≥ 0 and N ≥ 0 withM +N ≥ 1.

In the DD case, we have u(1,0) ≥ 0 and u(0,1) ≥ 0 because both x and y are desirable.

Based on the above discussion and with Eeckhoudt et al.’s (2007) Proposition 1, we can then

sign specific cross-derivatives of the utility function for the various underlying apportionment

preferences. We summarize our findings in the following proposition.

Proposition 1. Consider the case of two desirable attributes (case DD).

(i) DMs with apportionment preferences dd-d, da-d, ad-d or aa-d have u(1,1) ≤ 0 (correlation

aversion), DMs with apportionment preferences dd-a, da-a, ad-a or aa-a have u(1,1) ≥ 0

(correlation loving).

(ii) DMs with apportionment preferences dd-d, da-d, ad-a or aa-a have u(2,1) ≥ 0 (cross-

prudence in y), DMs with apportionment preferences dd-a, da-a, ad-d or aa-d have

u(2,1) ≤ 0 (cross-imprudence in y).

(iii) DMs with apportionment preferences dd-d, da-a, ad-d or aa-a have u(1,2) ≥ 0 (cross-

prudence in x), DMs with apportionment preferences dd-a, da-d, ad-a or aa-d have

u(1,2) ≤ 0 (cross-imprudence in x).

(iv) DMs with apportionment preferences dd-d, da-a, ad-a or aa-d have u(2,2) ≤ 0 (cross-

temperance), DMs with apportionment preferences dd-a, da-d, ad-d or aa-a have u(2,2) ≥

0 (cross-intemperance).
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Table 1 in the appendix collects these signs and organizes them according to the DM’s

apportionment preference. Only DMs who prefer to disaggregate harms, on the individual

attributes as well as across attributes, are correlation averse, cross-prudent in x and y, and

cross-temperate. As soon as one of the apportionment preferences changes, at least some

of the signs flip. For example, we obtain correlation loving, cross-imprudence in x and y,

and cross-intemperance when the DM prefers to combine good with bad on the individual

attributes but prefers to aggregate harms across attributes.

3.2 One desirable and one undesirable attribute (case DU)

We now turn to the DU case so that x is desirable and y is undesirable. A sure reduction is

still an unfavorable change when applied to the first attribute but it is now a favorable change

when applied to the second attribute. In fact, a sure increase is now an unfavorable change of

the second attribute. As explained in Section 2.3, if the DM prefers to combine good with bad

on the second attribute, she is averse to mean-preserving spreads on the second attribute and

zero-mean risks are unfavorable compared to the status-quo. Conversely, if the DM prefers

to combine good with good and bad with bad on y, she likes mean-preserving spreads on y

and zero-mean risks are favorable changes relative to the satus-quo.

Taking into account that y is undesirable, we now define a DM to be correlation averse

if she prefers the lottery [(x − k, y); (x, y + ℓ)] over the lottery [(x − k, y + ℓ); (x, y)] for all

(x, y) ∈ D such that x−k ≥ 0 and y+ℓ ≤ y, and correlation loving if she always has the reverse

preference. As in the DD case, correlation aversion represents a preference to disaggregate

harms across attributes wheres correlation loving represents a desire to aggregate harms across

attributes. What has changed is the definition of a harm on the second attribute because y is

now undesirable. In terms of our classification dd-d, da-d, ad-d and aa-d DMs are correlation

averters whereas dd-a, da-a, ad-a and aa-a DMs are correlation lovers.

Let ε̃ be a zero-mean risk on the first attribute and let ℓ be a sure increase of the second

attribute. We now call a DM cross-prudent in y if she prefers the lottery [(x+ ε̃, y); (x, y+ ℓ)]

over the lottery [(x + ε̃, y + ℓ); (x, y)] for all (x, y) ∈ D such that Supp[x + ε̃] ⊆ [0, x] and

y + ℓ ≤ y, and cross-imprudent in y if she always has the reverse lottery preference. We can

interpret this lottery preference in two ways. If the DM prefers to disaggregate harms on x,

the zero-mean risk is bad relative to zero and cross-prudence in y represents a preference to

disaggregate harms across attributes. If the DM prefers to combine good with good and bad

with bad on x instead, the zero-mean risk is preferred over zero and cross-prudence in y is

consistent with a preference to aggregate harms across attributes. So dd-d, da-d, ad-a and

aa-a DMs are cross-prudent in y whereas dd-a, da-a, ad-d and aa-d DMs are cross-imprudent

in y. As in the DD case, the alignment between the apportionment preference on x and the

apportionment preference across attributes matters. The apportionment preference on y does

not matter for cross-prudence in y because a sure increase of ℓ is always unfavorable.
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Now let δ̃ be a zero-mean risk on y. We call a DM cross-prudent in x if she prefers the

lottery [(x− k, y); (x, y+ δ̃)] over the lottery [(x− k, y+ δ̃); (x, y)] for all (x, y) ∈ D such that

Supp[y+δ̃] ⊆ [0, y] and x−k ≥ 0, and cross-imprudent in x if she always has the reverse lottery

preference. It is now the apportionment preference on y and the apportionment preference

across attributes that matter. If they are aligned, we find cross-prudence in x, if they are

not, we obtain cross-imprudence in x. So dd-d, da-a, ad-d and aa-a DMs are cross-prudent

in x whereas dd-a, da-d, ad-a and aa-d DMs are cross-imprudent in x. The apportionment

preference on x does not play a role because a sure loss of k is always unfavorable.

Let ε̃ and δ̃ be two independent zero-mean risks on x and y. We call a DM cross-temperate

if she prefers the lottery [(x+ ε̃, y); (x, y+ δ̃)] over [(x+ ε̃, y+ δ̃); (x, y)] for all (x, y) ∈ D such

that Supp[x+ ε̃] ⊆ [0, x] and Supp[y+ δ̃] ⊆ [0, y], and cross-intemperate if she always has the

reverse lottery preference. If the DM prefers to combine good with bad on x and y individually,

this lottery preference is consistent with combining good with bad across attributes. The same

holds if the DM prefers to combine good with good and bad with bad on x and y individually.

The stated lottery preference is to rather face the undesirable changes in separate states (i.e.,

not getting the zero-mean risks) instead of taking the chance to face them together. Let the

apportionment preferences on x and y not be aligned, and say the DM prefers to disaggregate

harms on x but prefers to aggregate harms on y. In this case, ε̃ is a harm relative to zero but

δ̃ is preferred over zero. The lottery preference for cross-temperance can now be interpreted

as a preference to aggregate harms across attributes. In summary, dd-d, da-a, ad-a and aa-d

DMs are cross-temperate whereas dd-a, da-d, ad-d and aa-a DMs are cross-intemperate.

Our classification in the DU case is thus identical to the one in the DD case. We achieved

this by adjusting the defining lottery preferences. When we represent preferences with a

bivariate utility function, this affects some of the signs of the cross-derivatives as follows.

Proposition 2. Consider the case in which the first attribute is desirable and the second

attribute is undesirable (case DU).

(i) DMs with apportionment preferences dd-d, da-d, ad-d or aa-d have u(1,1) ≥ 0 (correlation

aversion), DMs with apportionment preferences dd-a, da-a, ad-a or aa-a have u(1,1) ≤ 0

(correlation loving).

(ii) DMs with apportionment preferences dd-d, da-d, ad-a or aa-a have u(2,1) ≤ 0 (cross-

prudence in y), DMs with apportionment preferences dd-a, da-a, ad-d or aa-d have

u(2,1) ≥ 0 (cross-imprudence in y).

(iii) DMs with apportionment preferences dd-d, da-a, ad-d or aa-a have u(1,2) ≥ 0 (cross-

prudence in x), DMs with apportionment preferences dd-a, da-d, ad-a or aa-d have

u(1,2) ≤ 0 (cross-imprudence in x).

(iv) DMs with apportionment preferences dd-d, da-a, ad-a or aa-d have u(2,2) ≤ 0 (cross-

temperance), DMs with apportionment preferences dd-a, da-d, ad-d or aa-a have u(2,2) ≥

0 (cross-intemperance).
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Table 2 in the appendix organizes these signs by the DM’s apportionment preferences. In

Proposition 2(i), the signs for correlation aversion and correlation loving are flipped compared

to Proposition 1(i). A lottery preference of [(x − k, y); (x, y + ℓ)] over [(x − k, y + ℓ); (x, y)]

for all (x, y) ∈ D such that x − k ≥ 0 and y + ℓ ≤ y can be equivalently stated as a lottery

preference of [(x − k, y′ − ℓ); (x, y′)] over [(x − k, y′); (x, y′ − ℓ)] for all (x, y′) ∈ D such that

x − k ≥ 0 and y′ − ℓ ≥ 0. This is a simple change of variables by setting y′ = y + ℓ.

But then we know from Eeckhoudt et al. (2007) that this lottery preference is equivalent to

u(1,1) ≥ 0. Likewise, the signs for cross-prudence in y and cross-imprudence in y are flipped in

Proposition 2(ii) compared to Proposition 1(ii). The same change of variables shows that a

lottery preference of [(x+ ε̃, y); (x, y+ ℓ)] over [(x+ ε̃, y+ ℓ); (x, y)] for all (x, y) ∈ D such that

Supp[x+ ε̃] ⊆ [0, x] and y+ℓ ≤ y, is equivalent to a lottery preference of [(x+ ε̃, y′−ℓ); (x, y′)]

over [(x + ε̃, y′); (x, y′ − ℓ)] for all (x, y′) ∈ D such that Supp[x + ε̃] ⊆ [0, x] and y − ℓ ≥ 0.

Per Eeckhoudt et al. (2007), this is equivalent to u(2,1) ≤ 0. The signs for cross-prudence in

x and cross-temperance are the same in Proposition 2 as in Proposition 1.

Our discussion leading up to Proposition 2 shows that, conceptually, nothing has changed

when we adjust the characterizing lottery preferences accordingly. When we move to the

utility representation, the signs of some cross-derivatives are flipped whereas others remain

unchanged. Take correlation aversion as an example. In the DD case, both attributes are

desirable. It is “riskier” to face a situation in which either both attributes are high or both

are low at the same time instead of a situation in which low values of one attribute are

compensated by high values of the other one. Intuitively, correlation averters should avoid

positive correlation and seek negative correlation to hedge their bets. Now consider the DU

case with one attribute being desirable and the other one undesirable. It is now better to face

a situation in which either both attributes are high or both are low than a situation with one

low and the other one high. When both are high, high values of the undesirable attribute are

compensated by high values of the desirable attribute. When both are low, low values of the

desirable attribute are compensated by low values of the undesirable attribute. Correlation

averters now achieve hedging by avoiding negative correlation and seeking positive correlation.

3.3 Two undesirable attributes (case UU)

In a next step, we look at the UU case in which both x and y are undesirable. Then, a sure

reduction of either attribute is a favorable change for the DM whereas a sure increase in either

attribute is an unfavorable change. As shown in Section 2.3, a preference to combine good

with bad on x implies that the introduction of a zero-mean risk on x is an unfavorable change

compared to the status-quo while it is a favorable change if the DM prefers to combine good

with good and bad with bad on x. The same holds for attribute y.

When both attributes are undesirable, we define a DM to be correlation averse if she

prefers the lottery [(x+k, y); (x, y+ ℓ)] over the lottery [(x+k, y+ ℓ), (x, y)] for all (x, y) ∈ D

such that x + k ≤ x and y + ℓ ≤ y, and correlation loving if she always has the reverse
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preference. Yet again correlation aversion represents a preference to disaggregate harms across

attributes and correlation loving is consistent with aggregating harms across attributes. A

harm is now a sure increase for either attribute. Only the apportionment preference across

attributes matters so that dd-d, da-d, ad-d and aa-d DMs are correlation averters whereas

dd-a, da-a, ad-a and aa-a DMs are correlation lovers. The apportionment preference on the

individual attributes is irrelevant at this stage.

Let ε̃ be a zero-mean risk on the first attribute and let ℓ be a sure increase of the second

attribute. We call a DM cross-prudent in y if she prefers the lottery [(x + ε̃, y); (x, y + ℓ)]

over the lottery [(x + ε̃, y + ℓ); (x, y)] for all (x, y) ∈ D such that Supp[x + ε̃] ⊆ [0, x] and

y + ℓ ≤ y, and cross-imprudent in y if she always has the reverse lottery preference. This

lottery preference has two interpretations. If the DM prefers to disaggregate harms on x, the

zero-mean risk is a harm relative to zero and cross-prudence in y is consistent with harms

disaggregation across attributes. If the DM prefers to aggregate harms on x instead, the zero-

mean risk on x is preferred over zero and cross-prudence in y represents a desire to aggregate

harms across attributes. So dd-d, da-d, ad-a and aa-a DMs are cross-prudent in y whereas dd-

a, da-a, ad-d and aa-d DMs are cross-imprudent in y. As before, the alignment between the

apportionment preference on x and the apportionment preference across attributes matters

while the apportionment preference on y plays no role.

Let δ̃ be a zero-mean risk on the second attribute and k be a sure increase of the first

attribute. We call a DM cross-prudent in x if she prefers the lottery [(x+k, y); (x, y+ δ̃)] over

the lottery [(x+k, y+ δ̃); (x, y)] for all (x, y) ∈ D such that x+k ≤ x and Supp[y+ δ̃] ⊆ [0, y],

and cross-imprudent in x if she always has the reverse lottery preference. What matters is

the alignment between the apportionment preference on y and the apportionment preference

across attributes. We have cross-prudence in x when both are aligned and cross-imprudence

in x when they are not. As a result, dd-d, da-a, ad-d and aa-a DMs are cross-prudent in

x whereas dd-a, da-d, ad-a and aa-d DMs are cross-imprudent in x. The apportionment

preference on x does not matter.

Consider two independent zero-mean risks, ε̃ and δ̃, one on the first attribute x and

the other one on the second attribute y. We call a DM cross-temperate if she prefers the

lottery [(x+ ε̃, y); (x, y + δ̃)] over the lottery [(x+ ε̃, y + δ̃); (x, y)] for all (x, y) ∈ D such that

Supp[x + ε̃] ⊆ [0, x] and Supp[y + δ̃] ⊆ [0, y], and cross-intemperate if she always has the

reverse lottery preference. If the DM prefers to disaggregate harms on x and y individually,

or if she prefers to aggregate harms on x and y individually, the lottery preference represents

combining good with bad across attributes. If the DM’s apportionment preferences on the

individual attributes are not aligned, the lottery preference for cross-temperance is consistent

with combining good with good and bad with bad across attributes. So dd-d, da-a, ad-a and

aa-d DMs are cross-temperate whereas dd-a, da-d, ad-d and aa-a DMs are cross-intemperate.

The classification in the UU case is identical to the classification in the other two cases.

We achieve this by adjusting the defining lottery preferences, specifically in those cases where
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a harm is now a sure increase of the attribute, not a sure reduction. In terms of the utility

representation, the signs of some cross-derivatives are affected by these adjustments as follows.

Proposition 3. Consider the case of two undesirable attributes (case UU).

(i) DMs with apportionment preferences dd-d, da-d, ad-d or aa-d have u(1,1) ≤ 0 (correlation

aversion), DMs with apportionment preferences dd-a, da-a, ad-a or aa-a have u(1,1) ≥ 0

(correlation loving).

(ii) DMs with apportionment preferences dd-d, da-d, ad-a or aa-a have u(2,1) ≤ 0 (cross-

prudence in y), DMs with apportionment preferences dd-a, da-a, ad-d or aa-d have

u(2,1) ≥ 0 (cross-imprudence in y).

(iii) DMs with apportionment preferences dd-d, da-a, ad-d or aa-a have u(1,2) ≤ 0 (cross-

prudence in x), DMs with apportionment preferences dd-a, da-d, ad-a or aa-d have

u(1,2) ≥ 0 (cross-imprudence in x).

(iv) DMs with apportionment preferences dd-d, da-a, ad-a or aa-d have u(2,2) ≤ 0 (cross-

temperance), DMs with apportionment preferences dd-a, da-d, ad-d or aa-a have u(2,2) ≥

0 (cross-intemperance).

Table 3 in the appendix organizes these signs according to the DM’s apportionment prefer-

ence. In Proposition 3(i), the signs for correlation aversion and correlation loving are flipped

compared to Proposition 2(i) and are thus identical to Proposition 1(i). A preference of

[(x + k, y); (x, y + ℓ)] over [(x + k, y + ℓ), (x, y)] for all (x, y) ∈ D such that x + k ≤ x and

y + ℓ ≤ y is equivalent to a preference of [(x′, y′ − ℓ); (x′ − k, y′)] over [(x′, y′), (x′ − k, y′ − ℓ)]

for all (x′, y′) ∈ D such that x′−k ≥ 0 and y′− ℓ ≥ 0. Mathematically, this is a simple change

of variables by letting x′ = x + k and y′ = y + ℓ. It renders the exact same characterizing

lottery preference as in the DD case, which is why we find u(1,1) ≤ 0 for correlation aversion.

The lotteries for cross-prudence in y are identical in the DU and UU cases, the lotteries for

cross-prudence in x are different because the first attribute is desirable in the DU case but

undesirable in the UU case. The cross-temperance lotteries are identical in all three cases.

Conceptually, we obtain the same classification in terms of the DM’s underlying apportion-

ment preference but only because we adjusted some of the characterizing lotteries. Consider

correlation aversion again. In the DD and the UU case, correlation aversion obtains for

u(1,1) ≤ 0. The underlying economic intuition is different. In both cases correlation averters

hedge their bets by avoiding positive correlation and seeking negative correlation. In the DD

case, positive correlation is unappealing because low values of one attribute tend to occur with

low values of the other attribute. Negative correlation insulates the DM against this because

low values of one attribute tend to be compensated by high values of the other one. For UU,

positive correlation is unappealing because high values of one attribute tend to occur with

high values of the other attribute. Negative correlation now helps because high values of one

attribute tend to be compensated by low values of the other one. Even though a negative
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sign on u(1,1) characterizes correlation aversion in both cases, the roles of “high” and “’low”

for the attribute values are reversed due to their different effects on the DM’s welfare. While

this is obvious for correlation attitude, the extension to higher orders is not immediate. The

simple example of correlation attitude also shows that signing cross-derivatives and deriving

economic intuition are two separate steps.

4 The general theory

4.1 Univariate risk apportionment

Eeckhoudt and Schlesinger (2006) define risk apportionment of any order via a specific lottery

preference. Take the first attribute x and assume it is desirable. Let {ε̃i} be an indexed set of

zero-mean nondegenerate random variables, i = 1, 2, 3, . . . , that are all mutually independent,

and let k be a positive constant. Define A1 = [−k], A2 = [ε̃1], and B1 = B2 = [0]. Let Int(z)

denote the greatest-integer function. For M ≥ 3, define the univariate lotteries

AM = [BM−2 + 0; AM−2 + ε̃Int(M/2)],

BM = [AM−2 + 0; BM−2 + ε̃Int(M/2)].

A DM then prefers to combine good with bad on the first attribute if she prefers the lottery

[(x+BM , y)] over the lottery [(x+AM , y)] for all (x, y) ∈ D and such that Supp[x+AM ] ⊆ [0, x]

and Supp[x+BM ] ⊆ [0, x]. She prefers combining good with good and bad with bad on the first

attribute if she always has the reverse lottery preference. This is Eeckhoudt and Schlesinger’s

(2006) Definition 5 of risk apportionment of order M applied to the first attribute.8

Now assume that the first attribute is undesirable. When comparing A1 and B1, we now

see that A1 is preferred over B1 because the DM appreciates a sure reduction of an undesirable

attribute. To rectify this and maintain the iterative definition of higher-order risk preferences,

all we need to do is to replace A1 = [−k] with A1 = [+k]. For an undesirable attribute, a

sure increase is now a harm relative to B1 = [0].

We can then proceed in a similar way regarding the second attribute y. Assume first

that y is desirable. Let {δ̃j} be an indexed set of zero-mean nondegenerate random variables,

j = 1, 2, 3, . . . , that are all mutually independent and also mutually independent of the {ε̃i}.

Let ℓ be a positive constant. Define C1 = [−ℓ], C2 = [δ̃1], and D1 = D2 = [0]. For N ≥ 3,

define the univariate lotteries

CN = [DN−2 + 0; CN−2 + δ̃Int(N/2)],

DM = [CN−2 + 0; DN−2 + δ̃Int(N/2)].

8 For ease of exposition, we take some liberty with the notation. The distribution of the lottery [(x+BM , y)]
is the one that is induced by the distribution of the lottery BM . In other words, the lottery [(x + BM , y)]
has the outcome (x+ b, y) with probability P(BM = b) for all b ∈ Supp[BM ].
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A DM prefers to combine good with bad on the second attribute if she prefers the lottery

[(x, y+DN )] over the lottery [(x, y+CN )] for all (x, y) ∈ D such that Supp[y+CN ] ⊆ [0, y] and

Supp[y+DN ] ⊆ [0, y]. She prefers combining good with good and bad with bad on the second

attribute if she always has the reverse lottery preference. This is Eeckhoudt and Schlesinger’s

(2006) Definition 5 of risk apportionment of order N applied to the second attribute. If y

is undesirable instead, we need to replace C1 = [−ℓ] with C1 = [+ℓ] to keep the iterative

definition of higher-order risk preferences intact.

The main advantage of Eeckhoudt and Schlesinger’s (2006) risk apportionment approach

is its simplicity and elegance. Specifically, higher-order risk preferences can be defined purely

based on a simple lottery preference and no particular representation of preferences is used.

This is what some refer to as “model-free” even though, of course, preferences themselves are

an economic model of choice under risk and reduction of compound lotteries is implicit in the

risk apportionment literature.

4.2 Risk apportionment across attributes

Building on these univariate risk apportionment lotteries, we can now define risk apportion-

ment across attributes. For M,N ≥ 1, we say that preferences satisfy risk apportionment of

order (M,N) if the DM prefers the lottery [(x + BM , y + CN ); (x + AM , y + DN )] over the

lottery [(x+BM , y+DN ); (x+AM , y+CN )] for all (x, y) ∈ D such that Supp[x+AM ] ⊆ [0, x],

Supp[x + BM ] ⊆ [0, x], Supp[y + CN ] ⊆ [0, y] and Supp[y + DN ] ⊆ [0, y]. If the DM always

has the reverse lottery preference, we say that preferences exhibit anti-risk apportionment

of order (M,N). Eeckhoudt and Schlesinger (2006) introduce a terminology for preferences

consistent with risk apportionment and Deck and Schlesinger (2014) use the qualifier “anti”

for the reverse preference.9

We can easily connect this to the analysis of correlation aversion, cross-prudence in x and

y, and cross-temperance in Section 2. Take M = N = 1 and consider A1, B1, C1 and D1. We

have B1 = [0] and D1 = [0]; furthermore, we have A1 = [−k] and C1 = [−ℓ] in the DD case,

A1 = [−k] and C1 = [+ℓ] in the DU case, and A1 = [+k] and C1 = [+ℓ] in the UU case.

Therefore, risk apportionment of order (1, 1) is characterized as follows:





[(x, y − ℓ); (x− k, y)] ≿ [(x, y); (x− k, y − ℓ)], in case of DD,

[(x, y + ℓ); (x− k, y)] ≿ [(x, y); (x− k, y + ℓ)], in case of DU,

[(x, y + ℓ); (x+ k, y)] ≿ [(x, y); (x+ k, y + ℓ)], in case of UU.

These are the lottery preferences we used in Section 2 to characterize correlation aversion in

each case, with the reverse preference characterizing correlation loving. Now take M = 2 and

9 The distribution of the lottery [(x + BM , y + CN )] is the one that is induced by the joint distribution of
(BM , CM ). Due to independence, the lottery has outcome (x+b, y+c) with probability P(BM = b)P(CN = c)
for all b ∈ Supp[BM ] and all c ∈ Supp[CN ].
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N = 1 and consider A2, B2, C1 and D1. We have A2 = [ε̃1], B2 = [0] and D1 = [0]; when y is

desirable, we have C1 = [−ℓ], when y is undesirable, we have C1 = [+ℓ]. Risk apportionment

of order (2, 1) is then characterized via the following lotteries:

{
[(x, y − ℓ); (x+ ε̃1, y)] ≿ [(x, y); (x+ ε̃1, y − ℓ)], in case of DD,

[(x, y + ℓ); (x+ ε̃1, y)] ≿ [(x, y); (x+ ε̃1, y + ℓ)], in case of DU or UU.

These are the lottery preferences we used in Section 2 to characterize cross-prudence in y,

with the reverse preference characterizing cross-imprudence in y. For M = 1 and N = 2,

consider A1, B1, C2 and D2. We have B1 = [0], C2 = [δ̃1] and D2 = [0]; when x is desirable,

we have A1 = [−k], when x is undesirable, we have A1 = [+k]. Risk apportionment of order

(1, 2) is then characterized via the following lotteries:

{
[(x, y + δ̃1); (x− k, y)] ≿ [(x, y); (x− k, y + δ̃1)], in case of DD or DU,

[(x, y + δ̃1); (x− k, y)] ≿ [(x, y); (x− k, y + δ̃1)], in case of DU.

These are the lottery preferences we used in Section 2 to characterize cross-prudence in x,

with the reverse preference characterizing cross-imprudence in x. Finally, for M = 2 and

N = 2, consider A2, B2, C2 and D2, that is, A2 = [ε̃1], B2 = [0], C2 = [δ̃1] and D2 = [0]. The

distinction between DD, DU and UU is now irrelevant. We can then always characterize

risk apportionment of order (2, 2) via the following lottery preference:

{
[(x, y + δ̃1); (x+ ε̃1, y)] ≿ [(x, y); (x+ ε̃1, y + ε̃1)], in case of DD, DU or UU.

This is the lottery preference we used in Section 2 for cross-temperance, with the reverse

preference characterizing cross-intemperance.

Correlation aversion corresponds to risk apportionment of order (1, 1), correlation loving

to anti-risk apportionment of order (1, 1), cross-prudence in y to risk apportionment of order

(2, 1), cross-imprudence in y to anti-risk apportionment of order (2, 1), cross-prudence in x to

risk apportionment of order (1, 2), cross-imprudence in x to anti-risk apportionment of order

(1, 2), cross-temperance to risk apportionment of order (2, 2), and cross-intemperance to anti-

risk apportionment of order (2, 2). When an attribute flips from desirable to undesirable, all

we need to do is swap out the seed lottery and the iterative process and associated taxonomy

stays fully intact. Specifically, if attribute x is undesirable, we need to replace A1 = [−k] with

A1 = [+k]. If attribute y is undesirable, we need to replace C1 = [−ℓ] with C1 = [+ℓ].

The lottery preference of [(x+BM , y+CN ); (x+AM , y+DN )] over [(x+BM , y+DN ); (x+

AM , y+CN )] extends the notions of correlation aversion, cross-prudence in x and y, and cross-

temperance to higher orders. Eeckhoudt et al. (2007) mention in their Footnote 12 that such

an extension is possible but do not carry it out. What’s more, their analysis focuses exclusively

on the DD case. We show that, by defining the seed lotteries A1 and C1 accordingly, the

entire risk apportionment machinery can also be applied to the DU and the UU case. As
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in the univariate analysis, no particular representation of preferences is necessary to define

risk apportionment and anti-risk apportionment of order (M,N). Characterizations of these

lottery preferences can be explored outside the confines of the expected-utility model. If the

expected utility theorem holds, the stated lottery preference can be characterized by signing

the corresponding cross-derivative of the utility function. We will provide this characterization

in the next section based on risk apportionment via stochastic dominance.

5 Relation to utility - The general case

5.1 Two desirable attributes (case DD)

An alternative to the risk apportionment lotteries in Eeckhoudt and Schlesinger (2006) is the

apportionment of risks via stochastic dominance in Eeckhoudt et al. (2009). Consider the

four mutually independent random variables X1, X2, Y1 and Y2. Let X2 have more Mth-

degree risk than X1, and Y2 have more Nth-degree risk than Y1. In the spirit of Eeckhoudt

et al. (2009), we can then assess the DM’s preference over the lotteries [(X1, Y2); (X2, Y1)] and

[(X1, Y1); (X2, Y2)]. The first lottery combines lowMth-degree risk on x with high Nth-degree

risk on y, and high Mth-degree risk on x with low Nth-degree risk on y. The second lottery

combines low Mth-degree risk on x with low Nth-degree risk on y, and high Mth-degree risk

on x with high Nth-degree risk on y. When the DM always prefers the first lottery over the

second one, we obtain (−1)M+N+1u(M,N) ≥ 0 from Lemma 1. If she always has the reverse

lottery preference instead, we obtain (−1)M+N+1u(M,N) ≤ 0 from Lemma 1. We show this

formally in Appendix A.2.

While the lottery preference of [(X1, Y2); (X2, Y1)] over [(X1, Y1); (X2, Y2)] pins down the

sign of (−1)M+N+1u(M,N) unambiguously, the interpretation of this sign depends on the DM’s

apportionment preference on the individual attributes, her apportionment preference across

attributes, as well as on the parity of the orders (i.e., whether M and N are odd or even).

The following result organizes the signs by the DM’s risk apportionment preference.

Theorem 1 (Case DD). Consider the case of two desirable attributes and let M,N ≥ 1.

(i) DMs with apportionment preference dd-d have (−1)M+N+1u(M,N) ≥ 0, DMs with ap-

portionment preference dd-a have (−1)M+N+1u(M,N) ≤ 0.

(ii) DMs with apportionment preference da-d have (−1)Mu(M,N) ≥ 0, DMs with apportion-

ment preference da-a have (−1)Mu(M,N) ≤ 0.

(iii) DMs with apportionment preference ad-d have (−1)Nu(M,N) ≥ 0, DMs with apportion-

ment preference ad-a have (−1)Nu(M,N) ≤ 0.

(iv) DMs with apportionment preference aa-d have u(M,N) ≤ 0, DMs with apportionment

preference aa-a have u(M,N) ≥ 0.
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Appendix A.3 provides the proof. Proposition 1 is a special case of Theorem 1. When the

DM prefers to disaggregate harms on x and y (dd-a and dd-a), her apportionment preference

across attributes depends on whether the total order M +N is odd or even. For M +N odd,

a positive sign on u(M,N) indicates a preference to disaggregate harms across attributes and

a negative sign a preference to aggregate harms across attributes. When M +N is even, the

interpretation of the signs flips. The total order M +N is decisive because DMs who prefer

to combine good with bad on x and y individually will always view [(X1, Y2); (X2, Y1)] as the

lottery that combines good with bad across attributes and [(X1, Y2); (X2, Y1)] as the lottery

that combines good with good and bad with bad across attributes.

When the DM prefers to disaggregate harms on x but aggregate harms on y (da-d and

da-a), her apportionment preference across attributes depends on the parity of M , the order

of the risk change on the first attribute. Similarly, when she prefers to aggregate harms on

x but disaggregate harms on y (ad-d and ad-a), the parity of N is decisive, the order of the

risk change on the second attribute. For these DMs, lottery [(X1, Y2); (X2, Y1)] is not always

the one that combines good with bad across attributes relative to lottery [(X1, Y2); (X2, Y1)].

As we move up the orders, high Nth-degree risk on y is a good thing for da-d and da-a DMs

when N is even, and high Mth-degree risk on x is a good thing for ad-d and ad-a DMs when

M is even. This alternating pattern causes (−1)N+1 to cancel from the condition for da-d

and da-a DMs, and (−1)M+1 to cancel from the condition for ad-d and ad-a DMs.

Finally, when the DM prefers to aggregate harms on x and on y (aa-d and aa-a), the parity

of M , N and M + N are all irrelevant because a negative sign on u(M,N) always indicates

a preference to disaggregate harms across attributes and a positive sign on u(M,N) always

represents a preference to aggregate them. The alternating pattern for each attribute implies

that now both orders vanish and the sign of u(M,N) alone determines the DM’s apportionment

preference across attributes.

5.2 One desirable and one undesirable attribute (case DU)

In a next step, we provide the signs of the cross-derivatives of the utility function when one

attribute is desirable and the other one is undesirable. Section 2.3 provides the link between

risk apportionment preferences on individual attributes and the signs of the unidirectional

derivatives of the utility function. When looking at cross-derivatives, the DU case shows a

different pattern than the DD case. Here is our result.

Theorem 2 (Case DU). Consider the case in which the first attribute is desirable and the

second attribute is undesirable, and let M,N ≥ 1.

(i) DMs with apportionment preference dd-d have (−1)Mu(M,N) ≤ 0, DMs with apportion-

ment preference dd-a have (−1)Mu(M,N) ≥ 0.

(ii) DMs with apportionment preference da-d have (−1)M+N+1u(M,N) ≤ 0, DMs with ap-

portionment preference da-a have (−1)M+N+1u(M,N) ≥ 0.
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(iii) DMs with apportionment preference ad-d have u(M,N) ≥ 0, DMs with apportionment

preference ad-a have u(M,N) ≤ 0.

(iv) DMs with apportionment preference aa-d have (−1)Nu(M,N) ≤ 0, DMs with apportion-

ment preference aa-a have (−1)Nu(M,N) ≥ 0.

Appendix A.4 gives the proof. As in theDD case, we obtain different criteria on the utility

function depending on the DM’s apportionment preference on the individual attributes, her

apportionment preference across attributes, and the parity of the risk changes. How these

criteria are assigned to the DM’s apportionment preference has changed. When the DM prefers

to disaggregate harms on x and on y (dd-d and dd-a), her apportionment preference across

attributes now depends on the parity ofM and not the parity ofM+N as was the case under

DD. When M is odd, a positive sign on u(M,N) now indicates a preference to disaggregate

harms across attributes and a negative sign a preference to aggregate harms across attributes.

When M is even, the interpretation of the signs flips. Comparing Theorems 1(i) and 2(i),

the two criteria are different when N is odd and identical when N is even.

When the DM prefers to disaggregate harms on x and aggregate harms on y (da-d and

da-a), her apportionment preference across attributes depends on the parity of the total order

M +N in the DU case. For DD, the parity of M was decisive. Yet again, the two criteria

differ for N odd and coincide for N even. When the DM prefers to aggregate harms on x and

disaggregate harms on y (ad-d and ad-a), a positive sign on u(M,N) indicates a preference to

disaggregate harms across attributes in the DU case. For DD, the parity of N was critical.

The two criteria differ for N odd and coincide for N even. Finally, when the DM prefers

to aggregate harms on x and on y (aa-d and aa-a), her apportionment preference across

attributes depends on the parity of N in the DU case. For DD, a negative sign on u(M,N)

always indicated a preference to disaggregate harms across attributes. As before the two

criteria differ for N odd and coincide for N even.

This observation extends the comparison of Propositions 1 and 2. For correlation aversion

and cross-prudence in y, the signs flip when going from DD to DU because we have N = 1, an

odd number. For cross-prudence in x and cross-temperance, the signs stay the same because

we have N = 2, an even number. To understand why the parity of N determines whether the

sign on the cross-derivative needs to be flipped or not, we examine Nth-degree risk attitudes

in the DD and DU case. Consider DMs who prefer to disaggregate harms on y. For DD,

they are Nth-degree risk-averse for all N ≥ 1. For DU, they are Nth-degree risk-loving

for N odd and Nth-degree risk-averse for N even. They agree on the fact that even-order

risk increases on y are unfavorable but disagree on odd-order risk increases. DMs who prefer

to aggregate harms on y are Nth-degree risk-averse for N odd and Nth-degree risk-loving

for N even in the DD case. For DU, they are always Nth-degree risk-loving. Yet again,

they agree that even-order risk increases on y are favorable but disagree on odd-order risk

increases. Regardless of whether the apportionment preference on y is combining good with
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bad or combining good with good and bad with bad, the signs of the cross-derivative remain

unchanged when N is even but need to be flipped when N is odd.

5.3 Two undesirable attributes (case UU)

Finally, we consider the UU case with two undesirable attributes, u(1,0) ≤ 0 and u(0,1) ≤ 0.

Section 2.3 provides the signs of the unidirectional derivatives of the utility function depending

on the DM’s risk apportionment preferences regarding the individual attributes x and y. We

will now look at the signs of the cross-derivative of the utility function. The next result

summarizes how the DM’s risk apportionment preference determines these signs.

Theorem 3 (Case UU). Consider the case of two undesirable attributes and let M,N ≥ 1.

(i) DMs with apportionment preference dd-d have u(M,N) ≤ 0, DMs with apportionment

preference dd-a have u(M,N) ≥ 0.

(ii) DMs with apportionment preference da-d have (−1)Nu(M,N) ≥ 0, DMs with apportion-

ment preference da-a have (−1)Nu(M,N) ≤ 0.

(iii) DMs with apportionment preference ad-d have (−1)Mu(M,N) ≥ 0, DMs with apportion-

ment preference ad-a have (−1)Mu(M,N) ≤ 0.

(iv) DMs with apportionment preference aa-d have (−1)M+N+1u(M,N) ≥ 0, DMs with ap-

portionment preference aa-a have (−1)M+N+1u(M,N) ≤ 0.

Appendix A.5 provides the proof. The comparison between Theorems 2 and 3 follows

along the same lines as the comparison between Theorems 1 and 2. When going from DU

to UU, the two criteria are different for M odd and identical for M even. The reason is that

DMs agree on whether an Mth-degree risk increase on x is favorable or unfavorable for M

even but disagree when M is odd.

To compare Theorems 1 and 3, we start with a DM who prefers to disaggregate harms on

x and y (dd-d and dd-a). For DD, her apportionment preference across attributes depends

on the parity of M + N while for UU, it is determined by the sign of u(M,N) directly and

the parity of neither M , N nor M + N matter. The two criteria differ for M + N odd and

coincide for M + N even. When the DM prefers to disaggregate harms on x and aggregate

harms on y (da-d and da-a), her apportionment preference across attributes depends on the

parity of N in the UU case and on the parity of M in the DD case. When the DM prefers

to aggregate harms on x and disaggregate harms on y (ad-d and ad-a), her apportionment

preference across attributes depends on the parity of M in the UU case and on the parity

of N in the DD case. In both cases the two criteria differ for M + N odd and coincide for

M +N even. Finally, when the DM prefers to aggregate harms on x and y (aa-d and aa-a),

her apportionment preference across attributes depends on the parity of M + N in the UU

case and is determined by the sign of u(M,N) in the DD case. Yet again, the two criteria differ

for M +N odd and coincide for M +N even.

21

Electronic copy available at: https://ssrn.com/abstract=4129251



The many faces of multivariate risk-taking

This observation extends the comparison of Propositions 1 and 3. For cross-prudence

in x and cross-prudence in y, the signs flip when going from DD to UU because we have

M +N = 1 + 2 = 2 + 1 = 3, an odd number. For correlation aversion and cross-temperance,

the signs stay the same because we haveM+N = 1+1 = 2 andM+N = 2+2 = 4, two even

numbers. To explain why it is now the parity of the total order that determines whether the

criterion needs to be adjusted, we examine the DM’s Mth- and Nth-degree risk attitudes in

the DD and UU cases. Consider a DM who prefer to disaggregate harms on x and y (dd-d

and dd-a). For DD, she is Mth-degree risk-averse for all M ≥ 1 and Nth-degree risk-averse

for all N ≥ 1. For UU, she is Mth-degree risk-loving for M odd, Mth-degree risk-averse for

M even, Nth-degree risk-loving for N odd, and Nth-degree risk-averse for N even. When

both M and N are even, the two DMs agree that an Mth-degree risk increase on x and an

Nth-degree risk increase on y are both unfavorable. When both M and N are odd, the two

risk increases are unfavorable in the DD case but favorable in the UU case. Given that two

reversals occur when going from DD to UU, they cancel each other out and no adjustment

to the sign of the cross-derivative is necessary.10 When M is even and N odd or when M

is odd and N even, only one of the risk increases becomes favorable when moving from DD

to UU, and the sign of the cross-derivative flips. The reasoning is analogous for the other

apportionment preferences on individual attributes.

5.4 A simple mathematical reconciliation

We will now show the consistency between the criteria stated in Theorems 1, 2 and 3 directly.

Take the case of DU and let preferences be represented by utility function u(x, y) for (x, y) ∈

D = [0, x]×[0, y]. We have u(1,0) ≥ 0 and u(0,1) ≤ 0. Define utility function v(x, y) = u(x, y−y)

for (x, y) ∈ D. Obviously, we have v(1,0) = u(1,0) ≥ 0 and v(0,1) = −u(0,1) ≥ 0 so that utility

function v represents the DD case. More generally, we find that v(M,N) = (−1)Nu(M,N).

As a consequence, when going from Theorem 1 to Theorem 2, we need to multiply each of

the criteria by (−1)N . For example, dd-d is characterized by (−1)M+N+1u(M,N) ≥ 0 in theDD

case. Multiplying by (−1)N yields (−1)M+1u(M,N) ≥ 0 or, equivalently, (−1)Mu(M,N) ≤ 0,

the criterion for dd-d in the DU case. Similarly, da-d is characterized by (−1)Mu(M,N) ≥

0 in the DD case. Multiplying by (−1)N yields (−1)M+Nu(M,N) ≥ 0 or, equivalently,

(−1)M+N+1u(M,N) ≤ 0, the criterion for da-d in the DU case.

We also show the consistency between Theorems 1 and 3. When utility function u rep-

resents preferences in case of UU, we define v(x, y) = u(x − x, y − y) and obtain a utility

function for the DD case. We have v(M,N) = (−1)M+Nu(M,N). Therefore, when going from

Theorem 1 to Theorem 3, each of the criteria needs to be multiplied by (−1)M+N . Finally, if

u represents preferences in case of UU, then v(x, y) = u(x− x, y) is a utility function for the

10 More specifically, a lottery that allocates the risk increases to different states combines good with bad for
either DM, the only difference being that the labels “good” and “bad” need to be switched for both risk
increases when going from DD to UU.
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DU case. We have v(M,N) = (−1)Mu(M,N) so that each of the criteria needs to be multiplied

by (−1)M when going from Theorem 2 to Theorem 3.

Mathematically, it is easy to see the equivalence between the criteria in Theorems 1 to

3 even though nothing is learned about the underlying economic intuition. Some problems

are more naturally formulated in terms of undesirable attributes, and our results show how

to make the entire arsenal of the risk apportionment literature available in those situations.

While the mathematical equivalence of Theorems 1 to 3 is easy to see if a utility represen-

tation exists, we emphasize that the concepts of correlation aversion, cross-prudence, cross-

temperance and their higher-order extensions can be defined with the help of simple lotteries,

and thus do not require the existence of a utility representation. As we showed in Section 4,

an appropriate adjustment to the seed lotteries ensures that the definitions stay intact when

going from the DD case to the DU and UU cases. The definition based on simple lotter-

ies allows researchers to utilize multivariate risk preferences outside the narrow confines of

the expected-utility model and regardless of whether desirable or undesirable attributes are

studied. This flexibility broadens the scope of our results significantly.

6 Gollier’s (2021) generalized risk apportionment theory

Recently, Gollier (2021) provides a generalization of Eeckhoudt et al.’s (2009) risk apportion-

ment approach. He assumes that the Mth-degree riskiness of X is uncertain and that the

Nth-degree riskiness of Y is uncertain. In his model, X is parameterized by random variable

Θ, and Y is parameterized by random variable Ψ. Then, for realizations θ2 > θ1 of Θ, X(θ2)

has more Mth-degree risk than X(θ1), and for realizations ψ2 > ψ1 of Ψ, Y (ψ2) has more

Nth-degree risk than Y (ψ1). The uncertainty over the riskiness of X and Y is represented by

a joint distribution function for (Θ,Ψ).

In the original approach by Eeckhoudt and Schlesinger (2006) and Eeckhoudt et al. (2009),

Θ and Ψ are both limited to a support of {1, 2} so that the level of riskiness can either

be low or high. Furthermore, state probabilities are equal because only 50-50 lotteries are

considered. Thirdly, only perfect negative or perfect positive correlation between Θ and Ψ are

considered. Gollier’s (2021) contribution is to show that all these appendages can be removed.

He accomplishes this by utilizing the following notion of dependence.

Definition 2 (Tchen et al.,1980; Epstein and Tanny,1980). For two pairs of random variables

(Θ1,Ψ1) and (Θ2,Ψ2) with joint cumulative distribution functions H1 and H2, we say that

(Θ2,Ψ2) is more concordant than (Θ1,Ψ1) if H1 and H2 have the same marginal distributions

and H2(θ, ψ) ≥ H1(θ, ψ) for all (θ, ψ) in the relevant domain.

Tchen et al. (1980) use the term concordance for this change in the joint distribution.

Epstein and Tanny (1980) show in their Theorem 1 that, for discrete random variables, an

increase in concordance is obtained as a sequence of correlation-increasing transformations.

An increase in concordance implies higher correlation, a higher Kendall’s τ , and a higher
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Spearman’s ρ, see Tchen et al. (1980). We use the notion of concordance and apply it to the

uncertainty over the riskiness of X and Y .

Definition 3 (Gollier,2021). Let Θ be an index of the Mth-degree riskiness of X and Ψ be

an index of the Nth-degree riskiness of Y . Then, (X(Θ2), Y (Ψ2)) is an (M,N)-degree risk

increase over (X(Θ1), Y (Ψ1)) if (Θ2,Ψ2) is more concordant than (Θ1,Ψ1).

Gollier (2021) goes on to show that a change in the joint distribution of (X,Y ) is an

(M,N)-degree risk increase if and only if it reduces the expectation of u(X,Y ) for any utility

function u whose (M,N) cross-derivative has the same sign as (−1)M+N+1.11 We can use this

result and our Theorems 1 to 3 to assess a DM’s attitude towards increases in (M,N)-degree

risk. We call a DM (M,N)-degree risk-averse if she dislikes any increase in (M,N)-degree

risk and (M,N)-degree risk-loving if she appreciates any increase in (M,N)-degree risk. We

formulate our results as corollaries and dissociate the three cases for readability.

Corollary 1 (Case DD). Consider the case of two desirable attributes and let M,N ≥ 1.

(i) DMs with dd-d (dd-a) are (M,N)-degree risk-averse (risk-loving).

(ii) DMs with da-d (da-a) are (M,N)-degree risk-averse (risk-loving) for N odd and (M,N)-

degree risk-loving (risk-averse) for N even.

(iii) DMs with ad-d (ad-a) are (M,N)-degree risk-averse (risk-loving) forM odd and (M,N)-

degree risk-loving (risk-averse) for M even.

(iv) DMs with aa-d (aa-a) are (M,N)-degree risk-loving (risk-averse) for M + N odd and

(M,N)-degree risk-averse (risk-loving) for M +N even.

The only risk apportionment preference that implies (M,N)-degree risk aversion through-

out is dd-d with dd-a yielding universal (M,N)-degree risk loving. In all other cases, the

DM’s (M,N)-degree risk attitude flips as we look at different orders, and either the parity of

N , M or M +N is decisive. Let us look at the DU case next.

Corollary 2 (Case DU). Consider the case in which the first attribute is desirable and the

second attribute is undesirable, and let M,N ≥ 1.

(i) DMs with dd-d (dd-a) are (M,N)-degree risk-loving (risk-averse) for N odd and (M,N)-

degree risk-averse (risk-loving) for N even.

(ii) DMs with da-d (da-a) are (M,N)-degree risk-loving (risk-averse).

11 In his Theorem 1, Gollier (2021) uses the sign criterion on the cross-derivative of the utility function to
define an (M,N)-degree risk increase and then shows the equivalence to an increase in the concordance
between the index of the Mth-degree riskiness of X and the index of the Nth-degree riskiness of Y . Given
the equivalence, we go the reverse route, which makes it easier to connect our results to his.
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(iii) DMs with ad-d (ad-a) are (M,N)-degree risk-averse (risk-loving) for M + N odd and

(M,N)-degree risk-loving (risk-averse) for M +N even.

(iv) DMs with aa-d (aa-a) are (M,N)-degree risk-loving (risk-averse) forM odd and (M,N)-

degree risk-averse (risk-loving) for M even.

Now the only risk apportionment preferences that implies (M,N)-degree risk aversion

throughout is da-a. When the DM prefers to combine good with good and bad with bad on

y, she is Nth-degree risk-loving on the second attribute for all N . If she prefers to aggregate

harms across attributes, higher concordance between the Mth-degree riskiness of x and the

Nth-degree riskiness of y makes her worse off. She would rather face low Mth-degree risk on

x together with high Nth-degree risk on y (two good things) or high Mth-degree risk on x

together with low Nth-degree risk on y (two bad things) instead of low Mth-degree risk on

x (a good thing) together with low Nth-degree risk on y (a bad thing) or high Mth-degree

risk on x (a bad thing) toghether with high Nth-degree risk on y (a good thing). While both

dd-d DMs in the DD case and da-a DMs in the DU case are consistently (M,N)-degree

risk-averse, the reasons for their preference are quite different.

Corollary 3 (Case UU). Consider the case of two undesirable attributes and let M,N ≥ 1.

(i) DMs with dd-d (dd-a) are (M,N)-degree risk-loving (risk-averse) for M + N odd and

(M,N)-degree risk-averse (risk-loving) for M +N even.

(ii) DMs with da-d (da-a) are (M,N)-degree risk-averse (risk-loving) forM odd and (M,N)-

degree risk-loving (risk-averse) for M even.

(iii) DMs with ad-d (ad-a) are (M,N)-degree risk-averse (risk-loving) for N odd and (M,N)-

degree risk-loving (risk-averse) for N even.

(iv) DMs with aa-d (aa-a) are (M,N)-degree risk-averse (risk-loving).

It is now DMs with aa-d who are always (M,N)-degree risk-averse. Yet again the intuition

for this preference differs from the previous discussion. When the DM prefers to combine good

with good and bad wit bad on x and y individually, she is Mth-degree risk-loving on x and

Nth-degree risk-loving on y for all M and N . If she prefers to disaggregate harms across

attributes, higher concordance between the Mth-degree riskiness of x and the Nth-degree

riskiness of y makes her worse off. The DM would rather face high Mth-degree risk on x (a

good thing) together with low Nth-degree risk on y (a bad thing) or low Mth-degree risk

on x (a bad thing) together with high Nth-degree risk on y (a good thing) instead of high

Mth-degree risk on x and high Nth-degree risk on y (two good things) or low Mth-degree

risk on x and low Nth-degree risk on y (two bad things). At the surface, the resulting lottery

preference is the same as for dd-d DMs in the DD case and da-a DMs in the DU case. How

we obtain this lottery preference is entirely different.
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Table 4 in the appendix provides a compact overview of the (M,N)-degree risk attitudes

implied by different apportionment preferences in the three cases. We fully agree with Gollier’s

(2021) conclusion that a DM’s (M,N)-degree risk attitude can be characterized without

knowledge of any of her lower-degree risk attitudes by signing u(M,N). Our point here is

that, if one imposes a consistent apportionment preference on the individual attributes and

across attributes, this implies specific (M,N)-degree risk attitudes. Corollaries 1 to 3 detail

what these (M,N)-degree risk attitudes are. Our results also highlight that the underlying

reasons for a particular (M,N)-degree risk attitude can vary considerably within each case

and across cases. By making the apportionment preference explicit, we can uncover these

reasons and provide economic intuition.12

7 Some special multivariate models

7.1 Multiplicative separability

The utility function is multiplicatively separable if we can write it as u(x, y) = v(x)z(y) for

univariate utility functions v and z. Bleichrodt and Quiggin (1999) use this utility function

to assess the consistency of quality-adjusted life years with life-cycle preferences when both

consumption and health are arguments of the utility function. One might think that the

separability assumption is constraining and restricts the types of risk apportionment pref-

erences one can model. Our next result shows that this is not the case. To the contrary,

multiplicatively separable utility is quite flexible and can be used to model any of the eight

combinations of apportionment preferences discussed in this paper.

Proposition 4. Let the utility function be multiplicatively separable, u(x, y) = v(x)z(y), for

univariate utility functions v of the first attribute and z of the second attribute. In each of

the three cases, DD, DU or UU, we find the following:

� If sgn(v) = sgn(z), the utility function can accommodate dd-a, da-a, ad-a and aa-a. The

DM always prefers to aggregate harms across attributes.

� If sgn(v) ̸= sgn(z), the utility function can accommodate dd-d, da-d, ad-d and aa-d. The

DM always prefers to disaggregate harms across attributes.

Appendix A.6 provides the proof. For multiplicatively separable utility, the DM’s ap-

portionment preference across attributes is simply determined by the signs of the univariate

utility functions v and z. If the two signs are the same, either both positive or both negative,

the DM necessarily prefers to combine good with good and bad with bad across attributes. If

12 Of course, DMs with a given (M,N)-degree risk attitude may not belong to any of the eight groups of
apportionment preferences considered in this paper. In the univariate context, some prudent DMs are risk-
averse, some prudent DMs are risk-loving, and some prudent DMs may be neither risk-averse nor risk-loving.
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the two signs are different with one being positive and the other one negative, the DM prefers

to combine good with bad across attributes.

We can use Proposition 4 to construct any of the eight combinations of apportionment

preferences studied in this paper. Consider the univariate utility function v(x) for x ∈ [0, x].

If attribute x is desirable and the DM prefers to combine good with bad on x, then v is mixed

risk-averse, (−1)M+1v(M) ≥ 0 for all M ≥ 1. The class of utility functions with harmonic

absolute risk aversion (HARA) provides specific examples. Let

v(x) =







ζ ·
(

η + x
γ

)1−γ
, for γ ̸= 1,

ζ · log(η + x), for γ = 1,

with η > 0, γ > 0, and ζ > 0 for γ ≤ 1 and ζ < 0 for γ > 1. Then, v is mixed risk-averse

and increases from v = v(0) to v = v(x). If v is negative, then v̂(x) = v(x) − v + 1 is mixed

risk-averse and positive. If v is positive, then v̂(x) = v(x) − v − 1 is mixed risk-averse and

negative. In general, a utility function displays mixed risk aversion if and only if it is the

mixture of negative exponential functions (see Caballé and Pomansky, 1996).

Let v(x) be a mixed risk-averse utility function for a desirable attribute x ∈ [0, x]. Then,

v̌(x) = −v(x− x) is a mixed risk-loving utility function for the desirable attribute x. Indeed,

v̌(M)(x) = (−1)M+1vM (x − x) ≥ 0 for all M ≥ 1. Similarly, define v̆(x) = v(x − x). This

utility function satisfies v̆(M)(x) = (−1)Mv(M)(x− x) ≤ 0 for all M ≥ 1, and thus represents

a preference for combining good with bad for an undesirable attribute x. Along the lines of

Ebert (2020), we label this as anti-mixed risk-loving. If we set v̇(x) = −v(x), utility function

v̇(x) satisfies (−1)M+1v̇(M)(x) = (−1)Mv(M)(x) ≤ 0 for all M ≥ 1, and thus represents a

preference for combining good with good and bad with bad for an undesirable attribute x.

Following Ebert (2020), we call this anti-mixed risk-averse.13

We can thus use the large class of mixed risk-averse utility functions to construct mixed

risk-loving, anti-mixed risk-averse, and anti-mixed risk-loving utility functions. Shifting a

utility function up or down ensures the desired sign. This puts us in a position to construct

any of the eight combinations of apportionment preferences with the help of Proposition 4.

To economize on space, we carry this out in Appendix B. Applied decision theorists can use

this as a toolbox to construct utility functions with desired properties.

7.2 Equivalent monetary utility

We only consider a simple case of equivalent monetary utility, which is u(x, y) = v(x + Ay)

for A ̸= 0. In this case, parameter A measures the marginal rate of substitution of attribute

13 For an undesirable attribute, combining good with bad is characterized by a consistent negative sign while
combining good with good and bad with bad is characterized by alternating signs, starting with a negative
one. The pattern is thus reversed compared to the case of a desirable attribute, for which good with bad
has the alternating sign pattern, and good with good and bad with bad a consistent positive sign.
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y for attribute x. We assume for simplicity that A is constant and does not depend on the

levels of x and y. Our next result shows that this restricts the DM’s apportionment preference

considerably.

Proposition 5. Consider an equivalent monetary utility function with a constant marginal

rate of substitution between attributes. In each of the three cases, DD, DU or UU, the utility

function can accommodate either dd-d or aa-a.

Appendix A.7 states the proof. In other words, equivalent monetary utility with a con-

stant marginal rate of substitution imposes a strong consistency assumption on the DM’s risk

apportionment preference. She either prefers to combine good with bad on the individual

attributes as well as across attributes, or she prefers to combine good with good and bad with

bad on the individual attributes as well as across attributes. The other six combinations of

apportionment preferences are excluded per assumption with this specification. This illus-

trates clearly that some simplifying assumptions that are sometimes made for convenience or

tractability, can have far-reaching economic implications.14

8 Conclusion

Risk apportionment has revolutionized our understanding of higher-order risk preferences and

accelerated their use in economics and finance. In this paper, we advanced the theory of risk

apportionment for multivariate risks along several dimensions. We defined the concepts of

correlation aversion, cross-prudence and cross-temperance in terms of simple lotteries when

one or both attributes are undesirable. We characterized risk apportionment preferences

across attributes by signing cross-derivatives of the utility function. We related our results to

popular multivariate models and explained how to construct any of the eight combinations

of apportionment preferences studied in this paper. It is our hope that these tools will help

improve our understanding of risk-taking behavior in the many situations in which people

face several attributes, some of which may be undesirable.

14 Equivalent monetary utility is more flexible if we allow the marginal rate of substitution to depend on the
levels of the attributes. We leave it for future research to determine how flexible this specification can be.
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A Proofs

A.1 Signs of u(0,N) for all N ≥ 1 in the DU case

Lemma 2. Consider the DU case so that attribute y is undesirable and let preferences be

represented by a smooth utility function u(x, y).

(i) If the DM prefers to combine good with bad on y, then u(0,N) ≤ 0 for all N ≥ 1.

(ii) If the DM prefers to combine good with good and bad with bad on y, then (−1)N+1u(0,N) ≤

0 for all N ≥ 1.

Proof. We show the two statements by mathematical induction. For N = 1, u(0,1) ≤ 0 holds

by assumption because y is undesirable.

Now assume the statements are true for a given N ≥ 1. Let Y1, Y2, Y
′
1 and Y ′

2 be four

mutually independent random variables with Y2 having more first-degree risk than Y1, and

Y ′
2 having more Nth-degree risk than Y ′

1 . The DM prefers Y2 over Y1 because of u(0,1) ≤ 0. If

N is odd and she prefers to combine good with bad, she is Nth-degree risk-loving and thus

prefers Y ′
2 over Y ′

1 . Combining good with bad implies that she also prefers the 50-50 lottery

[(x, Y2 + Y ′
1); (x, Y

′
2 + Y1)] over the 50-50 lottery [(x, Y2 + Y ′

2); (x, Y1 + Y ′
1)] because the first

lottery combines high first-degree risk (a good thing) with low Nth-degree risk (a bad thing)

and high Nth-degree risk (a good thing) with low first-degree risk (a bad thing) whereas the

second lottery combines high first-degree risk with high Nth-degree risk (two good things)

and low first-degree risk with low Nth-degree risk (two bad things). If the DM always has

said lottery preference, we know from Eeckhoudt et al. (2009) that (−1)N+2u(0,N+1) ≥ 0. For

N odd, this simplifies to u(0,N+1) ≤ 0 as claimed in statement (i).

If N is odd and the DM prefers to combine good with good and bad with bad, she is also

Nth-degree risk-loving but now prefers the 50-50 lottery [(x, Y2 + Y ′
2); (x, Y1 + Y ′

1)] over the

50-50 lottery [(x, Y2 + Y ′
1); (x, Y

′
2 + Y1)] because of combining good with good and bad with

bad. We know from Eeckhoudt et al. (2009) that this lottery preference is characterized by

(−1)N+2u(0,N+1) ≤ 0, as claimed in statement (ii).

If N is even and the DM prefers to combine good with bad, she is Nth-degree risk-averse

and thus prefers Y ′
1 over Y ′

2 . Combining good with bad now implies that she always prefers the

50-50 lottery [(x, Y2+Y
′
2); (x, Y1+Y

′
1)] over the 50-50 lottery [(x, Y2+Y

′
1); (x, Y

′
2+Y1)] because

the first lottery combines high first-degree risk (a good thing) with high Nth-degree risk (a

bad thing) and low first-degree risk (a bad thing) with low Nth-degree risk (a good thing)

whereas the second lottery combines high first-degree risk with low Nth-degree risk (two good

things) and high Nth-degree risk with low first-degree risk (two bad things). It follows from

Eeckhoudt et al. (2009) that (−1)N+2u(0,N+1) ≤ 0, which simplifies to u(0,N+1) ≤ 0 because

N is even. This verifies statement (i) .

If N is even and the DM prefers to combine good with good and bad with bad, she is Nth-

degree risk-loving and thus prefers Y ′
2 over Y ′

1 . Combining good with good and bad with bad
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leads to a lottery preference of [(x, Y2+Y
′
2); (x, Y1+Y

′
1)] over [(x, Y2+Y

′
1); (x, Y

′
2 +Y1)], which

is characterized by (−1)N+2u(0,N+1) ≤ 0, as claimed in statement (ii). So if statements (i)

and (ii) are true for a given N ≥ 1, they also hold for N + 1, which completes the proof.

A.2 Sign of u(M,N) based on Eeckhoudt et al.’s (2009) approach

Assume the DM prefers lottery [(X1, Y2); (X2, Y1)] over lottery [(X1, Y1); (X2, Y2)] for all sets

of four mutually independent random variables X1, X2, Y1 and Y2 such that X2 has more

Mth-degree risk than X1, and Y2 has more Nth-degree risk than Y1. In terms of expected

utility, the DM’s lottery preference reads

1
2Eu(X1, Y2) +

1
2Eu(X2, Y1) ≥

1
2Eu(X1, Y1) +

1
2Eu(X2, Y2),

which is equivalent to

Eu(X2, Y1)− Eu(X2, Y2) ≥ Eu(X1, Y1)− Eu(X1, Y2).

Define auxiliary function v(x) = Eu(x, Y1) − Eu(x, Y2); the last inequality can then be

rewritten as Ev(X2) ≥ Ev(X1). If this inequality holds for every Mth-degree risk increase

from X1 to X2, it follows from Lemma 1 that −v must be Mth-degree risk-averse, that is,

(−1)Mv(M)(x) ≥ 0. Using the definition of v, this is equivalent to

(−1)MEu(M,0)(x, Y1) ≥ (−1)MEu(M,0)(x, Y2).

Per Lemma 1, this inequality holds for every Nth-degree risk increase from Y1 to Y2 if and

only if (−1)Mu(M,0) is Nth-degree risk-averse in y, that is, if and only if

(−1)M+N+1u(M,N) ≥ 0.

A.3 Proof of Theorem 1

Let L1 = [(X1, Y2); (X2, Y1)] be the lottery where the Mth-degree risk increase on x and the

Nth-degree risk increase on y occur in different states, and L2 = [(X1, Y1); (X2, Y2)] be the

lottery where they occur in the same state. For dd-d and dd-a DMs, both risk increases are

unfavorable changes so that lottery L1 represents combining good with bad across attributes

whereas lottery L2 represents combining good with good and bad with bad across attributes.

A universal preference of L1 ≿ L2 is equivalent to (−1)M+N+1u(M,N) ≥ 0 whereas a universal

preference of L2 ≿ L1 is equivalent to (−1)M+N+1u(M,N) ≤ 0. This shows (i).

For da-d and da-a DMs, the Mth-degree risk increase on x is always an unfavorable

change. However, the Nth-degree risk increase on y is an unfavorable change when N is odd

and a favorable change when N is even. The lottery L1 then represents combining good with

bad when N is odd. It represents combining good with good and bad with bad when N is
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even. So a preference to disaggregate harms across attributes leads to L1 ≿ L2 for N odd and

to L2 ≿ L1 for N even. In terms of the utility function, this means (−1)M+N+1u(M,N) ≥ 0

for N odd and (−1)M+N+1u(M,N) ≤ 0 for N even. When N is odd, (−1)M+N+1 = (−1)M ,

and when N is even, (−1)M+N+1 = (−1)M+1. So the criterion on the utility function can

be consolidated to (−1)Mu(M,N) ≥ 0 for da-d DMs, and to (−1)Mu(M,N) ≤ 0 for da-a DMs.

This proves (ii). Result (iii) follows with the same argument replacing M by N .

For aa-d and aa-a DMs, the Mth-degree risk increase on x is an unfavorable change when

M is odd and a favorable change when M is even. Likewise, the Nth-degree risk increase on

y is an unfavorable change when N is odd and a favorable change when N is even. Lottery L1

thus represents combining good with bad when both M and N are odd or when both M and

N are even. WhenM is odd and N is even orM is even and N is odd, lottery L1 corresponds

to combining good with good and bad with bad. This implies (−1)M+N+1u(M,N) ≥ 0 when

both M and N are odd or both are even, which can be simplified to u(M,N) ≤ 0. For M

odd and N even or M even and N odd, we obtain (−1)M+N+1u(M,N) ≤ 0, which can also be

simplified to u(M,N) ≤ 0. So regardless of the parity of M and N , aa-d DMs have u(M,N) ≤ 0

whereas aa-a DMs have u(M,N) ≥ 0

A.4 Proof of Theorem 2

Let X1, X2, Y1 and Y2 be four mutually independent random variables with X2 having

more Mth-degree risk than X1 and Y2 having more Nth-degree risk than Y1. Let L1 =

[(X1, Y2); (X2, Y1)] be the lottery where the Mth-degree risk increase on x and the Nth-

degree risk increase on y occur in different states, and L2 = [(X1, Y1); (X2, Y2)] be the lottery

where they occur in the same state. For dd-d and dd-a DMs, the Mth-degree risk increase

on x is always an unfavorable change whereas the Nth-degree risk increase on y is a favorable

change when N is odd and an unfavorable change when N is even. So dd-d DMs prefer

L2 over L1 when N is odd, leading to (−1)M+N+1u(M,N) ≤ 0, while they prefer L1 over L2

when N is even, leading to (−1)M+N+1u(M,N) ≥ 0. Taking the parity of N into account, the

condition on the utility function can be condensed to (−1)Mu(M,N) ≤ 0 for dd-d DMs, and

to (−1)Mu(M,N) ≥ 0 for dd-a DMs.

For da-d and da-a DMs, theMth-degree risk increase on x is always an unfavorable change

and the Nth-degree risk increase on y is always a favorable change. Therefore, da-d DMs

have a preference of L2 over L1 because L2 combines lowMth-degree risk on x (a good thing)

with low Nth-degree risk on y (a bad thing) and high Mth-degree risk on x (a bad thing)

with high Nth-degree risk on y (a good thing) whereas L1 combines low Mth-degree risk on

x with high Nth-degree risk on y (two good things) and high Mth-degree risk on x with low

Nth-degree risk on y (two bad things). This leads to (−1)M+N+1u(M,N) ≤ 0 for da-d DMs

and to (−1)M+N+1u(M,N) ≥ 0 for da-a DMs.

For ad-d and ad-a DMs, the Mth-degree risk increase on x is an unfavorable change when

M is odd and a favorable change when M is even whereas the Nth-degree risk increase on
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y is a favorable change when N is odd and an unfavorable change when N is even. For M

odd, ad-d DMs then prefer L2 over L1 when N is odd, and L1 over L2 when N is even. This

leads to (−1)Mu(M,N) ≤ 0, which can be further simplified to u(M,N) ≥ 0 because M is odd.

When M is even instead, ad-d DMs prefers L1 over L2 when N is odd, and L2 over L1 when

N is even. This yields (−1)Mu(M,N) ≥ 0, which is also equivalent to u(M,N) ≥ 0 because M

is even. Therefore, ad-d DMs have u(M,N) ≥ 0 and ad-a DMs have u(M,N) ≤ 0.

For aa-d and aa-a DMs, the Mth-degree risk increase on x is an unfavorable change when

M is odd and a favorable change when M is even whereas the Nth-degree risk increase on

y is always a favorable change. So for M odd, aa-d DMs prefers L2 over L1, leading to

(−1)M+N+1u(M,N) ≤ 0. This can be simplified to (−1)Nu(M,N) ≤ 0. When M is even, aa-d

DMs prefer L1 over L2, leading to (−1)M+N+1u(M,N) ≥ 0. This can also be simplified to

(−1)Nu(M,N) ≤ 0. For aa-a DMs, matters are reversed so that (−1)Nu(M,N) ≥ 0.

A.5 Proof of Theorem 3

Let X1, X2, Y1 and Y2 be four mutually independent random variables with X2 having

more Mth-degree risk than X1 and Y2 having more Nth-degree risk than Y1. Let L1 =

[(X1, Y2); (X2, Y1)] be the lottery where the Mth-degree risk increase on x and the Nth-

degree risk increase on y occur in different states, and L2 = [(X1, Y1); (X2, Y2)] be the lottery

where they occur in the same state. For dd-d and dd-a DMs, the Mth-degree risk increase

on x is a favorable change when M is odd and an unfavorable change when M is even, and

the same is the case for the Nth-degree risk increase on y. In this case, a dd-d DM prefers

lottery L1 over lottery L2 when M and N are both odd or both even, and has the reverse

lottery preference otherwise. This implies (−1)M+N+1u(M,N) ≥ 0 when M and N are both

odd or both even, which simplifies the condition to u(M,N) ≤ 0, and (−1)M+N+1u(M,N) ≤ 0

when M is odd and N even or M is even and N odd, which again simplifies to u(M,N) ≤ 0.

The lottery preference is reversed for dd-a DMs, which leads to u(M,N) ≥ 0.

For da-d and da-a DMs, the Mth-degree risk increase on x is a favorable change when

M is odd and an unfavorable change when M is even but the Nth-degree risk increase on

y is always a favorable change. Consequently, da-d DMs prefer L1 over L2 when M is odd

and L2 over L1 when M is even. This leads to (−1)M+N+1u(M,N) ≥ 0 for M odd and to

(−1)M+N+1u(M,N) ≤ 0 for M even. The condition then simplifies to (−1)Nu(M,N) ≥ 0 for da-

d DMs. Reversing the lottery preferences shows (−1)Nu(M,N) ≤ 0 for da-a DMs. Result (iii)

follows with the same argument replacing M by N .

For aa-d and aa-a DMs, the Mth-degree risk increase on x and the Nth-degree risk

increase on y are both always favorable changes. Hence, a aa-d DM always prefers L1 over

L2, implying (−1)M+N+1u(M,N) ≥ 0, whereas a aa-a DM always prefers L2 over L1, implying

(−1)M+N+1u(M,N) ≤ 0
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A.6 Proof of Proposition 4

For multiplicatively separable utility, we have u(M,N) = v(M) · z(N) for M,N ≥ 1, and in

particular u(M,0) = v(M) · z and u(0,N) = v · z(N) for the unidirectional derivatives. Let us

start with the DD case and assume v(x) > 0 for x ∈ [0, x] and z(y) > 0 for y ∈ [0, y] so that

sgn(v) = sgn(z). Combining good with bad on x is equivalent to (−1)M+1u(M,0) ≥ 0 for all

M ≥ 1 or (−1)M+1v(M) ≥ 0 for all M ≥ 1. Combining good with good and bad with bad on

x is equivalent to u(M,0) ≥ 0 for all M ≥ 1 or v(M) ≥ 0 for all M ≥ 1. Combining good with

bad on y is equivalent to (−1)N+1u(0,N) ≥ 0 for all N ≥ 1 or (−1)N+1z(N) ≥ 0 for all N ≥ 1.

Combining good with good and bad with bad on y is equivalent to u(0,N) ≥ 0 for all N ≥ 1

or z(N) ≥ 0 for all N ≥ 1.

When the DM prefers to combine good with bad on both attributes individually, we obtain

(−1)M+N+1u(M,N) = (−1) · (−1)M+1v(M)

︸ ︷︷ ︸

≥0

· (−1)N+1z(N)

︸ ︷︷ ︸

≥0

≤ 0,

which characterizes dd-a according to Theorem 1(i). When she prefers to combine good with

bad on x but good with good and bad with bad on y, we obtain

(−1)Mu(M,N) = (−1) · (−1)M+1vM
︸ ︷︷ ︸

≥0

· zN
︸︷︷︸

≥0

≤ 0,

which characterizes da-a according to Theorem 1(ii). When she prefers to combine good with

good and bad with bad on x but good with bad on y, we obtain

(−1)Nu(M,N) = (−1) · v(M)
︸︷︷︸

≥0

· (−1)N+1zN
︸ ︷︷ ︸

≥0

≤ 0,

which characterize ad-a according to Theorem 1(iii). When she prefers to combine good with

good and bad with bad on both attributes individually, we obtain

u(M,N) = v(M)
︸︷︷︸

≥0

· z(N)
︸︷︷︸

≥0

≥ 0,

which characterize aa-a according to Theorem 1(iv). Regardless of her apportionment pref-

erence on the individual attributes, she always prefers to aggregate harms across attributes.

Consider now that v(x) > 0 for x ∈ [0, x] but z(y) < 0 for y ∈ [0, y] so that sgn(v) ̸= sgn(z).

Combining good with bad on x is now equivalent to (−1)M+1v(M) ≤ 0 for all M ≥ 1, and

combining good with good and bad with bad on x is now equivalent to v(M) ≤ 0 for all

M ≥ 1. The signs of higher-order derivatives of utility function z are as in the case of both

utility functions positive. As a result, all signs of the cross-derivatives flip and we now obtain

dd-d, da-d, ad-d and aa-d. The DM now prefers to disaggregate harms across attributes.

Similarly, if v(x) < 0 for x ∈ [0, x] and z(y) > 0 for y ∈ [0, y], combining good with bad on
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y is equivalent to (−1)N+1z(N) ≤ 0 for all N ≥ 1, and combining good with good and bad

with bad on y is equivalent to z(N) ≤ 0 for all N ≥ 1. The signs of higher-order derivatives

of utility function z are as in the case of both utility functions positive. Yet again, all signs

of the cross-derivatives flip compared to the case with sgn(v) = sgn(z), and we thus obtain

dd-d, da-d, ad-d and aa-d. If both v(x) < 0 for x ∈ [0, x] and z(y) < 0 for y ∈ [0, y], the signs

of higher-order derivatives of both utility functions flip and we obtain the same signs as in

the case with sgn(v) = sgn(z). In other words, we find dd-a, da-a, ad-a and aa-a.

The DU and UU cases follow a similar logic. We briefly look at the DU case. When

v(x) > 0 for x ∈ [0, x] and z(y) > 0 for y ∈ [0, y], combining good with bad on x is equivalent

to (−1)M+1v(M) ≥ 0 for all M ≥ 1, and combining good with good and bad with bad on

x is equivalent to v(M) ≥ 0 for all M ≥ 1. Combining good with bad on y is equivalent to

u(0,N) ≤ 0 for all N ≥ 1 or z(N) ≤ 0 for all N ≥ 1. Combining good with good and bad with

bad on y is equivalent to (−1)N+1u(0,N) ≤ 0 for all N ≥ 1 or (−1)N+1z(N) ≤ 0 for all N ≥ 1.

Using Theorem 2, we find

(−1)Mu(M,N) = (−1) · (−1)M+1v(M)

︸ ︷︷ ︸

≥0

· z(N)
︸︷︷︸

≤0

≥ 0

for dd-a,

(−1)M+N+1u(M,N) = (−1) · (−1)M+1v(M)

︸ ︷︷ ︸

≥0

· (−1)N+1z(N)

︸ ︷︷ ︸

≤0

≥ 0

for da-a,

u(M,N) = v(M)
︸︷︷︸

≥0

· z(N)
︸︷︷︸

≤0

≤ 0

for ad-a, and

(−1)Nu(M,N) = (−1) · v(M)
︸︷︷︸

≥0

· (−1)N+1z(N)

︸ ︷︷ ︸

≤0

≥ 0

for aa-a. The DM always prefers to aggregate harms across attributes regardless of her

apportionment preference on the individual attributes. When the sign of v switches from

positive to negative, all signs of the higher-order derivatives of z flip and so do the signs of

the cross-derivatives. If instead the sign of z switches from positive to negative and the sign

of v is positive, all signs of the higher-order derivatives of v flip and so do the signs of the

cross-derivatives. Regardless, as soon as sgn(v) ̸= sgn(z), we have dd-d, da-d, ad-d or aa-d,

and the DM prefers to disaggregate harms across attributes. When both v and z are negative,

the two sign reversals cancel each other out and we are back to dd-a, da-a, ad-a or aa-a, as

in the case of both v and z positive.

A.7 Proof of Proposition 5

Let u(x, y) = v(x + Ay) and consider the DD case first. The first attribute is desirable so

that v′ ≥ 0. For the second attribute to be desirable, we then have A ≥ 0 (except in the
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uninteresting case of v′ = 0). If the DM prefers to combine good with bad on x, we obtain

(−1)M+1v(M) ≥ 0 for all M ≥ 1. This implies (−1)N+1u(0,N) = (−1)N+1ANv(N) ≥ 0 for all

N ≥ 1 so that she prefers to combine good with bad on y. Furthermore, (−1)M+N+1u(M,N) =

(−1)M+N+1ANv(M+N) ≥ 0 for all M,N ≥ 1 so that she prefers to combine good with bad

across attributes according to Theorem 1(i). The DM’s preference is thus dd-d. If she prefers

to combine good with good and bad with bad on x instead, we obtain v(M) ≥ 0 for allM ≥ 1,

which implies u(0,N) = ANv(N) ≥ 0 for all N ≥ 1, and u(M,N) = ANvM+N ≥ 0 for all

M,N ≥ 1. From Theorem 1(iv), her preference is then aa-a.

In the DU case, we have v′ ≥ 0 and A ≤ 0. If the DM prefers to combine good with

bad on x, we obtain (−1)M+1v(M) ≥ 0 for all M ≥ 1. This implies u(0,N) = ANv(N) =

(−1)(−A)N (−1)N+1v(N) ≥ 0 for all N ≥ 1 so that she prefers to combine good with bad on y.

In addition we find (−1)Mu(M,N) = (−1)MANv(M+N) = (−1)(−A)N (−1)M+N+1v(M+N) ≤ 0

so that she prefers to combine good with bad across attributes according to Theorem 2(i).

The DM’s preference is dd-d. If she prefers to combine good with good and bad with bad on x

instead, we have v(M) ≥ 0 for all M ≥ 1, which implies (−1)N+1u(0,N) = (−1)(−A)Nv(N) ≤ 0

for all N ≥ 1, and (−1)Nu(M,N) = (−A)Nv(M+N) ≥ 0 for allM,N ≥ 1. Using Theorem 2(iv),

her preference is then aa-a.

In the UU case, we have v′ ≤ 0 and A ≥ 0. If the DM prefers to combine good with bad on

x, we have v(M) ≤ 0 for allM ≥ 1. This implies u(0,N) = ANv(N) ≤ 0 for all N ≥ 1 so that she

prefers to combine good with bad on y. We obtain u(M,N) = ANv(M+N) ≤ 0 for all M,N ≥ 1

so that she prefers to combine good with bad across attributes, see Theorem 3(i). Her

preference is dd-d. If she prefers to combine good with good and bad with bad on x instead, we

have (−1)M+1v(M) ≤ 0 for all M ≥ 1. This implies (−1)N+1u(0,N) = AN (−1)N+1v(N) ≤ 0 for

all N ≥ 1 and (−1)M+N+1u(M,N) = AN (−1)M+N+1v(M+N) ≤ 0. According to Theorem 3(iv),

the DM’s preference is then aa-a.

In either one of the three cases, we either find dd-d or aa-a for monetary equivalent utility

u(x, y) = v(x+Ay) with a constant marginal rate of substitution between attributes.
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order dd-d and dd-a dd-d dd-a

M +N = 2 u(2,0) ≤ 0, u(0,2) ≤ 0 u(1,1) ≤ 0 u(1,1) ≥ 0

M +N = 3 u(3,0) ≥ 0, u(0,3) ≥ 0 u(2,1) ≥ 0, u(1,2) ≥ 0 u(2,1) ≤ 0, u(1,2) ≤ 0

M +N = 4 u(4,0) ≤ 0, u(0,4) ≤ 0 u(3,1) ≤ 0, u(2,2) ≤ 0, u(1,3) ≤ 0 u(3,1) ≥ 0, u(2,2) ≥ 0, u(1,3) ≥ 0

order da-d and da-a da-d da-a

M +N = 2 u(2,0) ≤ 0, u(0,2) ≥ 0 u(1,1) ≤ 0 u(1,1) ≥ 0

M +N = 3 u(3,0) ≥ 0, u(0,3) ≥ 0 u(2,1) ≥ 0, u(1,2) ≤ 0 u(2,1) ≤ 0, u(1,2) ≥ 0

M +N = 4 u(4,0) ≤ 0, u(0,4) ≥ 0 u(3,1) ≤ 0, u(2,2) ≥ 0, u(1,3) ≤ 0 u(3,1) ≥ 0, u(2,2) ≤ 0, u(1,3) ≥ 0

order ad-d and ad-a ad-d ad-a

M +N = 2 u(2,0) ≥ 0, u(0,2) ≤ 0 u(1,1) ≤ 0 u(1,1) ≥ 0

M +N = 3 u(3,0) ≥ 0, u(0,3) ≥ 0 u(2,1) ≤ 0, u(1,2) ≥ 0 u(2,1) ≥ 0, u(1,2) ≤ 0

M +N = 4 u(4,0) ≥ 0, u(0,4) ≤ 0 u(3,1) ≤ 0, u(2,2) ≥ 0, u(1,3) ≤ 0 u(3,1) ≥ 0, u(2,2) ≤ 0, u(1,3) ≥ 0

order aa-d and aa-a aa-d aa-a

M +N = 2 u(2,0) ≥ 0, u(0,2) ≥ 0 u(1,1) ≤ 0 u(1,1) ≥ 0

M +N = 3 u(3,0) ≥ 0, u(0,3) ≥ 0 u(2,1) ≤ 0, u(1,2) ≤ 0 u(2,1) ≥ 0, u(1,2) ≥ 0

M +N = 4 u(4,0) ≥ 0, u(0,4) ≥ 0 u(3,1) ≤ 0, u(2,2) ≤ 0, u(1,3) ≤ 0 u(3,1) ≥ 0, u(2,2) ≥ 0, u(1,3) ≥ 0

Table 1: All signs up to order 4 for the DD case with two desirable attributes x and y, u(1,0) ≥ 0 and u(0,1) ≥ 0. Our classification
distinguishes whether the DM prefers to disaggregate (in short: d) or aggregate (in short: a) harms on the first attribute (first letter),
on the second attribute (second letter), and across attributes (third letter). Correlation aversion, cross-prudence in x and y, and cross-
temperance are highlighted in blue, correlation loving, cross-imprudence in x and y, and cross-intemperance are highlighted in green. The
signs are collected in Proposition 1.
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order dd-d and dd-a dd-d dd-a

M +N = 2 u(2,0) ≤ 0, u(0,2) ≤ 0 u(1,1) ≥ 0 u(1,1) ≤ 0

M +N = 3 u(3,0) ≥ 0, u(0,3) ≤ 0 u(2,1) ≤ 0, u(1,2) ≥ 0 u(2,1) ≥ 0, u(1,2) ≤ 0

M +N = 4 u(4,0) ≤ 0, u(0,4) ≤ 0 u(3,1) ≥ 0, u(2,2) ≤ 0, u(1,3) ≥ 0 u(3,1) ≤ 0, u(2,2) ≥ 0, u(1,3) ≤ 0

order da-d and da-a da-d da-a

M +N = 2 u(2,0) ≤ 0, u(0,2) ≥ 0 u(1,1) ≥ 0 u(1,1) ≤ 0

M +N = 3 u(3,0) ≥ 0, u(0,3) ≤ 0 u(2,1) ≤ 0, u(1,2) ≤ 0 u(2,1) ≥ 0, u(1,2) ≥ 0

M +N = 4 u(4,0) ≤ 0, u(0,4) ≥ 0 u(3,1) ≥ 0, u(2,2) ≥ 0, u(1,3) ≥ 0 u(3,1) ≤ 0, u(2,2) ≤ 0, u(1,3) ≤ 0

order ad-d and ad-a ad-d ad-a

M +N = 2 u(2,0) ≥ 0, u(0,2) ≤ 0 u(1,1) ≥ 0 u(1,1) ≤ 0

M +N = 3 u(3,0) ≥ 0, u(0,3) ≤ 0 u(2,1) ≥ 0, u(1,2) ≥ 0 u(2,1) ≤ 0, u(1,2) ≤ 0

M +N = 4 u(4,0) ≥ 0, u(0,4) ≤ 0 u(3,1) ≥ 0, u(2,2) ≥ 0, u(1,3) ≥ 0 u(3,1) ≤ 0, u(2,2) ≤ 0, u(1,3) ≤ 0

order aa-d and aa-a aa-d aa-a

M +N = 2 u(2,0) ≥ 0, u(0,2) ≥ 0 u(1,1) ≥ 0 u(1,1) ≤ 0

M +N = 3 u(3,0) ≥ 0, u(0,3) ≤ 0 u(2,1) ≥ 0, u(1,2) ≤ 0 u(2,1) ≤ 0, u(1,2) ≥ 0

M +N = 4 u(4,0) ≥ 0, u(0,4) ≥ 0 u(3,1) ≥ 0, u(2,2) ≤ 0, u(1,3) ≥ 0 u(3,1) ≤ 0, u(2,2) ≥ 0, u(1,3) ≤ 0

Table 2: All signs up to order 4 for DU with a desirable attribute x, u(1,0) ≥ 0, and an undesirable attribute y, u(0,1) ≤ 0. Our
classification distinguishes whether the DM prefers to disaggregate (in short: d) or aggregate (in short: a) harms on the first attribute
(first letter), on the second attribute (second letter), and across attributes (third letter). Correlation aversion, cross-prudence in x and y,
and cross-temperance are highlighted in blue, correlation loving, cross-imprudence in x and y, and cross-intemperance are highlighted in
green. The signs are collected in Proposition 2.
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order dd-d and dd-a dd-d dd-a

M +N = 2 u(2,0) ≤ 0, u(0,2) ≤ 0 u(1,1) ≤ 0 u(1,1) ≥ 0

M +N = 3 u(3,0) ≤ 0, u(0,3) ≤ 0 u(2,1) ≤ 0, u(1,2) ≤ 0 u(2,1) ≥ 0, u(1,2) ≥ 0

M +N = 4 u(4,0) ≤ 0, u(0,4) ≤ 0 u(3,1) ≤ 0, u(2,2) ≤ 0, u(1,3) ≤ 0 u(3,1) ≥ 0, u(2,2) ≥ 0, u(1,3) ≥ 0

order da-d and da-a da-d da-a

M +N = 2 u(2,0) ≤ 0, u(0,2) ≥ 0 u(1,1) ≤ 0 u(1,1) ≥ 0

M +N = 3 u(3,0) ≤ 0, u(0,3) ≤ 0 u(2,1) ≤ 0, u(1,2) ≥ 0 u(2,1) ≥ 0, u(1,2) ≤ 0

M +N = 4 u(4,0) ≤ 0, u(0,4) ≥ 0 u(3,1) ≤ 0, u(2,2) ≥ 0, u(1,3) ≤ 0 u(3,1) ≥ 0, u(2,2) ≤ 0, u(1,3) ≥ 0

order ad-d and ad-a ad-d ad-a

M +N = 2 u(2,0) ≥ 0, u(0,2) ≤ 0 u(1,1) ≤ 0 u(1,1) ≥ 0

M +N = 3 u(3,0) ≤ 0, u(0,3) ≤ 0 u(2,1) ≥ 0, u(1,2) ≤ 0 u(2,1) ≤ 0, u(1,2) ≥ 0

M +N = 4 u(4,0) ≥ 0, u(0,4) ≤ 0 u(3,1) ≤ 0, u(2,2) ≥ 0, u(1,3) ≤ 0 u(3,1) ≥ 0, u(2,2) ≤ 0, u(1,3) ≥ 0

order aa-d and aa-a aa-d aa-a

M +N = 2 u(2,0) ≥ 0, u(0,2) ≥ 0 u(1,1) ≤ 0 u(1,1) ≥ 0

M +N = 3 u(3,0) ≤ 0, u(0,3) ≤ 0 u(2,1) ≥ 0, u(1,2) ≥ 0 u(2,1) ≤ 0, u(1,2) ≤ 0

M +N = 4 u(4,0) ≥ 0, u(0,4) ≥ 0 u(3,1) ≤ 0, u(2,2) ≤ 0, u(1,3) ≤ 0 u(3,1) ≥ 0, u(2,2) ≥ 0, u(1,3) ≥ 0

Table 3: All signs up to order 4 for UU with two undesirable attributes x and y, u(1,0) ≥ 0 and u(0,1) ≥ 0. Our classification distinguishes
whether the DM prefers to disaggregate (in short: d) or aggregate (in short: a) harms on the first attribute (first letter), on the second
attribute (second letter), and across attributes (third letter). Correlation aversion, cross-prudence in x and y, and cross-temperance
are highlighted in blue, correlation loving, cross-imprudence in x and y, and cross-intemperance are highlighted in green. The signs are
collected in Proposition 3.
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The many faces of multivariate risk-taking

Case
app. (M,N)-deg. app. (M,N)-deg.

condition
pref. risk att. pref. risk att.

DD

dd-d averse dd-a loving

da-d
averse

da-a
loving if N odd

loving averse if N even

ad-d
averse

ad-a
loving if M odd

loving averse if M even

aa-d
loving

aa-a
averse if M +N odd

averse loving if M +N even

DU

dd-d
loving

dd-a
averse if N odd

averse loving if N even

da-d loving da-a averse

ad-d
averse

ad-a
loving if M +N odd

loving averse if M +N even

aa-d
loving

aa-a
averse if M odd

averse loving if M even

UU

dd-d
loving

dd-a
averse if M +N odd

averse loving if M +N even

da-d
averse

da-a
loving if M odd

loving averse if M even

ad-d
averse

ad-a
loving if N odd

loving averse if N even

aa-d averse aa-a loving

Table 4: Attitudes towards an increase in the (M,N)-degree riskiness of (X,Y ) organized
by the DM’s apportionment preference. The table distinguishs the different combinations of
apportionment preferences, states the implied (M,N)-degree risk attitude, and provides a
condition if required. The first, second and third panel summarizes the results of Corollary 1,
2 and 3 for the case DD, DU and UU, respectively.
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The many faces of multivariate risk-taking

B Construction of multiplicatively separable utility functions

with desired risk apportionment preferences

Table 5 shows how to construct any of the eight combinations of apportionment preferences

(rows) in any of the three cases (columns) when the utility function is multiplicatively sepa-

rable, u(x, y) = v(x)z(y). The acronym “mra” stands for mixed risk-averse, “mrl” for mixed

risk-loving, “amra” for anti-mixed risk-averse, and “amrl” for an anti-mixed risk-loving. Each

cell contains two possibilities depending on the signs of the factor utility functions v and z.

DD DU UU

dd-d
v > 0 amra & z < 0 mra v > 0 amra & z < 0 amrl v > 0 mrl & z < 0 amrl
v < 0 mra & z > 0 amra v < 0 mra & z > 0 mrl v < 0 amrl & z > 0 mrl

dd-a
v > 0 mra & z > 0 mra v > 0 mra & z > 0 amrl v > 0 amrl & z > 0 amrl
v < 0 amra & z < 0 amra v < 0 amra & z < 0 mrl v < 0 mrl & z < 0 mrl

da-d
v > 0 amra & z < 0 mrl v > 0 amra & z < 0 amra v > 0 mrl & z < 0 amra
v < 0 mra & z > 0 amrl v < 0 mra & z > 0 mra v < 0 amrl & z > 0 mra

da-a
v > 0 mra & z > 0 mrl v > 0 mra & z > 0 amra v > 0 amrl & z > 0 amra
v < 0 amra & z < 0 amrl v < 0 amra & z < 0 mra v < 0 mrl & z < 0 mra

ad-d
v > 0 amrl & z < 0 mra v > 0 amrl & z < 0 amrl v > 0 mra & z < 0 amrl
v < 0 mrl & z > 0 amra v < 0 mrl & z > 0 mrl v < 0 amra & z > 0 mrl

ad-a
v > 0 mrl & z > 0 mra v > 0 mrl & z > 0 amrl v > 0 amra & z > 0 amrl
v < 0 amrl & z < 0 amra v < 0 amrl & z < 0 mrl v < 0 mra & z < 0 mrl

aa-d
v > 0 amrl & z < 0 mrl v > 0 amrl & z < 0 amra v > 0 mra & z < 0 amra
v < 0 mrl & z > 0 amrl v < 0 mrl & z > 0 mra v < 0 amra & z > 0 mra

aa-a
v > 0 mrl & z > 0 mrl v > 0 mrl & z > 0 amra v > 0 amra & z > 0 amra
v < 0 amrl & z < 0 amrl v < 0 amrl & z < 0 mra v < 0 mra & z < 0 mra

Table 5: Construction of multiplicatively separable utility functions with desired apportion-
ment preferences in the three cases. The acronyms “mra”, “mrl”, “amra” and “amrl” abbre-
viate mixed risk-averse, mixed risk-loving, anti-mixed risk-averse and anti-mixed risk-loving
utility functions, respectively. Together with the sign of v and z, this establishes the univariate
apportionment preferences, see Section 2.3. The apportionment preference across attributes
follows from the alignment or misalignment of the signs of v and z, see Proposition 5.
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Abstract 
 

This report analyzes the difference between mergers and acquisitions (M&As) of 

target insurers in the US life and non-life insurance sectors. We first document 

M&A transactions in the US insurance market between 1990 and 2021 and select 

the M&A transactions related to US target insurers. We then study the evolution of 

the life and non-life insurance sectors over time in order to determine whether there 

are parallel trends between the evolution of M&As of target insurers in these two 

sectors over time. We empirically test the difference between the M&As of the life 

and non-life insurance sectors by employing a natural experiment method and 

verify whether climate risk has been a causal factor in the observed difference in 

mergers and acquisitions between the two sectors after 2012. Our results do not 

support a causal link between climate risk and M&As during the period of analysis. 

Insurers choose other diversification sources of capital, including reinsurance, 

premium management, CAT bonds, and better capital management under stronger 

risk regulation. 
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1. Introduction 

The main objective of this study is to measure a causality effect of climate risk on property 

and casualty (P&C) insurance industry consolidation. More generally, we examine how 

catastrophic events may have affected industry resilience by focusing on M&As in the US 

insurance industry. 

The proponents of diversifying risk portfolios via M&A argue that acquisitions between 

different industries allow the acquiring insurer to benefit from economies of scope and 

scale through the joint use of customer databases, managerial expertise, and brand name. 

In addition, diversified transactions are expected to reduce acquirers� risk because this 

allows them to operate in a broader range of insurance lines and to better diversify extreme 

risks. By contrast, the proponents of focusing transactions within the same industry (or 

business line) argue that insurers are better off when they concentrate on their core 

business. It is not clear that such concentration is always beneficial in presence of climate 

risk. 

In both cases transactions are also likely to be initiated by managers wishing to protect 

their human capital or increase their private benefits (Amihud and Lev, 1981; Jensen, 

1986). Such behavior could be very risky for poorly diversified acquirers. 

We have not found studies linking catastrophic risks to M&As in the insurance industry. 

Cummins and Weiss (2004), Cummins and Xie (2008) and Boubakri et al. (2008) analyze 

M&As in the insurance industry. They do not focus on catastrophic or climate risks, and 

their methodology is not up-to-date because they do not perform a causality analysis on the 

effect of different factors on M&As. One way to extend this literature is to investigate how 

climate risk events might be causal variables in explaining M&As. Difference-in-

differences analysis is a methodology that can be applied by using insurers in activities less 

exposed to climate risk events as a control group and insurers in more climate-exposed 

activities as a treatment group. For example, insurers in the life insurance industry can be 

considered less exposed to climate risks than P&C insurers. 
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There are two major difficulties associated with isolating climate risk events as a causal 

effect on M&As during our period of analysis (1990 to 2021). The first is separating M&As  

from the varied alternative sources of capital consolidation that the insurers can use to 

protect themselves from natural catastrophes. Dionne and Desjardins (2022) show that US 

property and casualty insurers significantly increased their capital over recent years. They 

also identify various potential sources of capital, such as reinsurance, M&As, premium 

management, capital regulation, and insurance-linked securities (ILS). 

The second difficulty is identifying factors other than climate risk events that may have 

affected M&As during the period of analysis. Notably, our period of analysis contains the 

2007�2009 financial crisis. The US insurance industry was affected by this crisis, albeit 

less significantly than banks. Market conditions were difficult after the crisis, particularly 

for the life insurance industry. Premium growth was low, as were interest rates. Moreover, 

new federal regulations for capital were introduced, particularly in and after 2012. These 

new regulations have affected the level of capital and introduced some uncertainty in the 

markets regarding M&As. 

Our results do not support a causal link between climate risk and M&As during the period 

of analysis. Insurers choose other diversification activities, including reinsurance, premium 

management, catastrophe bonds, and better capital management under stronger risk 

regulation. 

The rest of the paper is organized as follows. Section 2 presents a literature review on 

M&As in the insurance industry. Section 3 describes the evolution of M&As in the US 

insurance industry from 1990 to 2001. Section 4 documents natural weather disasters 

during the same period. Section 5 analyzes the impact of markets conditions and regulation 

on M&A after 2012. Section 6 proposes an analysis of the parameters for a DID analysis, 

while Section 7 describes the DID analysis. Section 8 discusses the results. Section 9 

concludes. A robustness analysis is presented in the Online appendices along with 

additional results and literature review. 
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2. Literature review 

Usually, bidders initiate M&A transactions only when they anticipate that these activities 

will create value for their shareholders. Thus, studying the impact of such deals on bidders� 

performance is of particular interest, especially for intra-industry transactions, because 

these are most likely to be driven by synergies, and hence, create value. The empirical 

literature shows that acquiring insurers in the US insurance industry experience greater 

efficiency and higher profitability three years after the M&A (Cummins et al., 1999; 

Cummins and Xie, 2008; Boubakri et al. 2008).  

Among insurers� economic rationales for these operations are a desire to increase their 

geographical reach and product range (Amel et al., 2004) and to benefit from economies 

of scale and scope (Cummins et al., 1999). Further, insurers may initiate these transactions 

to benefit from financial synergies (Chamberlain and Tennyson, 1998) or to reduce their 

riskiness and/or improve the amount/timing of their cash flow streams (Cummins and 

Weiss, 2004). Estrella�s (2001) findings refute the risk-reduction argument from 

transactions between different industries. Indeed, the article shows that the median failure 

probability resulting from combinations of two property-casualty firms is lower than that 

resulting from a combination of a property-casualty firm and a bank holding company. 

The financial literature also suggests that M&A transactions may destroy rather than create 

value, especially if these transactions are motivated by managerial hubris, that is, where 

managers are more interested in maximizing the size of their business empires than in 

returning cash to shareholders (Roll, 1986; Denis and McConnell, 2003). Hence a negative 

impact on the bidders� firm value could be observed. For such behavior to be constrained, 

effective governance mechanisms must be put in place, such as 1) a strong board with 

competent independent directors, and 2) a legal environment that offers strong protection 

to minority shareholders. The legal environment relates not only to investor protection but 

also to transparency and overall quality of accounting standards, which were all recently 

shown by Rossi and Volpin (2004) and Moeller and Schlingemann (2005) to be significant 

determinants of M&A (see also Boubakri et al., 2008). Asymmetric information between 

acquiring firms on particular targets can also affect M&A activities by modifying the 
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premiums of different deals (Dionne et al., 2015; Betton et al., 2009; Brockman and Yan, 

2009). 

Akhigbe and Madura (2001) report a positive and significant abnormal return for acquiring 

insurers and conclude that this favorable valuation effect is driven by the similarity of 

services provided by both the acquirer and the acquired. In other words, standardization in 

their products makes the merger of operations easier for both parties. Interestingly, 

Akhigbe and Madura (2001) document a higher positive and significant market effect for 

acquirers that are non-life insurers. Floreani and Rigamonti (2001) also report a positive 

and significant valuation effect for the bidder, following M&A transactions involving pure 

insurance partners. This market valuation is positive but slightly lower when the target firm 

is publicly traded. However, only transactions involving insurers buying insurers seem to 

create value for the bidder. Indeed, Cummins and Weiss (2004) report a small negative 

valuation effect on the bidder�s shares following transactions that do not involve pure 

insurance partners.  

Additionally, cross-border transactions may generate a higher positive valuation effect for 

the bidder because they are perceived to lead to a geographic expansion of its market. The 

results of Floreani and Rigamonti (2001) support this argument. Specifically, they 

demonstrate that transactions involving insurance partners that are both located in the 

European Union countries are not welcomed by the financial market. On the other hand, 

cross-border transactions may also destroy value for the bidder because they are more 

difficult to manage (Cummins and Weiss, 2004)�a result not supported by Floreani and 

Rigamonti (2001). In the Online appendix 1, we present a detailed analysis of various 

contributions on the insurance industry. 

3. M&A transactions related to US target insurers from 1990 to 2021 

From the SDC database, we identify 3,198 M&A transactions related to US target insurers 

from 1990 to 2021. Data are annual observations as of December 31 of each year. 
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Figure 1 identifies the two main waves of target insurer M&As recorded in the US 

insurance industry over the past 32 years. There was strong M&A growth until the years 

1997 to 1999, when the market reached its first peak since 1990. 

Figure 1: Histogram of the annual number of M&A transactions 
related to US target insurers from 1990 to 2021 

 

Data source: SDC database. 

After a sharp decline in 2000, the M&A market resumed growth in 2003, and reached its 

second peak in 2007. Each of these wave years has more than 120 annual transactions. The 

two peaks correspond to periods of economic expansion. The wave recorded around 1997-

1999 represents the largest of the US insurance industry during the period of analysis. The 

record years of 1998 and 1999 have not been broken since then. In fact, this period 

corresponds to the internet and new technologies growth of the years 1998-2000. The years 

of the second largest wave of M&As correspond to the economic expansion period before 

the financial crisis that began in August 2007.  

Figure 2 depicts three peaks of M&As across all industries in the US (1998, 2007, and 

2017) during the same period. As documented above, only two waves of M&As occurred 

in the US insurance industry during that period. Since the 2007 peak, the M&A market has 

exhibited an overall downward trend throughout the US insurance industry (life and non-

life combined). By comparison, the all-industry M&A market resumed its overall upward 
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trend after a short decline during the financial crisis, from 2007 to 2009, and reached a new 

peak in 2017. Figure 2 suggests that the post-2007 period is marked by a shift behavior of 

insurers across the US insurance industry, which may be explained by changes in industry 

regulation after the 2007-2009 financial crisis, market conditions, and climate risk. 

Figure 2: M&A trends in the US insurance industry (total M&A for non-life 
and life targets, left) and for all industries in the US (right), 1990 to 2021  

 

Data source: SDC database. 

Figure 3 presents the evolution of the numbers of M&As in the three insurance lines and 

Table 1 summarizes their main statistics. Property and casualty insurers and health insurers 

appear to be more similar than with life insurers. We also observe the large reduction in 

M&As in the life sector after 2011. In this paper, we consider that the US insurance industry 

consists of two main lines of business: life insurance, and non-life insurance that includes 

property and casualty insurance and health insurance.1 Given that the two main lines of 

insurance can be affected differently by climate risk, market conditions, and insurance 

regulation, we have plotted the M&A transactions recorded in each of these two lines in 

order to analyze their behavior in relation to the target insurer M&A phenomenon. Figure 

4 shows the evolution of M&As in each of the two main US insurance lines and that of the 

US insurance industry as a whole over the period of 1990 to 2021. 

 
1 We perform a robustness analysis in Online appendix 2 by merging health insurers with life insurers. 
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Figure 3: MA trends of target insurers by the three insurance sectors 
in the US, 1990 to 2201 

 

Data source: SDC database. 

Table 1: Mean and standard deviation of the M&A in each sector 

Period 1990-2021 1990-2012 Post-2012 

Annual number of MA Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

P&C sector 29.813 9.822 28.870 10.981 32.222 5.761 

Life sector 47.156 22.598 56.565 19.294 23.111 7.079 

Health sector 22.656 8.407 23.609 9.524 20.222 3.898 

 

We observe, in Figure 4, that the evolution of M&As of target insurers in the life insurance 

sector seems to mirror the evolution of M&As of target insurers observed in the entire US 

insurance industry. More importantly, we confirm the strong decrease in mergers and 

acquisitions in the life insurance industry after 2012 while this activity seems more stable 

in the non-life insurance sector during the same period. 
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Figure 4: M&A trends for target insurers by the two major insurance lines 
(life or non-life, left) and the overall US insurance industry (right), 1990 to 2021 

 

Data source: SDC database. 

Figure 5: M&A trends of target insurers by the two main insurance sectors 
(life and non-life) in the US, 1990 to 2021 

 

Data source: SDC database.  

Figure 5 shows a parallel time trend in the evolution of target insurer M&As for life and 

non-life insurance from 1990 until 2009 and even 2012. This result suggests that the 

evolution of target insurer M&As in the non-life insurance sector is almost identical to that 
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observed in the life insurance sector during this period. The parallel trends observed 

between the two groups started to disappear after 2009. The difference is more pronounced 

after 2012. Based on Figure 5, we retain the years 2009 and 2012 as potential candidates 

for the treatment date in our analysis with the difference-in-differences (DID) method. The 

choice of the treatment date for our DID method thus seems ambiguous. We will use a 

statistical approach, applied to time series, to validate the year that best suits our data. 

It is worth trying to understand the divergence in the temporal trends in M&As observed 

between our two groups. It is possible that the temporal trends in M&As observed between 

our two groups cease being parallel in 2009 or 2012 owing to series of natural disaster 

events in the US or to the relative change in the regulation and market conditions of the 

two industries after the 2007-2009 financial crisis. To analyze these possible causes, we 

will first describe the evolution of the number and the severity of natural disaster events 

occurring in the US from 1990 to 2021. 

4. Analysis of the evolution of natural weather disasters events from 1990 

to 2021 

4.1. General statistics 

The year 2011 will remain etched in the memory of insurers and reinsurers. It generated 

losses of exceptional magnitude, particularly in Japan, Thailand, New Zealand, Australia 

and the US. In other words, 2011 was a year of huge losses both globally and nationally 

(speaking of the US). 

Globally, the last few decades have seen an increase in extreme weather-related events that 

have fueled the rise in the number of claims paid by insurers. Figure 6 shows three major 

peaks in the insured losses paid by insurers worldwide. The first largest peak in claims 

costs was in 2017. The year 2011 represents the second largest peak in the cost of claims 

borne by insurers worldwide. The year 2005 represents the third highest peak in insured 

losses. Looking only at the period prior to 2017, 2011 is the worst year for claims over the 

period of 1990 to 2017.  
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Figure 6: Insured losses (in million $) from natural disaster events worldwide, 
1990 to 2020 

 

Data source: Our World in Data. Insured losses: property damage and business interruption, excluding 
liability and life damage. 
 

Figure 7 indicates that 2011 represents the third deadliest year due to natural disasters in 

the US. This 2011 record can be linked to the exceptional series of severe tornadoes that 

occurred that year in the Midwestern US. The most catastrophic year was 2005, the year 

Katrina struck. Figure 8 shows that 2011 is the year with the first highest number of injuries 

and deaths from natural disasters after 1998, the year of Hurricane Georges. Finally, the 

figure indicates a decrease in total casualties after 2011. Bear in mind that when a single 

natural catastrophe event affects a large number of policyholders, it increases claims costs 

on the one hand and management expenses (operating costs) on the other, putting upward 

pressure on the combined ratio and other financial ratios of insurers.  
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Figure 7: Numbers of injuries (left) and deaths (right) 
from natural disasters observed in the US, 1990 to 2021 

 

Data source: NOAA Weather Related Fatality and Injury Statistics. People injured or killed by natural 
disasters are not necessarily insured. 

Figure 8: Total casualties (injuries and deaths) 
from natural disasters in the US, 1990 to 2021 

 

Data source: NOAA Weather Related Fatality and Injury Statistics. People injured or killed by natural 
disasters are not necessarily insured. 

4.2. Our data 

We now present the definition of the three main variables used in the following analysis of 

the US insurance industry. The data for the first two measures of weather disasters are from 
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events that cause insured losses to the insurance industry of $25 million or more which is 

the VERISK threshold to document a catastrophe. Events that meet or exceed this threshold 

are considered natural disasters, given the magnitude of the loss costs incurred by insurers. 

Our second variable measures the total annual insured losses from natural weather disaster 

events that cause losses of $25 million or more to the insurance industry. Finally, our third 

variable measures the number of natural disaster casualties. It represents the sum of the 

annual number of deaths and injuries caused by natural disaster events. The data for the 

number of natural disaster casualties were obtained from the National Oceanic and 

Atmospheric Administration (NOAA) website. Figure 9 shows the evolution of the number 

of natural weather disaster events occurring in the US from 1990 to 2021, as reported by 

VERISK. They cover hurricane, tropical storm, wildland fire, wind and thunderstorm, and 

winter storm. 

Figure 9: Number of natural disaster events in the US, 1990 to 2021 

 

Data source: VERISK database. 

Note: An �ISOnet PCS Loss Event� means an event occurring within the Service Area to which ISO assigns 
a serial number, based on ISO�s judgment that the event is likely to cause $25,000,000 or more in total insured 
property losses within such Service Area and is likely to affect a significant number of property and casualty 
insurance policy holders and property and casualty insurance companies. 

Figure 9 shows that there have been significant variations in the number of weather disaster 

events in recent years with an upward trend in the post-2013 period. The year 2013 is the 

turning starting point for this increase in the numbers. The increase in disaster weather 
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events observed after 2013 could be attributed to variation in climate change.2 This 

phenomenon may have posed a real threat to the American insurance market because of 

some extreme natural disaster events it has caused in the US. As can be seen in Figure 9, 

the number of natural disaster events has reached extremes over the last five years (2017 

to 2021). Arguably, the insurance industry can be weakened by the increase in extreme 

natural disaster events because of the high claims costs they incur, particularly after 2017. 

Our data indicates an average number of 241 natural disaster events per year during the 

post-2013 period, compared with 140 from 1990 to the end of 2013.3 This analysis was 

limited to the number of events. It may be more appropriate to consider the losses in the 

insurance industry. Figure 10 relates annual numbers of natural disasters events and annual 

insured losses. See Appendix A3 for different correlation results. These results do not 

support any causality link. 

Figure 10: Number of natural disaster events (left) and insured losses (right) 
linked to these natural disaster events observed in the US, from 1990 to 2020 

 

Data source: VERISK database. 

 
2 Many references consider weather and climate risks to be synonymous. In this study, as in Dionne and 
Desjardins (2022), we use the NASA (2005) definitions of climate and weather. The main difference between 
the two definitions is time. Weather is atmospheric conditions over a short period of time, while climate 
covers a long period of time. Climate change is related to changes in average daily weather. 
3 The corresponding numbers for the period post-2012 and before are respectively 233 and 142. 
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4.3. Comparative analysis of the evolution of M&As and insured natural 

disaster losses  

Figure 11 shows a link between insured losses from natural wealth disasters and the number 

of M&As per year in the non-life insurance sector. This link seems to confirm graphically 

the hypothesis that the number of target insurer M&As is an increasing function of the 

insured losses from natural disasters variable, particularly after 2012.  

Given that the post-2012 period marked by the resurgence of natural disaster events 

coincides with the period of the loss of parallel trends observed between our two groups 

identified graphically (see Figure 5), we can assume that the upsurge in natural disaster 

weather events observed after the year 2012 may have caused the difference in the number 

of M&As of target insurers in the non-life insurance sector compared with the number of 

M&As of target insurers in the life insurance sector observed after 2012. We will 

consequently select target insurers in the non-life insurance sector as organizations affected 

by the increase in natural disaster events observed during the post-2012 period, as our 

potential treatment group for our DID analysis between the M&As of target insurers in the 

life and non-life insurance sectors in the US. 

Figure 11: Comparison of M&A trends in the non-life insurance sector (left) 
and observed insured losses from weather events (right) during the period 1990 to 2021  

 

Data sources: SDC database and VERISK database. 
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According to a study published by Atlas Magazine, the emergence of new hazard detection 

technologies and the generalization of anti-seismic construction standards, especially in 

developed countries, have significantly limited the number of natural disaster casualties in 

the world. This information seems relevant to explain the relatively stable level of 

casualties observed after the year 2012 (Figure 8) despite the upsurge in extreme natural 

events compared with the period of 1990 to 2012. 

The capacity of new hazard detection technologies to warn residents of potential extreme 

natural events enables these individuals to leave their areas of residence when natural 

disasters occur, which limits the number of deaths and injuries. However, even if residents 

are warned about the possibility of an extreme natural disaster, they cannot take real estate 

such as houses and buildings with them when they evacuate the area. In other words, 

insured losses are still potentially present in the non-life insurance sector despite the advent 

of new hazard detection technologies. The direct consequence of this would be an increase 

in insured losses associated with extreme natural disasters, which would increase the claims 

costs paid by non-life insurers, thereby worsening their financial performance and 

potentially increasing the number of M&As. 

We have shown above that the upsurge in natural disaster events observed after 2012 has 

led to increased growth in insured losses from natural disasters for non-life insurers (Figure 

10). We have also shown that the number of natural disaster casualties remains relatively 

stable despite the upsurge in extreme natural events observed in the post-2012 period 

(Figure 8).  

As to which event may have produced an exogenous change in treatment that further 

increased the number of M&As for target insurers in the non-life insurance sector relative 

to the life insurance sector, our analysis indicates that the upsurge in natural disaster events 

observed in the post-2012 period may represent a causal shock on M&As in the non-life 

sector.  

After having motivated our first theoretical hypothesis graphically and statistically, we will 

analyze a second potential causal factor explaining the difference in M&As between life 

and non-life sectors after 2012.  
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5. Impact of market conditions and regulation on M&As after 20124 

5.1. Markets conditions and regulation 

In the preceding sections, we emphasized climate risk as motivating the difference between 

the life and non-life insurance industries in the evolution of M&A after 2012. In this 

section, we document potential alternative economic explanations of this difference before 

proceeding to the formal DID analysis. 

Another catastrophe in the US economy in recent years was the 2007�2009 financial crisis. 

Although this crisis affected banks more significantly, it also disrupted the insurance 

industry. It took many years for the US insurance industry to recover. Moreover, the 

insurance industry was subject to new federal regulations in the years following the crisis. 

In these years, economic growth was slow due to a lack of liquidity in the US economy, 

partly explained by the strong new banking regulation. In particular, the secondary market 

for bond trading was out of liquidity. Interest rates were very low for investments, and the 

European economy was in distress. These facts seem to have affected the life insurance 

industry more strongly than the P&C insurance industry. 

The year 2012 was an active one for life insurance M&As, with 39 transactions, as shown 

in Figure 5. The aggregate deal value involving US targets for the year was about $4.2 

billion, which is higher than the $775 million in 2011, but significantly less than the $21.6 

billion reported in 2010 (59).5 This can be explained by AIG�s activity of selling firms 

following the financial crisis (Mayer Brown, 2013). This decrease was mainly due to the 

need for acquirers to maintain capital under new regulatory capital requirements and to the 

uncertainty around the impact of Solvency II in Europe.  

Acquisition activity in the property-casualty sector was significantly lower in 2012 than in 

2011. The announced aggregate US deal value for 2012 (39) was approximately $6 billion, 

 
4 This section is based on many reports from industry, including the annual reports of Mayer Brown and 
documents from KPMG. The SDC database is also used to document the annual numbers of mergers and 
acquisitions. 
5 Numbers in parentheses are observations on the number of mergers and acquisitions, as illustrated in 
Figure 5. 
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down from approximately $10 billion in 2011 (68). Moreover, 2012 was characterized by 

small and medium-sized deals under $500 million (Mayer Brown, 2013). P&C activity was 

driven primarily by geographic or product expansions, as well as by runoff transactions 

involving insurers deciding to exit some lines of business. 

The year 2013 was characterized by the continued decline in deal activity in the US life 

insurance M&A market (transactions involving US targets), as compared to 2010, in terms 

of deal values and numbers (21 instead of 59). Deal value in the life sector was $3.2 billion, 

compared to $4.2 billion in 2012. Continued macroeconomic uncertainty presented 

challenges for product sales in this industry, and low interest rates continued to create 

challenges for long-term investment returns in bonds. Regulatory changes, such as the 

NAIC�s Own Risk Solvency Assessment (ORSA, adopted in 2012, effective in January 

2015) and the international accounting convergence project contributed to a climate of 

caution among buyers and sellers in the M&A markets. To increase shareholder value, 

insurers tended to use excess capital for share repurchases and dividend distributions rather 

than M&A activity. ORSA represented a major regulatory change in the insurance industry. 

Insurers must now use market value information instead of accounting values to compute 

economic capital. It represented an additional source of uncertainty, because many insurers 

had to learn about capital computation with market information. 

Acquisition activity in the P&C sector was stable in 2013 compared to 2012, despite 

generally favorable market valuations on companies� balance sheets in a year marked by 

few large catastrophe losses. Major runoff acquisition specialists continued to be active 

acquirers in the global P&C sector. Many P&C companies were still overcapitalized. Some 

companies were returning capital in the form of stock buybacks and dividends, but high 

stock prices made stock buybacks expensive.  

At the NAIC�s Summer 2013 National Meeting, the Solvency Modernization Initiative 

(SMI) Task Force adopted a white paper: the US National State-band System of Insurance 

Financial Regulation and the Solvency Modernization Initiative (NAIC, 2013). The white 

paper also highlighted the importance of the national state-based system of insurance 

regulation, instead of state only regulation as before the financial crisis. 
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In addition, regulatory scrutiny of M&As in the two areas may have had a slight negative 

effect on capital management, thus limiting M&As: the restrictive use of captives for 

reserve financing and additional requirements for approval of acquisitions raised 

difficulties in making acquisitions (Mayer Brown, 2014). 

Acquisition activity in the P&C sector was lower in 2013 than in 2012, continuing the trend 

from the prior year (21 instead of 39). This occurred despite generally favorable market 

valuations and significant cash balances on P&C companies� balance sheets in a year 

marked by few large catastrophe losses. Since catastrophe losses had been relatively 

modest, many P&C companies remained overcapitalized. M&A was not considered an 

important activity for consolidation during these years. 

The number of US life insurance M&A deals in 2014 was down for the third straight year, 

but overall, the deal value on announced transactions was $8 billion in 2014, more than 

double the total for 2013 (Mayer Brown, 2015). There were 53 announced M&A deals 

involving property and casualty companies (Figure 5). The year was again characterized 

by small- and medium-sized deals. 

Insured losses from natural catastrophes fell significantly in 2014, according to research 

from Swiss Re�s Sigma (2015), as reported in Mayer Brown (2015). The global insured 

losses for 2014 fell by 24% to $34 billion, compared to $45 billion the previous year. The 

number of life insurance M&A transactions involving US targets was on the rise in 2015 

after falling in each of the previous two years. The number of annual P&C insurance M&A 

transactions in 2015 was up for the third straight year, increasing from 44 to 62. The overall 

deal value on announced transactions was also up, from approximately $12 billion in 2014 

to $48 billion in 2015. The year 2015 saw a number of very large transactions being 

announced, as buyers increasingly sought scale, diversification, and market access (Mayer 

Brown, 2016). 

The number and size of life insurance M&A deals was very low in 2016 (only 11), 

compared to 2015 (27). The slowdown in activity was due to a number of obstacles facing 

the US life industry, including low life insurance policy sales, continued profit pressure in 
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investments arising from the low interest-rate environment, and regulatory-change 

uncertainty. 

The number of M&A transactions involving P&C insurance targets decreased in 2016 to 

45, as compared to 62 in 2015, according to data compiled from the SDC database. The 

2016 P&C insurance segment was again characterized by small and medium-sized 

transactions, with more than 75% of all announced deals valued below $200 million. The 

growing need for capital expenditure for investments, to support new digital and high-tech 

business models demanded that smaller and mid-sized companies look to M&As as an 

option for continued growth. Insurers worked to adapt to technological growth. For 

example. developments in insurtech continued to be important in 2016, with significant 

deals and expansion across product lines and markets. Moreover, in 2016, regulators took 

significant steps to enhance the regulation of insurers� data practices. Cybersecurity 

became a new priority for regulators (Mayer Brown, 2017). 

In January 2017, the US and Europe announced an agreement regarding international 

insurance groups doing business in the US and the EU, to enhance regulatory certainty for 

insurers and reinsurers operating in both places. Meanwhile, the number of M&A 

transactions involving P&C insurance targets continued to decrease in 2017, to about 42, 

as compared to 46 in 2016 (SDC database). Overall, the deal value on transactions in 2017 

was down to $7.5 billion, compared to $12 billion in 2016 (Mayer Brown, 2017).  

With excess capital, more insurers saw themselves as buyers rather than sellers, which 

pushed the valuation levels of target companies upwards. Insurers in the P&C market 

appeared more likely to allocate their excess capital to investments in technology and 

marketing. Consequently, instead of buying competitors, insurers were more likely to make 

acquisitions of insurtech enterprises to improve their diversification.  

The number and size of life insurance M&A deals involving US targets were up in 2017 

(20), compared to 2016 (11). According to the SDC database, 2017 saw several large deals 

take place. The continued low-interest-rate environment, combined with the significant 

amount of capital available for deployment into the life and annuity sector led to a number 

of large annuity transactions in 2017. The year 2017 was notable for the occurrence of a 
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number of catastrophic events, including hurricanes Harvey and Irma and wildfires in 

California all of which caused losses for several outstanding catastrophe bonds. The 

availability of this financial market protection in a year with significant catastrophe losses 

illustrates the robust nature of the insurance market and its critical importance in providing 

the resources needed to pay claims (Dionne and Desjardins, 2022). 

The number of M&A transactions in 2018 involving P&C insurance targets rose to 60, 

compared to 42 in 2017, according to data compiled by the SDC database. The $32 billion 

in aggregate transaction value ranks as the most active year for P&C M&As since 2015. It 

should be noted that approximately two-thirds of that amount is attributable to two very 

large acquisitions. As in the previous years, small and medium-sized transactions of deals 

valued below $500 million represented more than 70% of transactions (Mayer Brown, 

2019). 

Despite around $80 billion of catastrophe losses in 2018, which followed on record 

catastrophe losses in 2017, the P&C industry continued to be regarded as overcapitalized. 

Other key factors limiting the increase in P&C M&As included federal tax reform and 

continued inbound interest from international acquirers seeking a meaningful presence in 

the US market (Mayer Brown, 2019). Established players were pursuing strategic 

investments in insurtech businesses.  

Issuance of RWI policies continued to be important in the Americas, predominantly in the 

US. RWI is a form of insurance policy that is purchased in connection with an M&A 

transaction that protects the insured party (almost always the buyer) against financial loss 

arising from an unanticipated or unknown breach of certain conditions in the purchase 

agreement. While there are no market studies that provide reliable figures on the numbers 

of RWI policies written each year, data from several market studies suggest that numbers 

have doubled every two years since 2013. The year 2018 also saw the first transfer of pure 

wildfire risk to the capital markets. Two California utility providers sponsored a 

catastrophe bond covering third-party liability losses due to wildfires caused by their 

respective infrastructure. Demand for reinsurance remained high following the ongoing 

capital requirements of the Solvency II regime, which made reinsurance attractive.  
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One of the consequences of the 2007�2009 financial crisis was a decision by the federal 

government to revisit the regulatory system in the McCarran-Ferguson Act. The Dodd-

Frank Wall Street Reform and Consumer Protection Act (Dodd-Frank) gave increased 

systemic risk regulatory authority to the Federal Reserve. In addition, Dodd-Frank also 

created a Federal Insurance Office within the Department of the Treasury to establish 

greater uniformity among the states with regard to excess and surplus insurance and 

reinsurance lines. 

The development of the COVID-19 pandemic in the first quarter of 2020 created 

uncertainty regarding all aspects of the insurance business. This resulted in a halt in 

insurance P&C transactions in the US, as insurers and investors reevaluated their strategic 

plans. Despite of this first quarter slowdown, an increase in industry M&As from the third 

quarter of 2020 resulted in deal-making in 2020 whose value exceeded that of 2019 (Mayer 

Brown, 2021).  

The year 2020 has been described as the Year of the SPAC.6 According to SPAC Insider, 

248 special purpose acquisition corporations (SPACs) completed their initial public 

offerings (IPOs), raising over $83 billion. The recent rise of the SPAC has had an important 

effect on the US IPO market and, to a lesser extent, the US IPO market for insurance 

companies. In 2020, three SPACs completed IPOs, with a stated focus on the insurance 

(including insurtech) industry. 

During 2020, US jurisdictions began revising their laws and regulations governing credit 

for reinsurance to implement the amendments to the NAIC Credit for Reinsurance Model 

Law and Model Regulation adopted in 2019. Those amendments were designed to satisfy 

the requirements of the bilateral agreement on insurance and reinsurance between the US 

and EU. 

Climate risk and sustainability were established as a key theme of the IAIS (International 

Association of Insurance Supervisors) strategy for 2020�2024. Included in this strategy is 

its partnership with the United Nations Environmental Programme�s Sustainable Insurance 

 
6 A SPAC is a newly formed company with no assets or operations, also known as a blank check company. 
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Forum. The IAIS is one of the first global standard-setting bodies to adopt policy to guide 

its performance in terms of environmental issues: incorporating risks from climate change 

into their governance frameworks, risk management processes, and business strategies.  

5.2. Use of ILS for catastrophes losses 

The use by insurers and reinsurers of insurance-linked securities (ILS) as a supplemental 

source of capital for their protection continued after 2012. The capital markets have 

become a critical component of managing catastrophe risk for a growing number of 

insurers and reinsurers, although the relative magnitude is still low compared to the total 

capital available in the industry (Dionne and Desjardins, 2022). 

The catastrophe bond market was quite strong in 2013, with a total of $7.5 billion of new 

catastrophe bonds issued, the second highest annual issuance volume in market history. As 

of December 31, 2013, there was $20.3 billion of catastrophe bonds outstanding. US 

catastrophe risks (particularly US wind) continued to dominate, representing 

approximately 51% of outstanding bonds (Mayer Brown, 2014). 

In 2017, the ILS market solidified its importance as a critical component of the global 

reinsurance market, representing almost 20% of dedicated reinsurance capacity. There was 

a $31.0 billion total aggregate principal amount of risk-linked securities outstanding, 

almost 20% higher than the amount at the end of 2016 (Mayer Brown, 2018). 

In 2020, the volume issued  was the largest in market history, beating the record level of 

2018. The total aggregate principal amount of risk-linked securities outstanding of $46.4 

billion represented a yearly growth of approximately $5.7 billion. It should be mentioned 

that the total capital of the US insurance industry was about $1.1 trillion in 2020 (Dionne 

and Desjardins, 2022). 

Reinsurance and premium growth are other sources of capital in the P&C insurance 

industry (Dionne and Desjardins, 2022). We shall look at these sources of capital later on. 

In the next section, we continue our statistical analysis of M&As. 
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6. Validation of the selected treatment date and the presence of parallel 

trends 

In our DID approach, we propose that the increase in natural disaster events observed in 

the post-2012 period could be a cause of the difference in the number of M&As of target 

insurers in the non-life insurance sector, relative to the number of M&As of target insurers 

in the life insurance sector. The varied changes in regulations and economic conditions in 

the insurance industry during the post-2012 period could also be a cause. These new 

regulations were motivated by the 2007�2009 financial crisis. Very low interest rates 

significantly affected the benefits of the insurance industry, particularly in the life 

insurance industry. Looking at these two potential causes, it appears that a shock event 

occurred in the years preceding 2013 that might have caused an exogenous change in the 

treated units that increased the difference in the number of M&As of the treatment group 

relative to the control group. In short, we consider the increase in natural disaster losses 

observed after 2012 as a situation that induced an exogenous variation in the treated units 

(target non-life insurers) that maintained the number of M&As of target insurers in the non-

life insurance sector (treatment group), compared to those in the life insurance sector 

(control group), which decreased significantly during the post-2012 period.  

Based on an analysis of Figure 5, we have identified two years in which the parallel trends 

observed between our two groups began to disappear: 2009 and 2012. However, our 

analysis of Figure 10 allows us to propose that it was the insured losses from natural 

disaster events observed after the year 2012 that likely caused the increase in the number 

of M&As of target insurers in the non-life insurance sector, compared to the number of 

M&As of target insurers in the life insurance sector, observed in the post-2012 period. 

Therefore, we can define our treatment effect as a positive difference between the average 

number of M&As per year of target insurers in the non-life insurance sector and the average 

number of M&As of target insurers in the life insurance sector. Alternatively, market 

conditions and variations in the regulation of the insurance industry may also explain the 

difference observed in Figure 5. The following analysis is independent of the two potential 

causes. 
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6.1. Validation of the choice of treatment date using five statistical tests 

To choose the most appropriate treatment date for our data, we use a statistical approach 

applied to the annual data of M&As in the two insurance sectors (Berck and Villas-Boas, 

2016; Imbens and Wooldridge, 2009; Roberts and Whited, 2012). We first calculate the 

annual difference between the number of M&As of target insurers in the non-life insurance 

sector versus the number of M&As of target insurers in the life insurance sector observed 

over our entire study period, that is 1990 to 2021. Next, we calculate the mean and median 

of the difference between the number of target insurer M&As in the non-life insurance 

sector and the number of target insurer M&As in the insurance sector over the pre-

treatment period (including the year of the candidate date) and over the post-treatment 

period for each of our two selected candidate dates (2009 and 2012). Finally, we perform 

five statistical tests―the mean statistical test, the median statistical test, the distribution 

statistical test, the monotonicity test, and the median-criteria test―to validate the choice of 

treatment date. The results of the first three tests are presented in Table 2, where the 

differences between various statistics are presented. 

Table 2: Statistical descriptions (median, mean of the number of M&As) 
and validation tests of the treatment date 

Period 1990-2009 Post-2009 1990-2012 Post-2012 1990-2021 

Median ‒2 22.50 ‒3 29 2 

Mean ‒2.75 18.4167 ‒3.78 28.11 5.18 

Student�s test  ‒0.9864 3.3066 ‒1.4679 11.015 1.6014 

Median test1 0.8238 0.0386 0.6776 0.0039 0.3771 

Wilcoxon test2 ‒0.915 2.589 ‒1.354 2.666 1.356 

1 Sign test (Snecdecor and Cochran, 1989). 
2 Signed rank test (Wilcoxon, 1945). 

6.1.1. Statistical test based on the mean (Student�s test) 

Our decision criterion for the choice of treatment date is to test the null hypothesis (H0) 

that the average number of M&As in the non-life sector and the average number of M&As 

in the life sector are statistically similar over the period of 1990 to the end of the candidate 

date (2009 or 2012) on the one hand, and, on the other hand, to test the null hypothesis 
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(H0) that the average number of M&As in the non-life sector and the average number of 

M&As in the life sector are statistically different over the post-treatment date period (post-

2009 or post-2012) due to the treatment effect.  

According to Table 2, the t-test statistic yields a value of -0.9864 over the period of 1990 

to 2009 and 3.3066 over the post-2009 period. Given that the absolute t-test value is less 

than 1.96 over the period of 1990 to 2009, the null hypothesis (H0) is not rejected. In 

addition, because the t-test value is greater than 1.96 over the post-2009 period, the null 

hypothesis (H0) is rejected. The year 2009 is therefore retained by our t-test criterion as 

the treatment date for our DID method. Further, Table 2 shows that the t-test statistic yields 

a value of -1.4679 over the 1990 to 2012 period and 11.015 over the post-2012 period. The 

null hypothesis (H0) is not rejected over the 1990 to 2012 period and the null hypothesis 

(H0) is rejected over the post-2012 period. We can therefore conclude that the average 

number of M&As in the non-life sector and the average number of M&As in the life sector 

are statistically the same over the period of 1990 to 2012 and statistically different over the 

post-2012 period. Our t-test statistic criterion also retains the year 2012 and cannot 

discriminate between the two years and between the two potential interpretations. 

6.1.2. Statistical test based on the median  

This test was proposed by Snecdecor and Cochran (1989). Based on this test, the analyze 

of the null hypothesis (H0) that the difference between the median number of M&As of 

target non-life insurers and the median number of M&As of target life insurers is equal 

to 0.  

Our treatment date decision criterion is to test the null hypothesis (H0) that the median 

number of M&As in the non-life sector and the median number of M&As in the life sector 

are statistically similar over the period of 1990 to the end of the candidate date (2009 or 

2012) on the one hand, and, on the other hand, to test the null hypothesis (H0) that the 

median number of M&As in the non-life sector and the median number of M&As in the 

life sector are statistically different over the post-treatment date period (post-2009 or post-

2012) due to the treatment effect.  
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Table 2 reports a p-value of 0.8238 over the period of 1990 to 2009 and 0.0386 over the 

post-2009 period. Because the p-value is above the critical threshold of 5%, the null 

hypothesis is not rejected. In addition, because the p-value is lower than the 5% threshold 

over the post-2009 period, the null hypothesis (H0) is rejected. We can therefore conclude 

that the median number of M&As in the non-life sector and the median number of M&As 

in the life sector are statistically similar over the period of 1990 to 2009 and statistically 

different over the post-2009 period. The year 2009 is therefore retained by our median-

based statistical test as the treatment date for our DID method. Further, Table 2 shows a p-

value of 0.6776 over the 1990 to 2012 period and 0.0039 over the post-2012 period. 

Because the p-value is greater than the 5% critical threshold, H0 is not rejected. In addition, 

because the p-value is below the 5% threshold in the post-2012 period, the null hypothesis 

(H0) is refuted. We can therefore conclude that the median number of M&As in the non-

life sector and the median number of M&As in the life sector are statistically similar over 

the period of 1990 to 2012 and statistically different over the post-2012 period. Our test 

based on the median also retains the year 2012 and cannot discriminate between the two 

dates. 

6.1.3. Statistical test based on distributions  

This test was proposed by Wilcoxon (1945). We test the null hypothesis (H0) that the 

distributions of the number of M&As per year of target non-life insurers and the number 

of M&As per year of target life insurers are close.  

According to Table 2, the Z-test statistic yields a value of -0.915 over the period of 1990 

to 2009 and 2.589 over the post-2009 period. Because the Z-test value in absolute terms is 

less than 1.96 over the period of 1990 to 2009, the null hypothesis (H0) is not rejected. In 

addition, because the Z-test value is greater than 1.96 over the post-2009 period, the null 

hypothesis (H0) is rejected. We can therefore conclude that the distribution of the number 

of M&As in the non-life sector and the distribution of the number of M&As in the life 

sector are statistically similar over the period of 1990 to 2009 and statistically different 

over the post-2009 period. The year 2009 is therefore retained by our statistical test based 

on the distributions as the treatment date for our DID method. In contrast, Table 2 shows 



27 

that the t-test statistic yields a value of -1.354 over the 1990 to 2012 period and 2.666 over 

the post-2012 period. Because the value of the Z-test statistic in absolute terms is less than 

1.96 over the period of 1990 to 2012, the null hypothesis (H0) is therefore not rejected. In 

addition, because the Z-test value is greater than 1.96 over the post-2012 period, the null 

hypothesis (H0) is rejected. We can therefore conclude that the distribution of the number 

of M&As in the two industries are statistically similar over the period of 1990 to 2012 and 

statistically different over the post-2012 period. Our test of the distribution-based statistic 

also retains the year 2012 and cannot discriminate between the two dates. 

6.1.4. Monotonicity hypothesis 

We employ an additional criterion called the monotonicity hypothesis, often used in 

econometrics to evaluate the treatment effect. This hypothesis postulates that when there 

is a change, the treatment effect can go in only one direction. To choose our treatment date 

based on the criterion of the monotonicity assumption, we used a graphical approach based 

on the analysis of Figure 12. 

Figure 12 clearly shows a large difference between the number of M&As of target insurers 

in the non-life insurance sector compared with the number of M&As of target insurers in 

the life insurance sector observed over the post-2012 period. Moreover, we note that our 

treatment effect, defined as a positive difference between the number of M&As per year of 

target insurers in the non-life insurance sector and the number of M&As of target insurers 

in the life insurance sector, is respected for each year of the post-2012 period (9 years with 

a positive difference versus 0 year with a negative difference). In other words, 2012 

changes the treatment effect in only one direction (positive difference) for each of the years 

in the post-2012 period. This affirms our monotonicity hypothesis. In contrast, Figure 12 

shows that the year 2009 does not cause a change in the treatment effect in a single direction 

for each of the years in the post-2009 period (10 years with a positive difference versus 2 

years with a negative difference). As can be seen, we get a negative difference for the years 

2010 and 2011 and a positive difference for each of the other years in the post-2009 period. 

This violates our monotonicity condition (hypothesis). To conclude, because only the year 
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2012 meets the monotonicity condition, we select the year 2012 as the treatment date for 

our DID method with the monotonicity hypothesis.  

Figure 12: Evolution of the number of M&As per year in each of the two insurance sectors 
(non-life and life, left) and their difference (in histogram, right) 

 

Data source: SDC database. 

6.1.5. Median-criteria test of Guest (2021) 

For robustness, a last statistical criterion based on the median is applied to ensure the 

reliability of the choice of the selected year 2012. To do this, we draw on the work of Guest 

(2021), who applies a median-based statistical criterion. This allows us to define a selection 

criterion whereby the treatment effect for each of the years in the post-treatment period 

(post-2009 or post-2012) is greater than the median value of the difference between the 

number of M&As per year of target insurers in the non-life insurance sector and the number 

of M&As of target insurers in the insurance sector over our entire study period (1990 to 

2021), which is equal to 2 (see Table 2). This criterion supports the choice of 2012 as the 

treatment date for our DID method. As can be seen in Figure 12, the positive difference 

between the number of M&As per year of target insurers in the non-life insurance sector 

and the number of M&As of target insurers in the life insurance sector is greater than the 

median value of our entire study period (1990 to 2021) for each of the years in the post-

2012 period. This is not the case for the post-2009 period, where we in fact observe a 

negative difference for the years 2010 and 2011, which is thus lower than the median of 
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the entire sample. Therefore, our median-based criterion rejects the choice of the year 2009 

as the treatment date for our DID method. To summarize, the statistical criterion based on 

the median supports the choice of the year 2012 retained by our affirmation of the 

monotonicity hypothesis. 

6.2. Parallel trends analysis 

We have just validated the choice of 2012 as the treatment year for our DID method. We 

will now perform a validation test for the presence of parallel trends before the end of that 

period. To do this, we first create 32 dummy variables for each of the years in the period 

of 1990 to 2021. Then, we create a dummy variable Treated୧ with i equal to 1 for the 

treated group and 0 for the control group. Our Treated dummy (non-life sector) is then 

represented by the Treated୧ variable. We also create 32 interaction variables between the 

Treated dummy and the year dummy for each year from 1990 to 2021. Finally, we regress 

our dependent variable, number of M&As per year and state, on our 32 Treated୧ ൈ Year 

interaction variables in each of the 51 states and in the two insurance sectors using the OLS 

method of estimation for panel data. With the OLS method, we capture the individual effect 

(state) and the time effect (year). The results are presented in Table 3 with 3,264 

observations (32 × 51 × 2).  

The results of our regressions validate the presence of a parallel trend before the end of 

2012. As can be observed, the obtained coefficients are overall not statistically significant 

for the pre-treatment period (before 2013). Our F-test supports this result. It shows that the 

F-statistic on our Treated୧ ൈ Year interaction variables prior to the treatment date (1990 

to 2012) is F (23, 3200) = 0.59 with a probability Prob > F = 0.9709. Given that the p-value 

is greater than 5%, we do not reject the null hypothesis, and we can conclude that the 

coefficients obtained before the treatment date are not significantly different from zero 

overall. In contrast, the coefficients obtained for each of the years during the post-2012 

period are all statistically significant at the 1% level (except for the year 2021). Our F-test 

supports this result. The F-test over the post-treatment period (2013 to 2021) yields an F 

(9, 900) = 5.20 with Prob > F = 0.0008. Because the p-value is less than 5%, we reject the 

null hypothesis and can thus say that the coefficients considered as a whole are significant 
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over the post-2012 period. These results allow us to validate our parallel trend test 

econometrically and thus confirm the choice of the year 2012 as the treatment year to be 

retained for our DID method.  

Table 3: Parallel trends analysis for DID validation test 

Test Validation test 1st Robustness Test 2nd Robustness test 

Independent variable Coefficient Standard 
error 

Coefficient Standard 
error 

Coefficient Standard 
error 

              

Treated×Year1990 2.034*** (0.242) ‒  ‒   

Treated×Year1991 ‒0.0784 (0.182) 2.005*** (0.260) ‒   
Treated×Year1992 0.176 (0.191) 0.176 (0.192) 2.220*** (0.260) 

Treated×Year1993  0.00  (0.209) 0.00  (0.210)  0.00  (0.211) 

Treated×Year1994 ‒0.235 (0.163) ‒0.235 (0.164) ‒0.235 (0.163) 

Treated×Year1995 ‒0.451** (0.206) ‒0.451** (0.207) ‒0.451** (0.208) 

Treated×Year1996 ‒0.0980 (0.274) ‒0.0980 (0.274) ‒0.0980 (0.274) 

Treated×Year1997 ‒0.510** (0.239) ‒0.510** (0.239) ‒0.510** (0.239) 

Treated×Year1998  0.00  (0.342) 0.00  (0.341)  0.00  (0.340) 

Treated×Year1999 ‒0.235 (0.327) ‒0.235 (0.327) ‒0.235 (0.325) 

Treated×Year2000 0.118 (0.239) 0.118 (0.240) 0.118 (0.240) 

Treated×Year2001 ‒0.235 (0.224) ‒0.235 (0.226) ‒0.235 (0.227) 

Treated×Year2002 ‒0.333 (0.208) ‒0.333 (0.208) ‒0.333 (0.208) 

Treated×Year2003 ‒0.0588 (0.272) ‒0.0588 (0.272) ‒0.0588 (0.271) 

Treated×Year2004 0.549** (0.270) 0.549** (0.271) 0.549** (0.270) 

Treated×Year2005 0.176 (0.248) 0.176 (0.249) 0.176 (0.248) 

Treated×Year2006 ‒0.0980 (0.289) ‒0.0980 (0.289) ‒0.0980 (0.290) 

Treated×Year2007 ‒0.0196 (0.320) ‒0.0196 (0.321) ‒0.0196 (0.320) 

Treated×Year2008 0.137 (0.238) 0.137 (0.236) 0.137 (0.235) 

Treated×Year2009 0.0196 (0.201) 0.0196 (0.202) 0.0196 (0.203) 

Treated×Year2010 ‒0.353* (0.211) ‒0.353* (0.212) ‒0.353* (0.213) 

Treated×Year2011 ‒0.314 (0.198) ‒0.314 (0.198) ‒0.314 (0.198) 

Treated×Year2012 0.0392 (0.203) 0.0392 (0.204) 0.0392 (0.204) 

Treated×Year2013 0.451*** (0.162) 0.451*** (0.164) 0.451*** (0.165) 

Treated×Year2014 0.627*** (0.182) 0.627*** (0.183) 0.627*** (0.182) 

Treated×Year2015 0.686*** (0.199) 0.686*** (0.199) 0.686*** (0.198) 
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Treated×Year2016 0.686*** (0.188) 0.686*** (0.190) 0.686*** (0.191) 

Treated×Year2017 0.431** (0.206) 0.431** (0.206) 0.431** (0.207) 

Treated×Year2018 0.412* (0.211) 0.412* (0.211) 0.412* (0.210) 

Treated×Year2019 0.569*** (0.151) 0.569*** (0.152) 0.569*** (0.153) 

Treated×Year2020 0.745*** (0.182) 0.745*** (0.183) 0.745*** (0.183) 

Treated×Year2021 0.353 (0.233) 0.353 (0.234) 0.353 (0.234) 

State FE Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes 

Observations 3,264  3,162  3,060  
R-squared 0.631   0.628   0.630   

Robust standard errors in parentheses. 
*** p<0.01, ** p<0.05, * p<0.1 

 

To ensure the reliability of our validation test of the choice of treatment date for our DID 

method, we conduct two robustness tests. The first test consists in ignoring the first year of 

observation: Treated×Year1990. The second test consists in ignoring the first two years of 

observations: Treated×Year1990 and Treated×Year1991. The results of these two 

robustness tests, as shown in Table 3, confirm the validation of the year 2012 as the 

treatment date to retain for our DID method.  

7. DID analysis 

In this section, we present in detail the variables of interest that we introduced into our 

regressions to analyze the difference between M&As in the US life and non-life insurance 

sectors using the DID method. The data utilized in this study come from the SDC database. 

The SDC database provides comprehensive quantitative and qualitative information on the 

characteristics of M&A transactions over the period of 1990 to 2021 in the two insurance 

sectors.  

7.1. Description of variables  

7.1.1. Natural experiment 

In our econometric approach, we opted for a natural experiment methodology using the 

difference-in-differences estimator (DID). This estimator must separate the firms that have 
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received a treatment (treatment group) and firms that have not received a treatment (control 

group).  

7.1.2. Treatment group and control group variable 

The purpose of our study is to determine the impact of climate risks or regulatory changes 

and market conditions on target insurers in the US. Because insurers in the non-life 

insurance sector are more exposed to climate risks and less exposed to market conditions 

and regulatory changes than are insurers in the life insurance sector during our period of 

analysis, we select insurers in the non-life insurance sector as our treatment group. We 

create a dichotomous variable Treated୧ with i equal to 1 for the treatment group (non-life 

insurance sector) and 0 for the control group (life insurance sector).  

7.1.3. Regression model  

Based on our variables of interest, we consider the following regression model: 

  Nbr M&A ୧୲ = α ൅ δଵTreated୧ × Post2012 +  c୧ ൅  η୲ +  ϵ୧୲ (1) 

where: 

Nbr M&A ୧୲: number of M&A in state i during year t; 

Treated୧ ൈ Post2012 : equal to 1 for the treatment group after the treatment period and 

equal to 0 otherwise; α : constant; 

 c୧ : individual effects that exert the same influence on the state 𝑖 in all periods; η୲:  temporal effects that affect all states equally in period t; 

 ϵ୧୲ : standard random effects. 

What interests us in equation (1) is the interaction variable Treated୧ x Post2012. It 

indicates the impact of the treatment on the insurers in the treatment group. Given that the 

regulation of insurance companies differs from state to state in the US, we created dummy-

states variable to capture the individual effect of each state. The model assumes that the 

time shocks η୲ affect all units in the two groups equally in period t. For this reason, we 
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create dummy-periods to capture the time effect in each period. In our estimation of 

equation (1), we maintain the constant α since we use an estimation procedure that controls 

for multicolinarity. This approach is contrary to those of Dionne and Liu (2021) and 

Giorcelli and Moser (2020). 

7.1.4. Description of targets 

The targets selected for our study are US insurers that were acquired or merged during the 

period of 1990 to 2021. These targets operated in the life or non-life insurance sectors prior 

to the M&A transaction. We exclude from our sample of targets financing agency insurers 

or brokers with an SIC code of 6411 (Insurance Agents, Brokers and Service). The US 

targets selected for this study have the following SIC codes:  

 6311: Life Insurance 

 6321: Accident and Health Insurance 

 6324: Hospital and Medical Service Plans 

 6331: Fire, Marine, and Casualty Insurance 

 6351: Surety Insurance  

 6361: Title Insurance 

 6399: Insurance Carriers, Not Elsewhere Classified  

Targets with the SIC codes 6321, 6324, 6331, 6351, 6361, and 6399 (Non-life Insurers) 

represent our treatment group, and targets with the Code 6311 (Life Insurance) represent 

our control group.7 

After having presented the SIC codes of the target insurers selected for our analysis, we 

now document geographic information to determine the US states in which target insurers 

were most affected by the two waves of M&A transactions that we identified in Figure 1. 

Most large insurers have developed models based on geographic, seismic, and 

meteorological information to estimate the level of exposure to climate risks and the 

associated losses. In this study, we document geographic information to estimate targets� 

level of exposure to climate risks captured by the fixed effects. To do this, we break down 

the number of M&A transactions of the targets by state over the period of 1990 to 2021. 

 
7 In Online appendix 2, we regroup 6321 and 6324 with 6311. The statistical results remain the same but their 
interpretation changes. 
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We find that states such as California (324), Florida (288), New York (256), Texas (268), 

Illinois (158), Pennsylvania (155), Ohio (122), Michigan (87), Connecticut (101), New 

Jersey (119), Indiana (74), Massachusetts (69), Georgia (68), Maryland (68), Missouri (68), 

Minnesota (65), North Carolina (65), Arizona (64), and Delaware (63) each have a number of 

M&A transactions that exceeds the insurance industry average of 62. In other words, these 

regions have seen a significant number of M&A transactions over the past 30 years.  

Using the distribution of the number of target M&A transactions by state shows that states 

can be subdivided into two groups based on whether the state is located in a coastal or a 

non-coastal zone. According to the National Oceanic and Atmospheric Administration 

(NOAA) website classification,8 coastal zones include the following 30 states: New York, 

Florida, Connecticut, Pennsylvania, Texas, Illinois, California, Georgia, South Carolina, 

Maryland, Ohio, Virginia, Washington, Louisiana, Mississippi, New Jersey, Michigan, 

Alabama, North Carolina, Oregon, Maine, Massachusetts, Delaware, New Hampshire, 

Hawaii, Indiana, Minnesota, Wisconsin, Rhode Island and Alaska. The remaining 21 states 

(including District of Columbia) are located in non-coastal zones. 

Figure 13 shows that all states identified as having a number of M&A transactions that 

exceeds the all-state average are in coastal zones except for Missouri and Arizona. In 

contrast, all non-coastal states have a number of M&A transactions per state that is below 

the all-state average except Missouri and Arizona. This distribution suggests that insurers 

located in coastal zones are more active in M&As. The extreme weather conditions that 

occur in these zones could explain this situation. Extreme weather can quickly trigger 

natural disaster events such as hurricanes, wildfires, tornadoes, and winter storms, and 

cause significant or extreme losses to insurers located in coastal zones. To summarize, 

insurers located in coastal zones have a higher level of exposure to climate risks than do 

insurers located in non-coastal zones. In our estimations, these differences will be taken 

into account by the fixed-effects variable. 

 
8 https://coast.noaa.gov/czm/mystate/. 
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Figure 13: Geographic distribution of the number of M&As transactions by state (1990 to 2021) 

 

Data source: SDC database. 

Additional states with numbers of MA in parentheses: South Carolina (34), Connecticut (99), Delaware (63), Maryland (67), Massachusetts (67), New Hampshire (10), 

New Jersey (116), Vermont (3), West Virginia (6). 

The larger the number, the darker the color. 
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7.1.5. Description of acquirers 

The acquirers are US or foreign companies that have carried out M&A transactions with 

the US target insurers over the period of 1990 to 2021. Based on the distribution of M&A 

transactions observed between 1990 and 2021, we identify two categories of transactions: 

inter-state transactions and intra-state transactions. According to this categorization of 

transactions, we determine that, over the period of 1990 to 2021, 24.14% of the M&A 

transactions were carried out by targets and acquirers from the same state (intra-state) and 

75.86% of M&A transactions were carried out by targets with acquirers from different 

states (inter-state) or with foreign acquirers. Thus, this distribution suggests that acquirers 

have increased their geographic scope significantly over the period of 1990 to 2021. 

Further, based on the distribution of M&A transactions observed between 1990 and 2021, 

we identify and determine the percentage of M&A transactions that occurred between 

targets and acquirers that operate in the same industry sector (i.e. that has the same SIC 

code). Our data show that 36.15% of the transactions were between targets and acquirers 

that have the same SIC code (concentration). In other words, 63.85% of the transactions 

were between targets and acquirers that have different SIC codes (diversification). This 

distribution suggests that acquirers have mostly opted for a management strategy based on 

diversification of operations rather than on concentration of operations. 

7.1.6. Description of explanatory variables 

Table 4 presents in detail the description of the variables we introduce into our model (1) 

to empirically test the difference between M&As in the US life and non-life insurance 

sectors by adopting the natural experiments method or the DID estimator. 

We argue that the increase in natural disaster events that occurred in the post-2012 period, 

and especially the significant insured losses that they caused to insurers in the non-life 

insurance sector after 2012, seriously weakened target insurers in the non-life insurance 

sector. This has caused an increase in the number of M&A targets per year in the non-life 

insurance sector relative to the life insurance sector in the post-2012 period. 
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Table 4: Description of explanatory variables 

We expect a positive sign of the coefficient of the variable Treated Post2012 on the 

number of target M&As per year. Otherwise, market conditions and changes in regulation 

after 2012 seem to have more negatively affected the life insurance industry. This 

observation may also explain a positive sign on the coefficient of the interaction variable. 

7.2.  Data and descriptive statistics of variables 

The database used is the population of state-aggregated data on the characteristics of the 

target insurers� M&A transactions, observed in the two main sectors of US insurance (non-

life and life) over a 32-year period and documented in the SDC database. Our data includes 

the 50 states of USA and the District of Columbia. This means that if a typical non-life 

insurance company operates across the country, it will be subject to 51 different regulations 

and different climate risk exposures. In order to capture the different structure of insurance 

companies as it often changes from state to state, we separate our data by state (51) and by 

year (32) according to each of our two insurance sectors. We obtain a total of 3,264 

observations.  

Table 5 presents the descriptive statistics of the variables related to the characteristics of 

M&As according to the two groups in our study sample. To compile this table, we calculate 

the means and standard deviations of the different variables within our two groups. 

Explanatory variable Description 
Expected 

sign 

Treated  

(dichotomous) 

 

Treated  variable with i equal to 1 for the 
treated group (non-life insurance sector) and 0 
for the control group (life insurance sector) 

n.a 

Post2012  

(dichotomous) 

 

The Post2012 variable takes the value 0 if the 
period is before the treatment (12-2012) and the 
value 1 if the period is after the treatment.  

n.a 

Treated   Post2012 

(dichotomous) 

 

The interaction variable Treated  × Post2012 
captures the effect of the treatment administered 
to the insurers in the treated group (non-life 
insurance sector) after the treatment. 

+ 
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Table 5 shows that the average number of M&As per year and by state is 1.030 in the non-

life insurance sector and 0.928 in the life insurance sector. In addition, the number of 

M&As for our two groups as a whole is 0.979 with a standard deviation of 1.634. Table 6 

presents the mean and standard deviation of mergers and acquisitions by period. The mean 

is lower after 2012. 

Table 5: Mean and standard deviation of the variables by insurance sector 

Numbers in parentheses are standard deviations. 

Table 6: Mean and standard deviation of the M&A by period 

Period 1990-2021 1990-2012 Post-2012 

 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Number of M&As per 
year and by state 

0.979 1.634 1.077 1.743 0.728 1.282 

 

Table 5 indicates that the average number of M&As per year and by state observed in the 

non-life insurance sector over the period of 1990 to 2021 is roughly the same as that 

observed in the life insurance sector. To validate this observation, we statistically test the 

null hypothesis that the average number of M&As per year and by state in the non-life 

sector and the average number of M&As per year and by state in the life sector are 

statistically the same. Our statistical t-test yields a value of 1.60. Because the t-test value 

obtained is below the critical value of 1.96 (5% threshold), the hypothesis is not rejected. 

We can therefore conclude that the average number of M&As per year and by state in the 

Sample 
Total sample 

(N=3264) 
Non-life sector 

(N=1632) 
Life sector 
(N=1632) 

Dependent variable 

Number of M&As per year 
and by state 

0.979 
(1.634) 

1.030 
(1.662) 

0.928 
(1.605) 

Variable of interest 

Treated Post2012  0.140 
(0.347) 

0.281 
(0.449) 

n.a 
n.a 
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non-life sector and the life sector are statistically the same over our entire study period, i.e. 

from 1990 to 2021. 

7.3. Estimation results  

The regression results of model (1) were obtained using the OLS method of estimation 

with fixed-effects. Our results presented in Table 7 indicate that the coefficient of our 

variable Treated  × Post2012 is positive and statistically significant at the 1% level. This 

result suggests a higher number of M&As in the treated group following the treatment date 

of 2012.  

Table 7: Regression results for model (1) using OLS 
with fixed effect on the state and on time 

Dependent variable 
Number of M&As per year 

(non-life and life) 

Independent variables Coefficient Standard error 

Treated   Post2012 0.626*** 0.0871 

Constant 3.013*** 0.226 

State FE Yes Yes 

Year FE Yes Yes 

Observations 3,264   

R-squared 0.551   

Robust standard errors. 
*** p<0.01. 

The sign of the coefficient of the variable Treated   Post2012 is as expected. This result 

empirically validates the assumption that the increase in natural disaster events or the 

variations of market conditions and in regulation that occurred during the post-2012 period 

may have seriously modified the insurers consolidation behavior between the two 

insurance sectors. These potential causes may have increased the difference of target 

M&As per year in the non-life insurance sector compared with the life insurance sector 

during the post-2012 period.  
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8. Financial health of US P&C insurers, 1990 to 2021 

8.1. Combined ratio 

Figure 14 shows the insured losses from natural disasters, while Figure 15 describes the 

evolution of the combined ratio. The combined ratio of the US non-life insurance industry 

has reached three major peaks since the 2000s. The first was in 2001 and reflects the major 

economic losses associated with the September 11, 2001, terrorist attack. The second peak 

occurred in 2005 and reflects the large economic losses associated with hurricanes Katrina, 

Rita, and Wilma, in 2005. Finally, the third peak was reached in 2011 and illustrates the 

costs of major claims generated by the exceptional series of violent tornadoes that occurred 

in 2011 in the US Midwest. If one considers only the level of the combined ratio 

attributable to natural catastrophe events in the US since the early 2000s, it is clear that 

2011 was the second-most costly year for US insurers, after 2005. 

Analysis of Figure 15 shows that the combined ratio for 2011 is higher than for 2017, which 

was a year of extremes in terms of US natural event losses, as shown in Figure 14. In other 

words, insured losses from natural catastrophe events in 2011 are lower than in 2017, but 

the combined ratio is higher.  

Figure 14: Insured losses (billion $) from natural disaster events in US, 1990 to 2021 

 

Data source: VERISK database. VERISK selects events with insured losses of $25 million and above. Insured 
losses: property damage and business interruption, excluding liability and life damage. 
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Figure 15: Combined ratio US property-casualty, 1990 to 2021 

 

Data source: NAIC data, Federal Insurance Office, US Department of the Treasury, Annual Report on the 
Insurance Industry (before 2018), and Statista data. Combined ratio formula = (claims costs + management 
expenses) / premiums earned.  

The combined ratio is affected by the claims losses variable (the combined ratio being an 

increasing function of insured losses). The combined ratio is also affected by the 

management expenses variable (the combined ratio being an increasing function of 

management expenses). Another variable that affects the level of the combined ratio is the 

premiums earned variable. As the formula noted below Figure 15 indicates, the combined 

ratio is a decreasing function of the premiums earned variable.  

Our data from the NAIC9 indicate that total claims costs (including those due to natural 

catastrophe events) in 2011 were $296 billion, as compared to $354 billion in 2017, an 

increase of 20% from 2011 to 2017. These loss cost figures suggest that the 2017 combined 

ratio level should be higher than that of 2011. In addition, management expenses in 2011 

were $180 billion, versus $214 billion in 2017, for an increase of 19% from 2011 to 2017.  

In other words, we should expect a higher combined ratio in 2017 than in 2011, given that 

the total loss costs and management expenses, which were $477 billion in 2011, rose to 

$568 billion in 2017, an increase of 19%. Our data, however, indicate the opposite: in 

Figure 15, a ratio of 108% in 2011 (the record year for natural event losses in the US) 

versus a ratio of 103% in 2017, equal to a 5% decrease in the combined ratio.  

 
9 US Property & Casualty and Title Insurance Industries � 2020 Full Year Results. 
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Our NAIC data also indicate that net premiums earned, which were $443 billion in 2011, 

grew to $550 billion in 2017, an increase of 24%. By contrast, the same data source shows 

that total loss costs and management, which were $477 billion in 2011, increased to $568 

billion in 2017, a 19% increase. We clearly see that it is the increase in the growth of net 

premiums earned of 24% versus the increase in total loss costs and management expenses 

of 19% over the period from 2011 to 2017 (a difference of 5%) that could explain the 

reduction in the combined ratio level by 5% over the same period (108% in 2011 versus 

103% in 2017). 

8.2. ROA and asset-turnover of targets 

To illustrate the very sharp deterioration in growth volume of all public non-life target 

insurers after the series of violent tornadoes that occurred in 2011, we use two profitability 

measures. The first is the return on total assets (ROA) profitability indicator and the second 

is the asset-turnover efficiency ratio. We use the ROA profitability indicator as a reliable 

instrument to measure the viability (growth) of our targets and non-life insurers. To be 

viable, insurers, like any other company, must generate profitability in all their businesses. 

They must repay their clients and creditors, satisfy their shareholders� demands, and 

finance their growth (on which their viability depends). Second, we use the asset-turnover 

ratio as another reliable measure of the viability of our non-life public targets. This ratio 

measures the efficiency with which a company uses its assets to produce revenue. In other 

words, asset-turnover measures performance in terms of return on assets. 

Figure 16 and Figure 17 compare the ROA and asset-turnover efficiency ratios of a sample 

of M&A targets in the US non-life insurance market with those of the non-life insurance 

industry. The two target ratios do not look very different than those of the industry, which 

indicates that the financial conditions of the targets were not necessarily bad at the merger 

or acquisition dates. We must note that these results are limited to a sample of 224 targets 

that may not represent the entire industry. They do not necessarily make it possible to reach 

a final conclusion about the overall insurance industry. 
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Figure 16: Return on total assets (ROA) for a sample of non-life targets (left) 
and for the non-life insurance industry (right) in the US, 1990 to 2021 

 

Sources: COMPUSTAT and NAIC databases. 

Figure 17: Asset-turnover efficiency ratios for a sample of non-life targets (left) 
and non- life insurance companies (right), 1990 to 2021 

Sources: COMPUSTAT and NAIC databases. 
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8.3. CAT bonds 

The exceptional series of severe tornadoes in 2011 also resulted in very high losses on two 

Mariah Re catastrophe (CAT) bonds: the Mariah Re 2010-1 CAT Bond triggered10 on 

September 30, 2011; and the Mariah Re 2010-2 CAT Bond triggered on August 30, 2011. 

These two CAT bonds were issued in November 2010 (for Mariah Re 2010-1) and 

December 2010 (for Mariah Re 2010-2) by Mariah Re Ltd. They covered the risks of severe 

storms in the US. The losses on these two Mariah Re CAT bonds issued in 2010 represent 

the highest losses in the history of CAT bonds in the US. These results indicate how the 

utilization of ILS instruments helps the insurance industry maintain capital in years of very 

high losses.  

8.4. World Economic Forum 

The magnitude of the loss costs caused by the natural disasters in the US in 2011, to which 

can be added the natural disaster events that occurred internationally, notably in Japan, 

Thailand, New Zealand, and Australia, may have raised the collective awareness of the 

danger of natural (or weather) disasters, as indicated by the works from the experts of the 

World Economic Forum (Table 8). 

The experts of the World Economic Forum show that awareness of environmental risks 

appeared among companies� top five concerns only starting in 2011, that is to say, after the 

occurrence of very large natural disasters. The analysis is based on an assessment of 

hazards by specialists from various sectors through a risk mapping model. Risk mapping 

is one of the risk management tools most widely used by companies, particularly insurers. 

It involves a graphic representation of a number of risks and serves to identify the threats 

and dangers incurred by organizations, synthesizing them in a hierarchical form. According 

to Atlas magazine (consulted on 6 December 2022), this hierarchy is based on criteria such 

as probability of occurrence, potential impact, and level of risk control. Further, mapping 

natural, economic, and social catastrophe risks enables insurance companies to better 

identify the threats likely to impact their business. Table 8 presents the World Economic 

 
10 Triggered means that the risk underlying the (CAT) bond has materialized and that the principal or capital 
is used to cover the insurer's loss instead of going back to the investors. 
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Forum�s assessment of the perception (by year) of the five global risks to which companies 

are most sensitive, for the years 2007 to 2013. 

The table shows that in 2011, the overall risk that leaders considered most worrisome for 

the next 10 years is meteorological catastrophes (storms, tornadoes and hurricanes). 

Climatological catastrophes (rain, snow, or hail) are ranked fifth, following the series of 

violent tornadoes in the Midwestern US and the natural and nuclear disasters in Japan and 

Thailand.  

Table 8: Top five global risks in terms of probability of occurrence  

 

Source: World Economic Forum. 



46 

Figure 18: US Property catastrophe rate-on-line index (private and public insurers) 

 

Data source: Data from Guy Carpenter, presented by Artemis.bm. 

Definition: Rate-on-line index (ROL) is the ratio of premium paid to loss recoverable in a reinsurance 
contract. In simple terms, ROL represents the amount of money an insurer must commit to obtain reinsurance 
coverage. A high ROL indicates that the insurer must pay more for coverage, while a low ROL means that 
an insurer pays less for the same level of coverage. 

8.5. ROL index 

Figure 18 indicates that major disasters led to large changes in the ROL index until 2012, 

and small changes thereafter. This is the case, for example, with Hurricane Andrew in 1992 

and Hurricane Katrina in 2005. After Andrew in 1992, the catastrophe index increased 68% 

in 1993. It increased 76% in 2006 after Hurricane Katrina in 2005, and by 7% in 2012 after 

the series of severe tornadoes in the Midwest in 2011. By contrast, Figure 18 shows very 

small changes in the ROL index after 2012. All ROL changes remained below the 7% mark 

(ROL change from 2011 to 2012) throughout the post-2012 period, even after major 

hurricanes Harvey, Maria, and Irma of 2017 (the year of extremes); the ROL increased by 

only 2.6% in 2018. 

8.6. Premium earned 

Premiums earned are one of the main resources available to insurers to cover loss costs. 

Therefore, the small changes in the ROL index observed after 2012 suggest that non-life 

insurers increased their level of premium collection in the post-2012 period. To verify this, 

we use premium earned data and calculate the market share of each of our insurance sectors 
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(non-life and life) over the period of 2007 to 2017. We retain this period because data on 

premiums earned, from the Insurance Information Institute, are available only for the 

period of 2007 to 2017. 

Figure 19: Market share of premiums earned by all non-life (left) 
and life insurers (right) (private and public) 

 

Data source: Insurance Information Institute. 

Figure 19 shows that premiums earned share increased significantly in the post-2012 period 

in the non-life insurance sector. By contrast, premiums earned share decreased significantly 

during the post-2012 period in the life insurance sector. Over five years (2012 to 2017), 

the non-life sector�s premium market share grew by 12%, while the life insurance sector�s 

premium market share declined by 9%.  

Figure 20 presents the different premium indexes during the period of analysis. Life 

premium growth is much lower than P&C premium growth. The P&C Homeowner�s 

Insurance Premium Index more than doubles during the period of analysis. 

The results obtained from figures 19 and 20 suggest that the recognition of natural 

catastrophe risk may have led insurers to readjust their pricing, to properly take climate 

risk into account. The net increase in the level of premiums earned in the post-2012 period 

illustrates this. 
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8.7. Market-to-book and price/book 

The results in Figure 21 suggest that there has been resilience to property damage due to 

natural disasters, in the non-life insurance industry in the post-2012 period, a period that 

was marked by sharp increases in claims costs due to natural disasters, especially starting 

in 2017 (the year of Harvey, Maria, and Irma). In other words, recognition of the risk of 

large claims from natural disasters in post-2012 allowed US non-life insurers to sufficiently 

cover loss costs with reserves from written premiums, allowing them to improve their 

financial health in the post-2012 period, as shown in Figure 21. Indeed, Figure 21 shows 

that the financial health (as measured by the price/book and market-to-book (MTB) 

indicators) of all insurers in the US non-life insurance industry improved significantly in 

the post-2012 period.  

Figure 21: Evolution of the price/book and MTB ratios in the US non-life sector 

 

Data source: COMPUSTAT database. 

8.8. ROA in both sectors 

Figure 22 shows the evolution of the ROA ratio. It suggests that non-life insurers as a whole 

have returned to growth after the great economic recession of 2009 and the decline in 2012 

caused by the Midwestern tornados in 2011 and the impact of Hurricane Sandy in 2012. 

By contrast, Figure 22 still points to a deterioration in organic growth across all life insurers 

during the same period. Figure 22 also shows a divergence in the trend between overall 

growth of non-life insurers and life insurers after 2012.  
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Figure 22: Evolution of the ROA ratio in the non-life and life insurance sectors 
in the US, 1990 to 2021 

 

Data source: COMPUSTAT database. 

 

Our data show, as Figure 22 indicates, that there is a clear positive difference between the 

ROA of the US non-life insurance industry and that of the US life insurance industry for 

almost every year in the post-2012 period. This difference was also observed between 

M&As of the US non-life insurance industry and those of the US life insurance industry, 

for each of the years over the same post-2012 period.  

9. Conclusion and discussion 

The main objective of this study is to test for the presence of a statistical link between 

climate risk and mergers and acquisitions (M&As) in the US property and casualty (P&C) 

insurance industry. The main research question is the following: is the observed increase 

in claims costs associated with climate risk events a causal factor for M&As growth during 

the 1990-2021 period? More generally, the study examines how the costs of catastrophic 

weather events associated with climate risk have impacted the insurance industry�s 

resilience by affecting economic capital during the 1990�2021 period. The financial 

literature often describes M&As as consolidation activities in different industries. 

We develop a natural experimental event study by identifying two groups of insurers that 

are exposed differently to climate risk events. The control group of insurers was less 
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exposed to weather risk events, and the treatment group of insurers was more exposed to 

weather risk events. Life insurers were considered less exposed than P&C insurers. Our 

statistical results indicate that the post-2012 period was associated with a difference in 

M&A activity between the two insurance sectors, while both sectors had parallel trends in 

M&A prior to January 2013. The number of M&As was statistically higher in the P&C 

insurance sector than in the life insurance sector in the post-2012 period. 

We faced two major difficulties isolating climate risk as having a causal effect on M&As. 

The first was separating M&As from other sources of capital consolidation that insurers 

can use to protect themselves from natural catastrophes. Dionne and Desjardins (2022) 

show that US P&C insurers significantly increased their capital between 1997 and 2020. 

These authors also identify different potential sources of capital, such as reinsurance, 

premium management, M&As, capital regulation, and insurance linked securities (ILS). 

The second difficulty was identifying potential factors other than weather risk events that 

may have affected M&As in the two insurer groups in the 1990�2021 period of analysis. 

The US insurance industry overall was affected by the 2007�2009 financial crisis, and the 

life insurance industry in particular (Barnes et al., 2016). Market conditions were difficult 

after the crisis for the life insurance industry (NAIC, 2022; Federal Insurance Office, 2022). 

Premium growth was low in this line of business, and interest rates were very low in the 

whole economy. Different federal regulations for capital were introduced, particularly in 

and after 2012, to consolidate capital risk management following the financial crisis. These 

new regulations affected capital levels and may have introduced uncertainty into the 

markets about the potential future growth of M&As. 

Our main results do not support a causal link between climate risk and M&As in the US 

insurance market during the period of analysis. We obtain a significant increase in the 

number of M&A events in the treatment group (target non-life insurers) compared to the 

control group (target life insurers) after the year 2012, but we cannot yet identify the actual 

cause of this result. Climate risk costs significantly increased after 2012 in the P&C 

insurance industry, but it is not clear that M&As were chosen to consolidate the industry. 

The observed difference could also be attributed to a significant reduction in M&As in the 
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life insurance industry after 2012, which could be explained by stagnant activity growth in 

insurance premiums and very low interest rates in the economy. 

It seems that P&C insurers choose other diversification activities, including reinsurance 

and premium management. ILS, including catastrophe bonds, became more popular during 

our period of analysis, but cannot be considered one of the main sources of capital in the 

US P&C insurance industry. Better capital risk management under the stronger risk 

regulation introduced in 2012 and following years could also have been another significant 

source of resilience for the P&C insurance industry. A preliminary analysis of all these 

potential sources of capital is presented in the appendix. It indicates that premium growth 

and reinsurance demand were the two main sources of capital in the P&C insurance 

industry during our period of analysis. Finally, our analysis of different financial indicators 

confirms the relative good health of P&C insurers after 2012. 

Many extensions of our research are in development. Reinsurance is important to diversify 

climate risks around the world over time (Cummins and Weiss, 2000, 2004). It has been 

documented that the presence of reinsurance can affect P&C insurers� behavior (Desjardins 

et al., 2022). The introduction of a more active role for reinsurance in modeling insurers� 

capital should improve our understanding of the stability of this industry despite the 

increasing number and severity of climate risk events. But reinsurance capacity may have 

its limit, particularly with the increase of climate risk worldwide, which reduces 

international diversification capacities. 

Our period of analysis ends with the year 2021. Many extreme events have been observed 

in the P&C insurance industry since 2017, which was a record year. The years 2021 and 

2022 were particularly expensive and have significantly affected both the insurance and 

reinsurance industries. Some reinsurance companies have been downgraded by rating 

agencies and others have reduced their participation in the extreme weather risk market. 

Reinsurance premiums are very high in 2023, and insurers are also leaving the market in 

high-risk states such as Florida. To date, 2022 was the third-highest for total insured costs, 

behind 2017 and 2005, according to Aon re (2023) and Munich re (2023). Total economic 

losses were $165 billion in the US, with about $100 billion in insured losses for 2022. It 
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seems that the annual $100 billion in insured losses is becoming the standard, or perhaps 

even a minimum! Updates of the data and analyses from this paper will be needed to take 

into account the new trend in the severity of catastrophic events that began in recent years. 

Before 2021, many reports described the US P&C insurance industry as overcapitalized. It 

is not clear that this will remain true in the future, when we look at insured costs since 

2017. These costs are not only high, they repeat every recent year. The years 2005 and 

2011 used to be considered outliers, with a low probability of recurrence. This does not 

seem to be the case anymore with the recent years, as we observe the climate changing. 

Finally, another issue concerns the effect of climate risk on life insurance. In a recent SCOR 

analysis (2022), climate change risks are related to potential life liabilities in the long run. 

The relevance of climate change risks for life insurance liabilities depends mainly on the 

insurer�s location in the world. For example, the study shows that climate change could 

generate additional US heat mortality over a time horizon of several decades. More 

research on the effect of climate risk on the life insurance industry also seems necessary. 

  



54 

10. References 

Aerts, J.C.J.H., Wouter Botzen, W.J., Emanuel, K., Lin, N., de Moel, H., Michel-Kerjan, 
E.O., 2014. Evaluating flood resilience strategies for coastal megacities. Science 344, 
6183, 473-475.  

Akhigbe, A., Madura, J., 2001. Intra-industry signals resulting from insurance company 
mergers. The Journal of Risk and Insurance 68, 489-506. 

Amel, D., Barnes, C., Panetta, F., Salleo, C., 2004. Consolidation and efficiency in the 
financial sector: a review of the international evidence. Journal of Banking and Finance 
28, 2493-2519. 

Amihud, Y., Lev, B., 1981. Risk reduction as a managerial motive for conglomerate 
mergers. Bell Journal of Economics 12, 1, 605-617. 

AON, 2023. Weather, climate and catastrophe insight. https://www.aon.com/weather-
climate-catastrophe/index.aspx. 

Atlas magazine. https://www.atlas-mag.net/en/category/regions-geographiques/monde/ 
natural-catastrophes-115-billion-usd-of-insured-losses-in-2022. Consulted on 6 
December 2022. 

Baldauf, M., Garlappi, L., Yannelis, C., 2020. Does climate change affect real estate 
prices? Only if you believe in it. The Review of Financial Studies 33, 3, 1256-1295.  

Betton, S., Eckbo, B.E., Thorburn, K., 2009. Merger negotiations and the toeholds puzzle. 
Journal of Financial Economics, 91, 2, 158-178.  

Boubakri, N., Dionne, G., Triki, T., 2008. Consolidation and value creation in the insurance 
industry: The role of governance. Journal of Banking and Finance 32, 56-68. 

Brockman, P., Yan, X., 2009. Block ownership and firm-specific information. Journal of 
Banking and Finance 33, 2, 308-316.  

Chamberlain, S., Tennyson, S., 1998. Capital shocks and merger activity in the property-
liability insurance industry. The Journal of Risk and Insurance 65, 563-595. 

Cummins, D., Klumpes, P., Weiss, M.A., 2015. Mergers and acquisitions in the global 
insurance industry: Valuation effects. The Geneva Papers on Risk and Insurance - 
Issues and Practice, 40 (3), pp. 444-473. ISSN 1018-5895. 

Cummins, D., Tennyson, S., Weiss, M., 1999. Consolidation and efficiency in the US life 
insurance industry. The Journal of Banking and Finance 23, 325-357. 

Cummins, D., Weiss, M., 2004. Consolidation in the European insurance industry: Do 
mergers and acquisitions create value for shareholders? Working Paper, The Wharton 
Financial Institutions Center. 



55 

Cummins, D., Xie, X., 2008. Mergers and acquisitions in the US property-liability 
insurance industry: Productivity and efficiency effects. Journal of Banking and Finance 
32, 1, 30-55. 

Deloitte, 2022. 2022 insurance M&A outlook (27 pages document internet). 
https://www2.deloitte.com/us/en/pages/financial-services/articles/insurance-m-and-a-
outlook.html. 

Denis, D.K., McConnell, J.J., 2003. International corporate governance. Journal of 
Financial and Quantitative Analysis 38, 1-36. 

Desjardins, D., Dionne, G., Koné, N., 2022. Reinsurance demand and liquidity creation: A 
search for bicausality. Journal of Empirical Finance 66, 137-154. 

Dionne, G., Desjardins, D., 2022. A re-examination of the U.S. insurance market�s capacity 
to pay catastrophe losses. Risk Management and Insurance Review 25, 4, 515-549. 

Dionne, G., Liu, Y., 2021. Effects of insurance incentives on road safety: Evidence from a 
natural experiment in China. Scandinavian Journal of Economics 123, 2, 453�477. 

Dionne, G., 2015. Policy Making and Climate Risk Insurability: How Can (Re)Insurers 
Contribute to Economic Resilience in Climate Risk Events? Working paper 15-06, 
Canada Research Chair in Risk Management, HEC Montréal. 

Dionne, G., La Haye, M., Bergerès, A.S., 2015. Does asymmetric information affect the 
premium in mergers and acquisitions? Canadian Journal of Economics 48, 3, 819-852. 

Estrella, A., 2001. Mixing and matching: prospective financial sector mergers and market 
valuation. Journal of Banking and Finance 25, 2367-2392.  

Fama, E.F., French, K.R., 1993. Common risk factors in the returns on stocks and bonds. 
Journal of Financial Economics 33, 3-56. 

Floreani, A., Rigamonti, S., 2001. Mergers and shareholders� wealth in the insurance 
industry. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=267554. 

Geneva Association 2022. Anchoring Climate Risk Change Risks Assessment in Core 
Business Decisions in Insurance, Third report of the Geneva Association task force on 
climate change risk assessment fo the insurance industry (Maryam Golnaraghi 
coordinator and lead author), 51 pages document internet. 
https://www.genevaassociation.org/sites/default/files/2022-10/Climate%20Risk%203 
_web.pdf. 

Giorcelli, M., Moser, P., 2020. Copyrights and creativity: Evidence from Italian opera in 
the Napoleonic Age. Journal of Political Economy 128, 11, 4163-4210. 

Guest, P.M., 2021. Risk management in financial institutions: A Replication. Journal of 
Finance 76, 5, 2689-2707. 

Imbens, G.W., Wooldridge, J.M., 2009. Recent developments in the econometrics of 
program evaluation. Journal of Economic Literature, 47, 1, 5-86. 



56 

Issler, P., Stanton, R., Vergara-Alert, C., Wallace, N., 2020. Mortgage markets with 
climate-change risk: Evidence from wildfires in California. Working paper, University 
of California, Berkeley.  

Jensen, M., 1986. Agency costs of free cash flow, corporate finance and takeovers. 
American Economic Review 76, 323-329.  

Kessler, D., 2015. Conference at the SCOR Scientific Seminar About Climate Risks, Paris, 
June. https://www.scor.com/en/media/news-press-releases/scientific-seminar-about-
climate-risks. 

Klein, R.W., Wang, S., 2009. Catastrophe risk financing in the United States and the 
European Union: A comparative analysis of alternative regulatory approaches. The 
Journal of Risk and Insurance 76, 3, 607-637.  

Klumpes, P., 2022. Consolidation and efficiency in the major European insurance markets. 
Working paper, Accounting Research Group, Aalborg University Business School. 

KPMG, 2020. KPMG Zoom: Mergers and Acquisitions Trends � 2020. 
https://home.kpmg/tr/en/home/insights/2021/02/kpmg-zoom-mergers-acquisitions-
trends-2020.html. 

Mayer Brown. Global Insurance Industry Year in Review. Web reports 2013 to 2021. 
https://www.mayerbrown.com/en/information/global-insurance-industry-year-in-
review. 

Michel-Kerjan, E., 2012. How resilient is your country? Nature, 491, p. 497. 
https://www.nature.com/news/how-resilient-is-your-country-1.11861. 

Mills, E., 2009. A global review of insurance industry responses to climate change. The 
Geneva Papers 34, 323-359. 

Moeller, S., Schlingemann, F., 2005. Global diversification and bidder gains: A 
comparison between cross-border and domestic acquisitions. Journal of Banking and 
Finance 29, 533-564. 

Munich re, 2023. Climate change and La Niña driving losses: the natural disaster figures 
for 2022. https://www.munichre.com/en/company/media-relations/media-information-
and-corporate-news/media-information/2023/natural-disaster-figures-2022.html. 

NAIC, 2013. The U.S. National state-based system of insurance financial regulation and 
the Solvency Modernization Initiative. NAIC White paper. https://content.naic.org/ 
sites/default/files/inline-files/committees_e_us_solvency_framework.pdf. 

Roberts, M.R., Whited, T.M., 2012. Endogeneity in empirical corporate finance. In: 
G. Constantinides (ed.), Handbook of the Economics of Finance. Vol. 2, Elsevier 
North-Holland, Amsterdam, 493-572. 

Roll, R., 1986. The hubris hypothesis of corporate takeovers. Journal of Business 59, 197-
216.  



57 

Rossi, S., Volpin, P. 2004. Cross country determinants of mergers and acquisitions. Journal 
of Financial Economics 74, 277-304.  

SCOR, 2022. The Relevance of Climate Risk Change for Life and Health Insurance (Irene 
Merk, author), 10 pages, document internet. https://www.scor.com/en/expert-
views/relevance-climate-change-life-insurance. 

Seifert, D.L., Lindberg, D.L., 2012. Managing climate change risk: Insurers can lead the 
way. Risk, Hazards & Crisis in Public Policy 3, 2, article 5. 

Sigma, 2015. Natural catastrophes and man-made disasters in 2014: Convective and winter 
storms generate most losses. https://www.swissre.com/institute/research/sigma-
research/sigma-2015-02.html.  

Snecdecor, G.W., Cochran, W., 1989. Statistical Methods, 8th Edition. Wiley-Blackwell. 

Wagner, K., 2020. Adaptation and Adverse Selection in Markets for Natural Disaster 
Insurance. American Economic Journal: Economic Policy 14, 3, 380-421. 

Wilcoxon, F., 1945. Individual comparisons by ranking methods. Biometrics Bulletin 1, 6, 
80-83.



58 

Appendix 1 

Sources of capital in the US insurance industry 
 

 
Table A1: Descriptive statistics, P&C insurance industry, 1990-2021 

Variable in 1012 $ N Mean Std Min Median Max Data source 

Total capital 32 0.76830 0.24772 0.36562 0.75035 1.30444 NAIC 

Reinsurance demand ratio 32 0.46390 0.03451 0.40622 0.47744 0.50991 NAIC 

Liquidity creation ratio 32 -0.51560 0.02989 -0.58240 -0.51357 -0.45720 NAIC 

Direct premium written 32 0.60237 0.09591 0.47176 0.61269 0.79358 NAIC 

Net premium written 32 0.55145 0.07755 0.44708 0.55084 0.71815 NAIC 

Premiums earned 32 0.53979 0.07403 0.44336 0.53749 0.69036 NAIC 

MA 32 29.8125 9.82242 16 29 61 SDC 

Catastrophic losses 32 0.02769 0.02363 0.00439 0.01747 0.08644 VERISK 

CAT and ILS issued 25 0.00632 0.00413 0.00133 0.00630 0.01400 Artemis 

ILS issued 25 0.00062 0.00063 -0.00019 0.00041 0.00212 Artemis 

CAT issued 25 0.00561 0.00359 0.00132 0.00566 0.01251 Artemis 

Note: Annual values in 2021$. 
 

Table A1 presents the data and their sources for the 1990-2021 period when there are 32 observations. The period is 1997-2021 
otherwise. 
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Table A2: Sources of capital in the US P&C insured industry, 
1997-2021 (all variables) 

Variable 

With ILS Without ILS 

Parameter t Parameter t 

Intercept ‒2.71144** ‒4.95 ‒2.63371** ‒5.01 

Reinsurance demand 2.16704* 2.47 2.12044* 2.52 

Liquidity creation ratio ‒3.06447** ‒6.32 ‒2.97884** ‒6.30 

Post-2012 0.09938** 3.25 0.09807** 3.38 

Premium earned  1.61666** 5.15 1.57369** 5.14 

MA ‒0.00168 ‒1.48 ‒0.00151 ‒1.36 

Catastrophic losses  0.60532 1.29 0.62122 1.38 

Catastrophe bonds and ILS 6.67811 1.39 ‒ ‒ 
Catastrophe bonds ‒ ‒ 8.87143 1.75 

Number of observations 25 

R-squared 0.9639 0.9660 

R-squared adjusted 0.9491 0.9520 

*p<0.05; ** p<0.01 

We observe in Table A2 that MA, catastrophe losses, and ILS are not statistically 

significant to explain the sources of capital in the P&C insurance industry. Reinsurance 

demand and Premium earned are important sources of capital. 

Table A3: Sources of capital in the US P&C insurance industry, 
1997-2021 (significant variables only) 

Variable 

With ILS Without ILS 

Parameter t Parameter t 

Intercept ‒2.66866** ‒4.70 ‒2.61057** ‒4.82 

Reinsurance demand 2.57214** 2.94 2.51303** 3.01 

Liquidity creation ratio ‒2.68013** ‒5.96 ‒2.62595** ‒6.03 

Post-2012 0.08954** 2.87 0.08965** 3.02 

Premium earned  1.46227** 5.29 1.44937** 5.44 

Catastrophe bonds and ILS 9.44476* 1.99 ‒ ‒ 
Catastrophe bonds ‒ ‒ 11.59059* 2.33 

Number of observations 25 

R-squared 0.9566 0.9592 

R-squared adjusted 0.9451 0.9484 

*p<0.10; ** p<0.01 
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Table A3 presents a robustness analysis of results of Table A12 when we drop non-

significant variables. P&C insurers significantly increased their capital after 2012 

(Post2012). 
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1 Introduction

Vertical relationships frequently involve the outsourcing of services from upstream firms

to downstream retailers. This may be at the origin of agency costs, associated with the

discretion in the way retailers do their job. Such agency costs sometimes go through

the collusion between retailers and customers, who exploit loopholes in the contracts

between producers and customers. Discount fraud and warranty fraud are instances of

such customer misbehaviors that involve collusion with retailers or frontline employees.

Discount fraud exploits the special discounts that companies may offer under particular

circumstances, for instance when discounted products are used for a specific purpose, e.g.,

educational use for softwares. Warranty fraud occurs especially when a service provider -

e.g. a car repairer - replaces a defective part with a new spare part and triggers the pro-

ducer’s warranty, although the defective part was not original and thus was not protected

by the warranty.1

This paper investigates another form of customer misbehavior facilitated by service

providers acting on behalf of distributors: insurance fraud. Our empirical focus is on

the Taiwan automobile insurance market and on the role of car dealer-owned insurance

agents (DOAs) in this market. In such cases, dealers sell not only cars, but also automobile

insurance to their clients, and furthermore they own an auto repair shop. Understandably,

this multi-faceted activity and the long-term connection with car owners favor the creation

of a mutually advantageous policyholder-DOA alliance. Concerning fraud itself, we will

focus attention on two misbehaviors in the Taiwanese car insurance market. Firstly, the

fact that policyholders may file small false claims by the end of the policy year if they

have not receive any indemnity previously, a behavior highlighted by Li et al. (2013).

1See Harris and Daunt (2013) on managerial strategies under the risk of customer misbehavior. Murthy
and Djamaludin (2002) survey the literature on new product warranty. Insufficient maintenance effort
by buyers and inadequate behavior by retailers are at the origin of a double moral hazard problem in
warranty management.
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Recouping a part of the insurance premium paid to presumably unfair insurers may be

the psychological motivation behind this behavior. Secondly, postponing claims to the

last month of the policy year and, when possible, merging two losses in a single claim.

Deductibles and the bonus-malus mechanism are the underlying reasons for this second

type of misbehavior. Disentangling these two types of fraud will be one of our main

challenges in what follows.

An insurance market model yields the theoretical underpinnings of our analysis. The

model focuses on the strategic interaction between, on the one side, policyholders who

file fraudulent claims by colluding with car repairers, and, on the other side, insurers who

audit claims. Auditing claims is all the more costly when the collusion between policy-

holders and car repairers is more difficult to detect, which is particularly the case when

car repairers are sheltered by DOAs. In addition, should irregularities be detected by the

insurer, the bargaining power of DOAs may allow them to deter insurers from enforcing

penalties. This suggests that there are potentially two reasons for which DOAs may facil-

itate insurance fraud: firstly, it may be hard for insurers to establish the truth because of

the risk of collusion between DOAs and policyholders, and secondly, the bargaining power

of DOAs may allow them not to be penalized when fraud is detected. The outcome is a

higher fraud rate when insurance is distributed by DOAs than through other channels.

As we will see below, this is reinforced in the case of deductible contracts, because de-

ductibles increase the gain that policyholders obtain from fraud, and weaken the insurers’

incentives to monitor claims.

Our empirical analysis draws on a database obtained from two large insurance com-

panies in Taiwan. One of them, company 1, provided information on the policyholders

who have filed an automobile claim in 2010 or 2018, and the other one, company 2,

provided information on the policyholders who have filed an automobile claim in 2010.

Company 1 relied heavily on DOAs to sell policies, although the market share of this
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distribution channel strongly decreased from 2010 to 2018, while company 2 never used

DOAs.Starting with year 2010, our results confirm that there was more fraudulent claim

manipulation when insurance policies were sold through DOAs than through other dis-

tribution channels, and also that deductibles stimulated fraud.2 We also show that the

causal mechanisms on which we focus (i.e., postponing claims, and possibly filing one

claim for several accidents) were related to the bonus-malus system in force in Taiwan,

and also to incentives inherent in the design of deductible contracts. This will go through

an approach which consists of providing indirect evidence of such misbehaviors and of its

mechanisms.3 More explicitly, we show that, in 2010, the intertemporal pattern of claims

was consistent with policyholder’s fraudulent behavior favored by DOAs, after control-

ling for other explanations, including moral hazard and the money recouping behavior

highlighted by Li et al. (2013).

However, things have changed dramatically from 2010 to 2018: DOAs were used less

frequently by insurers, with presumably a lower bargaining power at the claim settlement

stage. In other words, in 2018 it was more difficult for DOAs to collude with their

customers at the expense of the insurer. As will be shown, the role of DOAs as facilitators

of insurance fraud through claim manipulation vanished in 2018, in accordance with the

decrease in their bargaining power.

The paper is organized as follows. Section 2 provides further motivation for our analy-

2Other authors have emphasized the effect of deductibles on insurance fraud. Using data from Québec,
Dionne and Gagné (2001) show that the amount of the deductible is a significant determinant of the
reported loss when no other vehicle is involved in the accident which led to the claim, and thus when
the presence of witnesses is less likely. Miyazaki (2009) highlights through an experimental study that
higher deductibles result in a weaker perception that claim padding is an unethical behavior, and thus in
a larger propensity toward fraud.

3Although Dionne et al. (2009a) is an exception, it is usually very difficult to use direct information
on fraudulent claims to analyze insurance fraud, either because identified fraud is just the top of the
iceberg, or because of insurers’reluctance to share confidential information on any fraud they are victims
of. The preferred approach consists in establishing indirect evidence of fraud. For instance, Dionne and
Gagné (2002) and Dionne and Wang (2013) deduce the existence of fraud in automobile theft insurance
from the time pattern of claims among the twelve policy months. Pao et al. (2014) provide evidence of
opportunistic theft insurance fraud by analysing the claim pattern in areas hit by a typhoon.
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sis. We introduce some factual observations that should convince the reader that there is

claim manipulation in the Taiwanese car insurance market, and we describe regular fraud

patterns. Section 3 develops a simple theoretical model of insurance fraud that shows how

these patterns are linked to specific features of insurance contracts, particularly per-claim

deductibles, and to the insurance distribution channel.4 Section 4 describes the data in

more detail, it presents our econometric approach, and discusses our results about claim

manipulation. We particularly highlight the changes in the fraud pattern and in the role

of DOAs from 2010 to 2018. Section 5 concludes.

2 Factual background

Our investigation will be based on information yielded by two large Taiwanese insurers,

refered to as companies 1 and 2, about their automobile policyholders and their claims in

2010 and 2018. In 2010, company 1 sold approximately 37% of its automobile policies

through DOAs, and this share dropped to about 20% in 2018. On the contrary, company

2 never sold insurance through the DOA channel.

Insurance agents, be they DOAs or standard agents, are in charge of handling claims.

This frequently involves some bargaining between the insurer whose objective is to min-

imize the cost of claims, and the agents, who may favour their customers, particularly

when they receive sales-based commissions. In this bargaining process, DOAs take advan-

tage of the size of their activity, and of the fact that they own the list of their customers.

In particular, an insurer who discovers a claim manipulation by a DOA may be reluctant

to take retaliatory actions because of this strategic advantage of DOAs, who could switch

to another insurer.5 In the case of company 1, the bargaining power of DOAs is expected

4This section may be skipped by readers who are mostly interested in the empirical analysis of insur-
ance fraud.

5On average, Taiwanese DOAs sell more policies than other agents: three times more on average,
and much more for the largest DOAs. They are independent agents, and, as emphasized by Mayers and
Smith (1981), this status gives them more discretion in claim administration (e.g. they may intercede
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to have decreased from 2010 to 2018, because this insurer has dramatically reduced its

dependence on DOAs. The specificity of DOAs has also an informational dimension, re-

lated to the fact that they work in partnership with car repairers, both being sheltered

by car dealers. This multifaceted agency relationship creates an informational advantage:

establishing that a claim has been falsified is particularly difficult and costly when it has

been filed through a DOA.

Our study is also related to specific forms of insurance contract manipulation in Tai-

wan. Li et al. (2013) have observed that a large proportion of automobile insurance

claims are filed during the last months of the policy year. This is confirmed by our own

database. Figure 1 presents the distribution of claims and their average cost (in hundred

US dollars) in 2010 over the twelve policy months, with a striking concentration of claims

and a slight decrease in the claim cost in the last months of the policy year. Li et al.

(2013) interpret this phenomena as a "premium recouping effect": some policyholders

without accident during the previous months would tend to file small false claims during

the last month of the policy year to express their feeling that they have been unfairly

treated by the insurance company.

Figure 1

Some information about insurance contracts is useful for what follows. There are three

different types of automobile physical damage insurance contracts in Taiwan: types A,

B and C. Types A and B contracts cover all kinds of collision and non-collision losses,

with more exclusions for B than for A,6 while type-C contracts only cover the damages

incurred in a collision involving two or more vehicles. Contracts also differ in terms of

on behalf of their customers at the claim settlement stage) because they can credibly threaten to switch
their business from one insurer to another. Actually, DOAs provide comparatively less stable customers
to company 1 than other insurance agents, with continuation rates (i.e. the fraction of customers who
continue purchasing insurance from the same insurer year on year) which are about sixty percent for
DOAs and seventy to eighty percent for other insurance agents.

6Type B contracts cover all the areas of type-A contracts, except the non-collision losses caused by
intentional damage, vandalism, and any unidentified reasons.
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indemnity: Type A contracts offer low coverage with a deductible, type B contracts may

be purchased with or without a deductible, and type C contracts provide full coverage

without a deductible. Claims are per accident, with a specific deductible for each claim.

The change in premium is ruled by a bonus-malus system when policyholders renew their

contracts with the same insurance company, with a no-claim discount and an increase in

premium proportional to the number of claims, without reference to their severity. The

policyholders who switch to another insurance company bargain with this company about

the new starting point of their bonus-malus record

In this setting, opportunist policyholders may take advantage of manipulating claims

for several reasons. Firstly, according to the premium recouping interpretation of Li et al.

(2013), policyholders who wrongly pretend to have incurred some small losses in order to

recoup part of their insurance premium are more likely to be among the policyholders who

do not plan to keep a long term relationship with the same insurance company. Intuitively,

such customers feel a lower moral cost of defrauding than those who intend to keep a long-

term relationship with their insurer.7 In our empirical analysis, this will lead us to define

a Recoup Group RG that includes the policyholders who did not renew their contract

more than one year after the policy year under consideration.8 Secondly, for two reasons,

insurance contracts may also incentivize opportunistic policyholders to manipulate claims

corresponding to true accidents. Indeed, the claims filed during the last month of policy

year t are not registered in the bonus-malus record of year t+ 1 (they will be taken into

account in the premium paid in year t+2), and consequently, the policyholders who plan

7It is well known that insurance fraud is often associated with the feeling that the insurance company is
unfair; see Fukukawa et al. (2007), Miyazaki (2009) and Tennyson (1997, 2002). The premium recouping
phenomenon highlighted by Li et al. (2013) could reflect a kind of resentment against insurers, particularly
from policyholders who have not filed a claim during the previous months the policy year.

8In Taiwan, filing a claim during the last month of the policy year does not affect the policyholder
through the bonus-malus system if he/she does not stay more than one year with the same insurer. Our
definition of the Recoup Group thus corresponds to policyholders without strong attachments to their
current insurer, and for whom false claims filed toward the end of the policy year have no consequence
through the bonus-malus system.
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to renew their contract with the same insurer may see an advantage in postponing their

claim to the last policy month, in order to delay the increase in premium.9 In addition,

since the bonus-malus record depends on the number of claims and not on their severity,

policyholders may benefit from filing one single claim for two accidents, should a second

accident occur. This is even more profitable in the case of deductible contracts, since

deductibles are per-claim. In brief, because of the bonus-malus system and of deductible

contracts, postponing the first claim and merging any other accident with the first one

within a single claim is a winning strategy for opportunistic policyholders.10

Type A and B contracts are subject to such claim manipulation, because they include

coverage for losses other than those associated with the collision between two cars. There

is no third-party involved in such claims and no police report. On the other hand, the

claims filed for type C contracts correspond only to collisions, and they have to include

a police report, which makes manipulation very unlikely. In our empirical analysis of

year 2010, the set of policyholders who renewed type A or B contracts in 2011, but not

in 2012, with the same insurer will be called the Suspicious Group SG because of this

maximum incentive to manipulate the bonus-malus system, with subgroups SG1 and

SG2 for no-deductible and deductible contracts, respectively.11 In 2018, all type A or

B contracts included a deductible, and thus the distinction between SG1 and SG2 is no

longer appropriate for this year.12

One of the key insights of our analysis will be about the role of DOAs in this fraudulent

claim manipulation process in 2010. Figure 2 provides a preliminary idea of this role by

considering how the type of contract and the sale process (DOA or standard insurance

9In addition, the bonus-malus system forgives the first accident for drivers who have had no other
accidents for three years, which provides an even larger manipulation gain.

10Since 1996, the per-claim deductible is increasing with the number of claims, which strengthen even
more the incentives to manipulate claims.

11The bonus-malus record has a new departure point when the policyholder switch insurers. Thus, by
postponing their first claim to the last policy month, such policyholders were able to fully escape the
consequence of this claim on their bonus-malus record.

12In other words, SG is 2018 corresponds to SG2 in 2010.
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agents) have affected the time distribution of claims during the policy year. It is striking

how the claim distribution during the last policy month is peaking at the end of the year

for members of SG1 and SG2 who have purchased insurance through agents sheltered

by car dealers. Comparing with type C contracts used as a benchmark without claim

manipulation reinforces the intuition that DOAs played an important role in this fraud

process.

Figure 2

It nevertheless remains that Figure 2 does not allow us to assess whether this timing

favored by DOAs resulted from the manipulation of claims corresponding to actual losses

or from the behavior consisting in filing a small false claim at the end of the policy year in

order to recoup some money from the insurer. However, if a substantial number of claims

filed in the last policy month correspond in fact to first claims that have been postponed,

possibly with the cumulated losses of two events, then such claims should be more costly

than average. In other words, we should expect that the ratio of "the average cost of first

claims" over "the average cost of all claims" (hereafter called the first claim cost ratio)

should increase during this month, contrary to the premium recouping interpretation of

Li et al. (2013), hence a possible way of disentangling these two interpretations. But

this may be misleading if the cost of claims is affected by an intertemporal moral hazard

mechanism. Indeed, if a first accident makes drivers more cautious, then one may expect

that subsequent accident would tend to be less severe, hence another possible explanation

for an increase in the first claim cost ratio by the end of the policy year. To separate claim

manipulation from moral hazard, we may consider type C contracts as a benchmark, since

claim manipulation is vey unlikely for such contracts.

Figure 3
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Figure 3 sustains the claimmanipulation hypothesis for policyholders of the SG2 group

who have purchased insurance through a DOA in 2010: their first claim cost ratio strongly

increases in the last month of the policy year, and this is not the case for the other groups

of policyholders. This suggests that in 2010 the claim manipulation mechanism dominated

the premium recouping mechanism in SG2 (the subgroup of policyholders who benefit the

most from claim manipulation), with DOAs acting as fraud facilitators, while the reverse

occurs in the other subgroups. We also observe that for the RG group, the first claim cost

ratio slightly increases when insurance has been purchased through the DOA channel,

while it slightly decreases otherwise. This suggests that, among RG policyholders, the

claim manipulation mechanism may be stronger than the premium recouping mechanism

when insurance goes through DOAs. As we will see later, things have changed from 2010

to 2018.

3 Theoretical background

The model features the non-cooperative interaction between policyholders and insurers,

in a costly state verification setting.13 Consider a population of risk-averse drivers, whose

type is defined by the couple (i, h) with i ∈ {D,A} and h ∈ {1, 2}. Index i refers to the

individuals’ preference for a specific distribution channel through which they purchase

insurance: DOA when i = D or standard insurance agents when i = A.14 Index h reflects

the individual’s degree of absolute risk aversion: h = 1 corresponds to a higher absolute

risk aversion than h = 2. Assume that drivers may have either 0,1 or 2 accidents during

13See Picard (1996). For the sake of brevity, several aspects of the insurance market analysis are
deliberately overlooked here. This particularly concerns the way individuals choose their contract and
their insurance distribution channel, depending on their risk aversion and on their intinsic preference for
a specific channel.

14For the sake of simplicity and brevity, we do not analyze the reasons for which an individual may prefer
to purchase insurance through a car dealer or through another distribution channel. Such preferences
are likely to depend on many factors, such as the valuation of time saved by bundling the purchase of a
new car and the taking out of an insurance policy, the repeated relationship between individuals and car
dealers that also provide repair services, or the level of trust in car dealers.
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the same policy year, with probability π1 and π2 for 1 and 2 accidents, respectively, and

π1 + π2 < 1, and also that these probabilities are independent of the policyholders’ type.

Insurance contracts include a deductible per accident. We respectively denote dih and Pih

the deductible and the premium of the contract chosen by type h individuals who purchase

insurance through channel i. Less risk averse individuals choose a larger deductible, and

thus we have di2 > di1 ≥ 0.15

Each accident may be severe or minor, and the corresponding claims small or large,

with probability qs or qm = 1−qs, respectively, irrespective of the policyholder’s type, and

whether it is the first or second accident during the policy year. To simplify our analysis

of fraud through claim manipulation, its is assumed that a large claim exactly doubles

a small claim, with loss ` and 2`, respectively. Fraud is committed by policyholders

who postpone small claims till their last policy month. They will file one single large

claim for two minor accidents presented as a severe accident that occured during the last

policy month, should another minor accident occur later during the same policy year.

Otherwise, the claim corresponding to the first minor accident will be denied because

filed outside the permitted time. Fraud reduces the retained cost of the accidents by half

since the deductible is paid only once. It also provides a supplementary gain through the

manipulation of the bonus-malus system if the policyholder intends to stay with the same

insurer at least during the next year. Fraud requires collusion with a car repairer, the

policyholder and the repairer sharing the benefits according to their respective bargaining

powers. If they are spotted defrauding, they have to pay a penalty (considered, for

simplicity, as a fine to the government), and, in that case, the claim is fully denied.

Let us denote by αih and βih the fraud and audit mixed strategy of the policyholder and

the insurer, respectively, for a population of type (i, h) individuals. αih is the probability

that a type (i, h) policyholder postpones a first small claim (when the corresponding

15For notational simplicity, we assume that the deductible is the same whether it is the first or second
claim during the policy year.
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minor accident occurs before the last policy month), with the intention to file a single

large claim for two accidents during the last policy month, should another minor accident

occur before the end of the year. Fraud is concentrated among those policyholders who

are willing to stay with the same insurer at the end of the policy year because they are the

ones who benefit the most through the bonus-malus mechanism.16 βih is the probability

that a large claim (filed by a type (i, h) policyholder) is audited by the insurer.17 Such

large claims correspond either to true severe accidents or to two minor accidents that have

been fraudulently aggregated and postponed to the last month). We assume that audit

allows the insurer to detect with certainty whether the claim has been manipulated or

not.

The expected cost of claims per type (i, h) policyholder is written as

Cih = L−Dih + FCih + ACih, (1)

where L is the expected costs of accidents, Dih is the cost retained by the policyholder

(in the absence of claim manipulation), FCih is the cost of claim manipulation for the

insurer and ACih is the audit cost.

L and Dih are equal to the expected number of accidents per policyholder π1 + 2π2

multiplied by the weighted average loss per accident and by the deductible per accident,

16The policyholders who may benefit the most from defrauding through claim manipulation are those
who have a first minor accident before the last month of their policy year and who do not intend to switch
insurers. If these policyholders are just indifferent between defrauding and not-defrauding, as will be the
case at the equilibrium of the policyholder-insurer interaction game presented in the following analysis,
then the other policyholders will be detered from defrauding.

17Note that the degree of risk aversion is not directly observed by the insurer. However, individuals
choose different contracts (i.e., different deductibles) depending on their risk aversion, and thus insurers
can condition their audit probability on the level of the deductible, and thus indirectly on the policy-
holder’s type. Note also, that the policy year and the calendar year do not coincide. The beginning of the
policy year is evenly distributed over the calendar year among the policyholders. Only the first claims
that correspond to (true or falsified) severe accidents are audited. For practical reasons, it is assumed
that insurers audit all these claims with the same probability, whether they are filed within or outside
the last month of the policy year.

12



respectively. This gives

L = (π1 + 2π2)[qs`+ 2qm`]

= (π1 + 2π2)(2− qs)`,

and

Dih = (π1 + 2π2)dih.

FCih is proportional to αih but, for given αih, it decreases linearly with βih, because

auditing a larger fraction of large claims reduces average indemnity payment through

the detection of falsified claims. DOAs have some bargaining power with insurers and

they may intercede with the insurer when a claim is denied for fraud. This intervention

is successful with some probability, and thus it decreases the financial benefit drawn by

the insurer from spotting a defrauding policyholder-car repairer coalition. Thus, we may

write

FCih = αih[a1(dih)− a2(dih, ζ i)βih], (2)

where a1(dih) and a2(dih, ζ i) correspond to the expected cost of fraud (in the absence of

audit), and to the expected gain from claim audit. We have a′

1
> 0 and a′

2d < 0 because the

larger the deductible, the larger the financial impact of claims falsification and the smaller

the gain to the insurer when a claim is denied after audit. Furthermore, ζ i is a parameter

that measures the bargaining power of distribution channel i, with ζD > ζA.
18We have

a′

2ζ < 0 because the distribution channel’s bargaining power leads to a smaller insurer’s

18Claim manipulation, as it is described, may be committed by policyholders who intend to renew their
insurance policy and who have two accidents, the first one being minor and occurring before the last
month of the policy year. Thus, a1(dih) and a2i(dih) depend on the probability that a type (i, h) individual
is in this situation, which depends on π1, π2 and qs, but also on the timing of accidents throughout the
policy year, which is left undescribed for the sake of brevity.
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expected benefit when fraud is detected.

DOAs own and control their repair shop. Thus, it is assumed that auditing a claim (i.e.,

spending resources to discover whether a claim has been manipulated or not) is more costly

when insurance has been purchased through a DOA than through a standard insurance

agent, because the protection of the DOA makes the detection of the policyholder-repairer

collusion more difficult. We denote ci the audit cost when the insurance distribution

channel is i = D or A, with cD > cA.

Since here fraud consists in filing one single large postponed claim for two accidents,

the number of large claims filed by type (i, h) policyholders is linearly increasing with αih,

which allows us to write19

ACih = ciβih(a3 + a4αih). (3)

The insurer chooses βih in [0, 1] in order to minimize Cih given by (1), which implies

βih





= 0 if αih < α∗(dih, ζ i, ci),

∈ [0, 1] if αih = α∗(dih, ζ i, ci),

= 1 if αih > α∗(dih, ζ i, ci),

(4)

where

α∗(d, ζ, c) ≡
ca3

a2(d, ζ)− ca4
. (5)

with α∗′

d > 0, α∗′

ζ > 0 and α∗′

c > 0. Let us assume that α∗(d, ζ, c) < 1 for the relevant values

of d, ζ, c, which means that systematic fraud would trigger the auditing of all the large

claims. Depending on the bribe that they have to pay to car repairers for them to collude

19Here also, a3 and a4 depend on π1, π2 and qs (but not on dih), and furthermore a4 depends on the
timing of accidents throughout the policy year.
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(which is not explicitly defined here)20, on the fine imposed on spotted defrauders, and on

their degree of risk aversion, type h policyholders are willing to defraud if the probability

of being caught is smaller than a threshold β∗

h(Pih, dih, ζ i) ∈ (0, 1). Individuals always

defraud when the audit probability is zero, and they never defraud if all large claims are

audited: hence the audit probability β∗

h(Pih, dih, ζ i) for which they are indifferent between

fraud and honesty is between 0 and 1.21 This audit probability threshold is type dependent

(hence the subscript h in the β∗

h function) because it is affected by the intrinsic risk aversion

of the policyholder, but it also depends on Pih because an increase in premium may affect

the policyholder’s risk aversion through a wealth effect,22 and it is increasing with dih

because an increase in the deductible makes fraud more attractive. Furthermore, β∗

h is

increasing with ζ i because a larger bargaining power of the agent corresponds to a larger

probability of avoiding the full cancellation of the insurance payout when a fraudulent

claim is detected through an audit. Thus, we have

αih





= 0 if βih > β∗

h(Pih, dih, ζ i),

∈ [0, 1] if βih = β∗

h(Pih, dih, ζ i),

= 1 if βih < β∗

h(Pih, dih, ζ i).

(6)

A type (i, h) policyholder who has a minor accident before the last policy month and

her insurer play a non-cooperative game, with strategies αih and βih respectively. Its

Nash equilibrium is easily characterized. If αih = 0, then (4) gives βih = 0, which implies

20We may, for instance, assume that policyholders make take it or leave it offers to car repairers. The
word "bribe" refers to any form of advantage that the car dealer-repairer firm may obtain from the
arrangement with the policyholder, such as the guarantee of a future car purchase.

21β∗
h
could be defined in a more explicit way by considering the expected utility of a type h individual

who has a minor accident before the last policy month, and who has to choose between two strategies:
either honestly filing a small claim without delay, or postponing her claim to the last policy month in
order to file a single large claim if another minor accident occurs. β∗

h
is the audit probability that makes

the policyholder indifferent between these two strategies.
22For instance, under DARA preferences, an increase in the insurance premium makes the policyholder

more risk averse, and thus less prone to conclude a risky fraudulent arrangement with a car repairer. In
that case, the larger the insurance premium, the lower the audit probability threshold above which fraud
is deterred.
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αih = 1 from (6), hence a contradiction. Similarly, if αih = 1, then (4) gives βih = 1,

which implies αih = 0 from (6), hence again a contradiction. Thus, αih ∈ (0, 1) and (4),(6)

give βih = β∗

h(Pih, dih, ζ i) ∈ (0, 1) and αih = α∗(dih, ζ i, ci) ∈ (0, 1).

In brief, at equilibrium, the audit probability βih = β∗

h(Pih, dih, ζ i) makes the policy-

holder indifferent between manipulation and honesty, and the manipulation probability

αih = α∗(dih, ζ i, ci) makes the insurer indifferent between auditing and not-auditing.

This leads us to simple predictions about the effect of the type of contract and distrib-

ution channel on claim manipulation. Firstly, using α∗′

d > 0 shows that higher deductibles

go along with more manipulation. Since d2 > d1 ≥ 0, we have αi2 > αi1 for i ∈ {D,A}.

In other words, for a given distribution channel, fraud is more prevalent among type 2

than type 1 individuals. More simply, if d1 = 0, we can say in a shortcut that deductibles

encourage fraud. Furthermore, using cD > cA, ξD > ξA, and α∗′

ζ > 0, α∗′

c > 0 yields

αDh > αAh for i ∈ {1, 2}. Put briefly, for a given type of individual, there is more fraud

when insurance has been purchased through the DOA agents than through standard in-

surance agents, either because it is more costly to audit a claim that goes through a DOA

or because DOAs have a larger bargaining power than standard insurance agents.

4 Data and testing of hypotheses

4.1 The data

The data yielded by Companies 1 and 2 provides detailed information about the policy-

holders, their insurance contracts and the claims they have filed. Available variables are

listed in Table 1. Data was collected over the 2010-2012 and 2018-2020 periods. How-

ever, our analysis of insurance claims will be restricted to 2010 and 2018, in order to

know whether policyholders subsequently renewed their contracts for less or more than
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one year.23 We will start by considering year 2010 in sections 4.2 and 4.3. As previously

mentioned, Company 1 has strongly reduced its dependence on DOAs from 2010 to 2018,

and thus in section 4.4 comparing results obtained for years 2010 and 2018 will allow us

to appraise the consequence of this strutural change.

We target the owners of private usage small sedans and small trucks with type A,

B or C insurance contracts for automobile physical damage. In 2010, there was 121, 952

policyholders in the sample, and 8.10% of them filed at least one claim, which corresponds

to 9, 874 observations. This subset defines our "research sample", i.e. the sub-sample of

policyholders with claims.

Tables 1 and 2

The mean values of the variables in the two samples are displayed in the first two

columns of Table 2, with some significant differences. In particular, the percentages of

type A or B contracts, and particularly those in the suspicious groups SG1 and SG2,

are much larger in the research sample. The three other columns in Table 2 separate the

research sample into three subgroups, according to the insurance distribution channels

(DOA in Company 1 and non-DOA in Companies 1 and 2), with significant differences

in terms of gender, usage, and vehicle size. There is also a much larger proportion of new

vehicles for the DOA channel, which reflects the fact that, most of the time, a DOA sells

an insurance contract when the corresponding dealer sells a new car. The percentage of

claims filed during the last month of the policy year, measured by the average value of

dummy SC, and the share of the RG group are larger in the DOA channel than in the

two other channels.

23In what follows, years are policy years: a contract corresponds to year 2010 if it started in 2010.
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4.2 Evidence on claim manipulation

Our first step consists in testing whether in 2010 the perspective of a one-year contract

renewal and the choice of a deductible contract stimulate insurance fraud by postponing

claims to the last policy month, called the "suspicious period", possibly by filing one claim

for two events. In other words, we wonder whether belonging to the Suspicious Group SG,

and particularly subgroup SG2, is a factor that has stimulated insurance fraud through

claim manipulation. Defining the fraud rate as the number of claims per policyholder

filed during the suspicious period24 leads us to formulate the following hypothesis.

Hypothesis 1 (H1): The fraud rate tends to be higher in the suspicious group than

in the non-suspicious group, and this is particularly the case for individuals covered by

deductible contracts.

Testing H1 amounts to identifying whether there is a conditional dependence between

belonging to the suspicious group and filing a claim within the suspicious period, respec-

tively associated with dummies SG (or SG1 and SG2 for each subgroup) and SC. We

do so through the following three Bivariate Probit models, where Φ(.) is the cumulative

normal distribution function, and X is the vector of explanatory variables (with vectors

of coefficients βSC , βSG, ...), including the premium amount and all the variables used in

pricing and underwriting decisions.25 In order to control for the recouping effect, dummy

RG is also included in X.

Model 1:

Prob(SC = 1) = Φ(XβSC + ε) (7)

Prob(SG = 1) = Φ(XβSG + η) (8)

24Of course, this definition of the fraud rate does not mean that all claims filed during the suspicious
period have been fraudulently manipulated.

25This includes all the observable characteristics of the insured (e.g., age, gender, bonus-malus coef-
ficient, premium, etc...), the characteristics of the vehicle (e.g., age, brand, registered area, etc...) and
recoup dummy RG. Hence, X includes all the variables listed in the first part of Table 1, and logprem

and RG in the second part.
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Model 2:

Prob(SC = 1) = Φ(XβSC + ε) (9)

Prob(SG1 = 1) = Φ(XβSG1
+ η) (10)

Model 3:

Prob(SC = 1) = Φ(XβSC + ε) (11)

Prob(SG2 = 1) = Φ(XβSG2
+ η) (12)

The results of these regressions are presented in Table 3, with a special interest in

the residual correlation coefficient ρ. H1 should lead to a positive conditional correlation

between filing a suspicious claim and belonging to a suspicious group. More formally,

the estimated residual correlation coefficients of these models ρ̂SC,SG, ρ̂SC,SG1
and ρ̂SC,SG2

should be positive and significantly different from 0, which leads us to test for the null

hypothesis H0 : ρSC,SG ≤ 0, H0 : ρSC,SG1
≤ 0 and H0 : ρSC,SG2

≤ 0, in models 1, 2 and 3

respectively.

The three estimated residual correlation coefficients are significantly positive, which

allows us to reject the null hypothis in each model, and thus to state that there is a

significantly positive conditional correlation between SC and SG, SG1 or SG2, in each

model. In other words, in accordance withH1, there is a conditional dependence between

belonging to the suspicious group and filing a claim within the suspicious period, whether

the individual is covered by a deductible contract or not.26

26Table 3 also offers some interesting byproducts that are worth mentioning. Firstly, the policyholders
from the RG group tend to file their first claims in the suspicious period, which echoes the conclusions
of Li et al. (2013). Secondly, females file their first claim during the suspicious period more frequently
than males, but that does not necessarily reflect a gender effect in fraudulent behavior. It is usual in
Taiwan to register cars under the name of females (e.g. a wife or mother), even when the primary driver
is a male, in order to benefit from cheaper insurance premiums. Hence, instead of a gender effect, the
above mentioned correlation may just reflect the fact that the policyholders who carefully manage their
insurance budget may also try to obtain undue advantage from their insurance company.
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Table 3

When manipulation consists in postponing claims to the suspicious period, by cumu-

lating several losses in a single claim when possible (which differs from small claims filed

by the end of the policy year to recoup a part of the insurance premium), then the sus-

picious period should be characterized by high values of the first-claim cost ratio. This is

expressed in Hypothesis 2.

Hypothesis 2: In the suspicious group, the first-claim cost ratio is larger in the

suspicious period than during the rest of the policy year.

Hypothesis 2 is tested through the following regression:

clmamt = αcSC + αffirst+ αfsfirst ∗ SC + αXX + e, (13)

which is performed among the claims filed by members of SG1 and SG2 groups. This

corresponds to 6,974 claims filed by 6,521 policyholders from SG1, and 695 claims filed

by 647 policyholders from SG2. In these regressions, clmamt is the value of the claim (in

US dollars), while SC and first are dummies indicating respectively that the claim was

suspicious (i.e., it was filed during the last month of the policy year), and that it was the

first claim of the policyholder during this policy year. Regression (13) also includes the

interaction variable first ∗ SC. Results are reported in Table 4.

Table 4

The estimated coefficients of the interaction variable are α̂fs = −113.3 with p−value

0.1627 for SG1, and α̂fs = 1465.7 with p−value lower than 0.0001 for SG2. This sustains

Hypothesis 2 for SG2, but not for SG1, which confirms the fact that being covered

by a deductible contract is a factor that stimulates fraud through claim manipulation.

Hypothesis 3 focuses attention on the role of DOAs in this type of insurance fraud.
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Hypothesis 3 (H3): The fraud rate in the suspicious group is larger when insurance

has been purchased through the DOA channel than through other distribution channels.

We test H3 by testing Bivariate Probit models 1, 2 and 3 in sub-samples that in-

clude the policyholders who purchased insurance through the DOA channel or through

other distribution channels. This leads us to estimated residual correlation coefficients

ρ̂SC,SG, ρ̂SC,SG1
and ρ̂SC,SG2

in each subsample.

Tables 5,6 and 7

Detailed results are displayed in Tables 5, 6 and 7, for models 1, 2 and 3 respectively,

with conclusions on residual correlation summarized as follows:27

Company 1

Dealer

Company 1

Non-dealer
Company 2

Model 1 ρ̂SC,SG 0.5393∗∗∗ 0.1344 0.0562

Model 2 ρ̂SC,SG1
0.5729∗∗∗ 0.0916 −0.0610

Model 3 ρ̂SC,SG2
0.7492∗∗∗ −0.2020 0.2076∗∗∗

Hence, when the regressions are performed in the sub-sample of policyholders who

purchased coverage through the DOAs of Company 1, there is a significant positive resid-

ual correlation between SC and SG, SG1 or SG2 at the 1% threshold. This correlation

vanishes in the two other sub-samples, except between SC and SG2 in Company 2.

4.3 Complements on the role of car dealers in claim manipula-

tion

The previous conclusions may be reinforced by testing whether ρ̂SC,SG, ρ̂SC,SG1
and ρ̂SC,SG2

are significantly larger among the policyholders who purchased insurance through car

dealers than through other channels. To do so, we successively consider the two null

27∗∗∗ refers to significance level at the 1% threshold.
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hypotheses H0 : ρ̂DSC,SG ≤ ρ̂ND
SC,SG and H0 : ρ̂DSC,SG ≤ ρ̂C2

SC,SG in model 1, where D,ND

and C2 refer respectively to insurance purchased from Company 1 through dealers, from

Company 1 through other distribution channels, and from Company 2. We proceed in

the same way for models 2 and 3, hence with SG1 and SG2 instead of SG. Results

are displayed in Table 8. The two null hypotheses ρ̂DSC,SG ≤ ρ̂ND
SC,SG and ρ̂DSC,SG ≤ ρ̂C2

SC,SG

are rejected at 1% significance level, and the conclusion is unchanged for SG1 and SG2.

In other words, whatever the definition of the suspicious group (SG, SG1 or SG2), the

conditional correlation between filing a suspicious claim and belonging to the suspicious

group is significantly larger when contracts are sold through the car dealer associated with

company 1 than through another distribution channel of company 1 or from company 2.

Table 8

Further evidence on the role of car dealers may be obtained by focusing attention on

the first-claim cost ratio during the suspicious period (as in Hypothesis 2) by consider-

ing subsamples defined by the distribution channel, and by using type C contracts as a

benchmark. A first-claim cost ratio during the suspicious period larger for SG1 or SG2

than for type C contracts would signal claim manipulation by members of the suspicious

groups. Symmetrically, a lower first-claim cost ratio would be compatible with the pre-

mium recouping mechanism highlighted by Li et al. (2013), with small claims filed at

the end of the policy year if no claim has been filed before. This leads us to consider

regression (14) below, where the claim amount is the dependent variable as in regression

(13). In (14), first, SC and X are identical to those in regression (13), and S1, S2 and S3

are dummies indicating that the policy has been purchased from Company 1 through the

DOA channel, from Company 1 through another distribution channel and from Company

2, respectively. Furthermore C is a dummy indicating that the insurance policy is a type

C contract, used as a benchmark without claim manipulation.
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clmamt = αcSC + αffirst+ αfsfirst ∗ SC

+sSG11fsSG1 ∗ S1 ∗ first ∗ SC

+sSG21fsSG2 ∗ S1 ∗ first ∗ SC

+sSG23fsSG2 ∗ S3 ∗ first ∗ SC

+sCfsC ∗ first ∗ SC + αXX + e. (14)

The estimation of regression (14) shows that the null hypothesis H0 : sSG21fs ≤ sCfs

is rejected at 1% significance level, contrary to the results obtained when sSG11fs and

sSG23fs are compared to sCfs.
28 This means that the first-claim cost ratio is significantly

higher during the last policy month when a deductible contract has been purchased from

Company 1 through the DOA channel. All in all, in 2010 deductible contracts sold

through DOAs have created the most favorable condition for insurance fraud through the

postponing and aggregation of claims.

4.4 Smaller bargaining power for DOAs in 2018

From 2010 to 2018, Company 1 has cut almost by half the share of its automobile insurance

contracts sold through car dealers. The latters became less important partners of the

insurer, with presumably a lower bargaining power in the claim settlement process.29

To assess the consequences of this change, we have collected information about 269,475

automobile insurance contracts of type A, B and C, sold by Company 1 in 2018. The

content of these contracts basically remained the same as in 2010, the only important

28Detailed estimation results are available from the authors upon request.
29In 2011, the largest car dealer group in Taiwan created its own insurance company, which induced

other insurers to gradualy redirect a substantial part of their business toward other distribution channels.
In the case of Company 1, the market share of DOAs decreased from 36.92% to 27.95%.
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change being that in 2018 Company 1 only sold type A and B contracts with a deductible.

Therefore, the Suspicious Group SG has no longer to be splitted between SG1 or SG2,

and it coincides with what we called SG2 for year 2010. Table A1 in Appendix provides

detailed information about the data. Comparing Tables 1 and A1 confirms the decrease

in the proportion of contracts sold through DOAs, and other important changes including

the decrease from 6.16% to 3.71% in the proportion of policyholders who filed a claim

in 2010 and 2018, respectively. Figure A1 also confirms that claim rates are still higher

during the last month than during the previous months of the policy year, with a large

decrease in the average claim cost during the last policy month, and Figure A2 shows a

decrease in the first claim cost ratio for all types of contracts, including those in SG going

through DOAs, contrary to what was observed for SG2 in 2010.

Does this mean that the claim manipulation favored by DOAs has vanished in 2018?

Formal tests have been performed to find out for sure. The results of Bivariate Probit

regressions (similar to Model 1 above) are presented in Table A2. The estimated residual

correlation between SG and SC is still significantly positive whatever the distribution

channel, but the null hypothesis H0 : ρ
D ≥ ρND is rejected at the 1% significance thresh-

old. In other words, the positive residual correlation between belonging to the suspicious

group and filing a claim in the suspicious period still holds, which confirms claim ma-

nipulation, but the role of DOAs in this fraud process has vanished. For the sake of

completeness, we have checked that the difference ρD − ρND has significantly decreased

between 2010 and 2018, which means that the higher conditional correlation between

SC and SG for the DOA channel, by comparison with other distribution channels, has

significantly decreased from 2010 to 2018.30

We have performed a robustness check by a two-stage method in order to confirm this

change from 2010 to 2018. To do so, we have created a new data set that includes SG2

30In more precise terms, the null hypothesis H0 : (ρD−ρND)2018− (ρD−ρND)2010 ≥ 0 can be rejected
at the 1% significance level.
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and type C contracts sold by Company 1 in 2010 or 2018, with dummy y2018 used to

indicate that the contract has been sold in 2018.31 The first stage consists in estimating

the following Probit regression:

Pr[SG = 1] = Φ(XβSG + η),

and the estimated probability of belonging to the Suspicious Group ŜG and dummy D

for the DOA channel are used as explanatory variables in the second-stage regression:

Pr[SC = 1] = Φ(βestSGŜG+ βSGSG+ βDD + β
2018

y2018

+βSGDSG ∗D + βSG2018
SG ∗ y2018 + βD2018

D ∗ y2018

+βSGD2018
SG ∗D ∗ y2018 +XβSC + ε)

Results are presented in Table A3. The estimated coefficient of the triple interaction

term SG∗D∗y2018 is β̂SGD2018
= −1.7265, and it is significantly different from 0 at the 1%

significance threshold. In other words, the stimulation effect of DOAs on the manipulation

of claims by policyholders from the suspicious group SG has significantly decreased from

2010 to 2018.

Considering that DOAs played a crucial role in the manipulation of claims in 2010,

one may wonder whether the decrease in their bargaining power has fully cancelled the

fraud process in 2018, be it under the form of claim manipulation or of the premium

recouping behavior. To get an idea, we have estimated regression (13) for the SG group

and for the type C contracts, with the data of year 2018. Results are presented in Table

A4. The estimated coefficient α̂fs is not significantly different from 0 in the two subsets

of contracts. In other words, in 2018, contrary to what occured in 2010, there was no

significant change in the average amount of the claims filed during the last month of the

31SG2 and SG coincide in 2018 since Company 1 has stopped selling type A or B contracts without
deductible.
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policy year by comparison with previous months.

5 Conclusion

The purpose of this paper was to analyze some aspects of the policyholder-service provider

coalition in insurance fraud mechanisms: how it can affect the credibility of claim auditing,

and how fraudulent claim manipulation may emerge. It is a fact that the economic

analysis of insurance fraud is often based on a very abstract picture of claim fraud (filing

a fraudulent claim although no accident has occurred, or exagerating a claim), but in

practice understanding insurance fraud often requires a much more specific analysis of

the claims fraud process. The Taiwan car insurance case offers such a possibility, with

fraud also taking place through the manipulation of the claim’s date in order to avoid a

penalty from the bonus-malus system and to reduce the burden of a second deductible,

should another accident occur. The policyholders with deductible contract who intend

to renew their policies (the suspicious group) have a larger propensity to defraud in that

way than other policyholders

Our main focus was on the role of DOAs in this fraud process, with two specificities for

this distribution channel. Firstly, the collusion between car repairers and policyholders is

easier when insurance agents and car repairers are sheltered by a car dealer, and estab-

lishing claim manipulation unambiguously is more costly (i.e. the audit cost is larger) in

that case. Secondly, DOAs may more easily escape penalties when fraud is detected (i.e.

their bargaining power is larger at the claim settlement stage) because they can retaliate

by redirecting their customers toward other insurers if the relationship with the current

insurer deteriorates. Both specificities are related to the multi-faceted activities of DOAs:

they sell insurance contracts, but they also work hand in hand with car repairers and car

dealers. The comparison between years 2010 and 2018 suggests that reducing the depen-
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dence on car dealers has allowed Company 1 to deter claim manipulation more efficiently,

because of the decrease in the bargaining power of DOAs. In other words, the role of

DOAs in car insurance fraud seems to be much more related to their bargaining power,

than to the difficulty for the insurer to establish that claims had been manipulated.
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Figure 1: Distribution of claims and average cost of first 

claims during the policy year (2010)



 

 

 

Qualifiers « dealer » and « Ndealer » refer to the cases where the insurance policy 

has been sold through a DOA or through a standard agent, respectively.  

 

 

 

 

0,0000

0,1000

0,2000

0,3000

0,4000

0,5000

0,6000

0,7000

0,8000

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12

Figure 2: Distribution of claims during the policy year 

(2010) for SG1,SG2 according to the sale process, with type 

C contracts as benchmark.
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Table 1: Definition of variables 

Variable Definition  

Explained variables: 

claim Dummy variable equal to 1 when the insured has filed at least one claim during 

the policy year, 0 otherwise. 

SC Dummy variable equal to 1 when the insured has filed his or her first claim 

during the suspicious period (in the last policy month), 0 otherwise. 

SG Dummy variable equal to 1 when the insured belongs to the “suspicious 

group”,
1
 and 0 otherwise. 

SG1 Dummy variable equal to 1 when the insured belongs to “suspicious group 1”,
2
 

and 0 otherwise. 

SG2 Dummy variable equal to 1 when the insured belongs to “suspicious group 2”,
3
 

and 0 otherwise. 

Explanatory variables: 

 

first group (underwriting and pricing variables) 

female Dummy variable equal to 1 if the insured is a female, 0 otherwise. 

age2025 Dummy variable equal to 1 if the insured is in the 20-25 age group, 0 otherwise. 

age2530 Dummy variable equal to 1 if the insured is in the 25-30 age group, 0 otherwise. 

age3060 Dummy variable equal to 1 if the insured is in the 30-60 age group, 0 otherwise. 

ageabv60 Dummy variable equal to 1 if the insured is older than 60, 0 otherwise. 

carage0 Dummy variable equal to 1 when the car is less than one year old, 0 otherwise. 

carage1 Dummy variable equal to 1 when the car is two years old, 0 otherwise. 

carage2 Dummy variable equal to 1 when the car is three years old, 0 otherwise. 

carage3 Dummy variable equal to 1 when the car is four years old, 0 otherwise. 

carage4 Dummy variable equal to 1 when the car is five years old, 0 otherwise. 

veh_m Dummy variable equal to 1 when the capacity of the insured car is between 

1800 and 2000 c.c., 0 otherwise. 

veh_l Dummy variable equal to 1 when the capacity of the insured car is larger than 

2000, 0 otherwise. 

sedan Dummy variable equal to 1 when the car is a sedan and is for non-commercial 

                                                      

1 The “suspicious group” (SG) includes the individuals who renew their contract with the same 

insurance company for only one year. The counter group for SG includes the policyholders who do not 

renew their contract, or renew their contract for more than one year with the same insurance company. 
2 The “suspicious group 1” (SG1) are the SG-group policyholders who also purchased the no-

deductible contracts. The counter group for SG1 includes the policyholders with deductible contract or 

who are not in SG-group. 
3 The “suspicious group 2” (SG2) are the SG-group policyholders who also purchased the deductible 

contracts. The counter group for SG2 includes the policyholders with no-deductible contract or who are 

not in SG-group.  



or for long-term rental purposes, and 0 otherwise.
4 

bonus Bonus-malus coefficient used to calculate the premium in the current contract 

year. It is a multiplier on the premium. Hence, it is a discount if it is smaller 

than 1 and it is a penalty if it is larger than 1. 

tramak_j Dummy variable equal to 1 when the brand of the insured car is j, with j=n, f, h, 

t, c, and 0 otherwise.
5
 

 

second group (other control variables) 

logprem Logarithm of the premium of the contract in the current contract year. 

D Dummy variable equal to 1 if the insurance contract is sold through the DOA 

channel of company 1, and 0 otherwise. 

company2 Dummy variable equal to 1 if the insurance contract is sold by company 2, and 

0 otherwise.
 6 

AB Dummy variable equal to 1if the insured is covered by a type_A or type_B 

contract, and 0 otherwise.
7 

RG Dummy variable equal to 1 when the insured belongs to the “recoup group”,
8
 

and 0 otherwise. 

 

 

  

                                                      

4 The counter group includes the insured cars are not small sedan, for example small or large truck, 

cargo…etc. 
5 The insured cars in counter group for tramak_j, j= n, f, h, t, c , are other brands (other than Nissan, 

Ford, Honda, Toyota, and China.) 
6 The contracts in counter group for D and company 2 are the insurance contarcts sold through the 

channels other than DOA of company 1. 
7 The contracts in counter group for type_A and type_B are type_C contracts. 
8 The “recoup group” includes the policyholders who are in “recoup group” include the ones who are 

covered by type A or type B contracts and who do not renew their contract or renew it for only one 

year. 



 

Table 2: Sample structure (2010) 

 Whole 

sample 

Sub-sample 

with claim 

DOA in 

Company 1 

Non-DOA in 

company 1 

Company 2 

claim 0.8100     

SC 0.0616 0.4386 0.6628 0.2723 0.2954 

RG 0.2285  0.2365 0.3165 0.2197 0.1739 

AB 0.3719  0.7316 0.8979 0.6175 0.6228 

C2 0.2751  0.4741 0.0000 0.0000 1.0000 

SG 0.1982  0.7316 0.8979 0.6175 0.6228 

SG1 0.1748  0.6670 0.8386 0.5589 0.5522 

SG2 0.0234  0.0645 0.0593 0.0585 0.0706 

D 0.3692  0.3978 1.0000 0.0000 0.0000 

female 0.7149  0.7436 0.7758 0.7176 0.7236 

age2025 0.0024  0.0022 0.0022 0.0025 0.0021 

age2530 0.0313  0.0386 0.0317 0.0339 0.0456 

age3060 0.8930  0.8943 0.8965 0.8872 0.8944 

ageabv60 0.0734  0.0650 0.0696 0.0763 0.0580 

carage0 0.1947  0.2983 0.4926 0.1383 0.1785 

carage1 0.1562  0.2403 0.2387 0.2214 0.2468 

carage2 0.0951  0.1010 0.0688 0.0882 0.1315 

carage3 0.1175  0.1117 0.0699 0.1272 0.1425 

carage4 0.1041  0.0749 0.0440 0.0941 0.0956 

veh_m 0.2912  0.2589 0.2283 0.2807 0.2786 

veh_l 0.2580  0.2678 0.2701 0.3070 0.2553 

sedan 0.9102  0.9247 0.9612 0.8974 0.9015 

lnprem 9.0442  9.5277 10.0894 9.5279 9.0563 

bonus 0.8954  1.1140 0.8760 0.7154 1.4214 

      

Observations 149452 9205 3662 1179 4364 

 

  



Table 3: Conditional dependence between SC and SG 

 

Variables  Model 1 Model 2 Model 3 

 SC SG SC SG1 SC SG2 

RG 
0.1193*** 

[0.0332] 

1.5444*** 

[0.0861] 

0.1374*** 

[0.0348] 

1.3111*** 

[0.0732] 

0.3037*** 

[0.1076] 

2.1846*** 

[0.1744] 

female 
-0.0138 

[0.0317] 

0.1493*** 

[0.0386] 

0.0034 

[0.0330] 

0.3138*** 

[0.0393] 

-0.0299 

[0.0524] 

0.0263 

[0.0687] 

age2025 
0.0281 

[0.2993] 

-0.1512 

[0.3506] 

0.1413 

[0.3045] 

-0.1264 

[0.3507] 

0.2296 

[0.4003] 

-0.8458 

[0.6399] 

age2530 
-0.2138** 

[0.0884] 

-0.2505** 

[0.1071] 

-0.4537*** 

[0.0926] 

-0.2802*** 

[0.1083] 

-0.2659* 

[0.1464] 

-0.7943*** 

[0.2049] 

age3060 
0.0409 

[0.0551] 

0.0152 

[0.0680] 

-0.0292 

[0.0568] 

0.0367 

[0.0685] 

-0.0627 

[0.0964] 

-0.2297* 

[0.1213] 

tramak_n 
0.1442 

[0.1662] 

0.3462 

[0.2265] 

0.1815 

[0.1774] 

0.4390* 

[0.2277] 

0.5884* 

[0.3364] 

0.3559 

[0.3788] 

tramak_f 
-0.1785*** 

[0.0623] 

0.0285 

[0.0749] 

-0.1999*** 

[0.0656] 

0.0592 

[0.0769] 

-0.0827 

[0.0979] 

0.0165 

[0.1249] 

tramak_h 
-0.1205** 

[0.0566] 

-0.2087*** 

[0.0652] 

-0.0468 

[0.0582] 

-0.1026 

[0.0664] 

-0.1615* 

[0.0897] 

-0.3503*** 

[0.1265] 

tramak_t 
0.0409 

[0.0317] 

0.2473*** 

[0.0392] 

0.0697** 

[0.0334] 

0.3562*** 

[0.0400] 

-0.0694 

[0.0563] 

-0.2450*** 

[0.0748] 

tramak_c 
-0.4594*** 

[0.0765] 

-0.1594* 

[0.0818] 

-0.3729*** 

[0.0784] 

-0.2453*** 

[0.0829] 

-0.2362** 

[0.1086] 

-0.6231*** 

[0.1738] 

carage0 
0.3822*** 

[0.0506] 

0.4696*** 

[0.0600] 

0.3307*** 

[0.0536] 

0.4260*** 

[0.0611] 

0.4480*** 

[0.870] 

0.5117*** 

[0.1023] 

carage1 
0.1381*** 

[0.0469] 

0.0837 

[0.0532] 

0.1361*** 

[0.0492] 

0.1840*** 

[0.0547] 

0.0998 

[0.0758] 

0.3499*** 

[0.0949] 

carage2 
0.0573 

[0.0553] 

-0.0801 

[0.0626] 

0.0060 

[0.0576] 

0.0526 

[0.0643] 

0.1059 

[0.0865] 

0.1412 

[0.1164] 

carage3 
0.0956* 

[0.0529] 

0.0376 

[0.0595] 

-0.0547 

[0.0551] 

0.0272 

[0.0609] 

0.1182 

[0.0793] 

-0.1662 

[0.1176] 

carage4 
-0.1447** 

[0.0607] 

-0.1928*** 

[0.0659] 

-0.2558*** 

[0.0637] 

-0.1329* 

[0.0681] 

-0.2502*** 

[0.0901] 

0.0632 

[0.1190] 

veh_m 
0.0783** 

[0.3456] 

-0.2005*** 

[0.0421] 

0.1401*** 

[0.0357] 

-0.2903*** 

[0.0430] 

0.1156* 

[0.0596] 

0.1263 

[0.0806] 

veh_l 
0.0636 

[0.0403] 

-0.0568 

[0.0507] 

0.0544 

[0.0418] 

-0.1804*** 

[0.0519] 

0.1670** 

[0.0771] 

0.3927*** 

[0.0922] 



sedan 
0.0685 

[0.0585] 

-0.3449*** 

[0.0695] 

0.0246 

[0.0605] 

-0.2958*** 

[0.0700] 

-0.0286 

0.0951] 

0.0040 

[0.1277] 

lnprem 
0.1036*** 

[0.0257] 

0.4852*** 

[0.0238] 

0.1086*** 

[0.0272] 

0.4849*** 

[0.0245] 

0.0006 

[0.0426] 

0.3405*** 

[0.0436] 

bonus 
-0.4794*** 

[0.0345] 

-0.1689*** 

[0.0400] 

-0.5341*** 

[0.0371] 

-0.1805*** 

[0.0415] 

-0.1382** 

[0.0559] 

0.0550 

[0.0682] 

       끫븘 
0.1395*** 

[0.0319] 

0.0873*** 

[0.0337] 

0.2608*** 

[0.0514] 

Standard errors in brackets; ***: p < 0.01, **: p < 0.05, *: p < 0.1 

  



Table 4: Testing hypothesis 2 (year 2010) 

 SG1 SG2 

 Est. coeff P value Est. coeff P value 

Intercept -2869.3 <.0001 -4642.1 <.0001 

SC -198.9 0.0113 -742.1 0.0183 

first 46.5 0.4172 -403.0 0.0630 

first*SC -113.3 0.1627 1465.7 <.0001 

female 17.1 0.4871 -145.3 0.0853 

age2025 -237.2 0.3869 621.7 0.5280 

age2530 -107.3 0.1077 -442.5 0.0865 

age3060 -36.9 0.3693 223.1 0.1660 

tramak_n -201.7 0.0932 -620.8 0.1240 

tramak_f -184.5 0.0002 -134.0 0.3972 

tramak_h -117.8 0.0082 -138.6 0.4594 

tramak_t -193.9 <.0001 -401.3 <.0001 

tramak_c -219.1 0.0003 -836.5 0.0006 

carage0 -149.2 0.0002 -108.0 0.3834 

carage1 -103.0 0.0069 -192.3 0.1308 

carage2 -25.8 0.5639 -159.7 0.2931 

carage3 12.9 0.7677 -192.7 0.2024 

carage4 103.0 0.0409 -30.5 0.8493 

veh_m -14.2 0.5944 -151.1 0.1689 

veh_l 214.9 <.0001 148.3 0.1818 

sedan 269.6 <.0001 305.2 0.0785 

logprem 371.2 <.0001 697.1 <.0001 

bonus 48.1 0.0681 -536.6 <.0001 

Adj. 끫뢊2 0.1138 0.4206 

observations 6567 633 

 

  



Table 5: Conditional dependence between SC and SG in  

sub-samples – Model 1 (year 2010) 

 

 Company 1 dealer Company 1  

non-dealer 

Company 2 

 SC SG SC SG SC SG 

RG 
0.2087*** 

[0.0490 ] 

1.4486*** 

[0.1864] 

-0.0127 

[0.1068] 

1.2273*** 

[0.1624] 

0.1663***  

[0.0560] 

1.0515*** 

[0.0861] 

female 
0.0602 

[0.0535] 

0.1776** 

[0.0790] 

-0.1042 

[0.0914] 

0.1454 

[0.1007] 

-0.0456 

[0.0463] 

0.2719*** 

[0.0507] 

age2025 
0.3982 

[5405] 

-0.3157 

[0.6116] 

-0.2333 

[0.9014] 

-0.4811 

[0.8294] 

0.0419 

[0.4649] 

-0.3576 

[0.4989] 

age2530 
-0.4620*** 

[0.1456] 

-0.2670 

[0.2155] 

0.0615 

[0.2624] 

-0.6889** 

[0.3040] 

-0.3168** 

[0.1310] 

-0.5582*** 

[0.1383] 

age3060 
-0.0284 

[0.0856] 

0.0917 

[0.1254] 

0.0773 

[0.1563] 

-0.2390 

[0.1686] 

-0.0226 

[0.0869] 

0.0069 

[0.0947] 

tramak_n 
-0.0162 

[0.3307] 

0.0922 

[0.4795] 

0.5034 

[0.4041] 

0.4999 

[0.5685] 

0.3149 

[0.2239] 

0.2470 

[0.2816]  

tramak_f 
-0.0451 

[0.1189] 

0.1857 

[0.1755] 

-0.0466 

[0.1517] 

-0.0111 

[0.1682] 

-0.0337 

[0.0906] 

-0.1600 

[0.0993] 

tramak_h 
-0.0381 

[0.1253] 

0.0760 

[0.1689] 

-0.0707 

[0.1447] 

-0.0458 

[0.1634] 

-0.0103 

[0.0750] 

-0.3598*** 

[0.0805] 

tramak_t 
-0.1260** 

[0.0538] 

0.4904*** 

[0.0760] 

-0.1435 

[0.0935] 

0.2018* 

[0.1037] 

0.0418 

[0.0491] 

-0.0453 

[0.0539] 

tramak_c 
-0.1936 

[0.3462] 

0.3031 

[0.4113] 

0.1873 

[0.2121] 

-0.3445 

[0.2479] 

-0.1218 

[0.0872] 

-0.3294*** 

[0.0937] 

carage0 
-0.0363 

[0.0975] 

0.4796*** 

[0.1268] 

-0.1329 

[0.1535] 

0.6156*** 

[0.1729] 

0.0914 

[0.0809] 

0.4867*** 

[0.0934] 

carage1 
0.0224 

[0.0943] 

0.1614 

[0.1219] 

-0.1268 

[0.1240] 

0.4121*** 

[0.1320] 

0.0151 

[0.0695] 

0.2196*** 

[0.0703] 

carage2 
-0.1635 

[0.1126] 

-0.1748 

[0.1472] 

0.2890* 

[0.1509] 

0.4076** 

[0.1756] 

-0.0292 

[0.0754] 

0.1062 

[0.0790] 

carage3 
0.0092 

[0.1111] 

-0.0060 

[0.1433] 

-0.0056 

[0.1332] 

0.1812 

[0.1457] 

-0.1602** 

[0.0719] 

0.1101 

[0.0757] 

carage4 
-0.2389* 

[0.1254] 

-0.2915* 

[0.1540] 

-0.3620** 

[0.1597] 

0.2705* 

[0.1561] 

-0.1641** 

[0.0810] 

0.0986 

[0.0848] 

veh_m 
-0.0862 

[0.0585] 

-0.2110** 

[0.0836] 

-0.1666* 

[0.1006] 

-0.1394 

[0.1110] 

0.1415** 

[0.0564] 

0.0495 

[0.0618]  



veh_l 
-0.1789*** 

[0.0689] 

-0.2330** 

[0.0926] 

-0.3471*** 

[0.1242] 

-0.0786 

[0.1263] 

0.0888 

[0.0828] 

0.2930*** 

[0.0909] 

sedan 
-0.1914 

[0.1258] 

-0.2939 

[0.1809] 

0.0666 

[0.1567] 

-0.3395* 

[0.1755] 

0.0700 

[0.0816] 

-0.1867** 

[0.0884] 

lnprem 
0.2229** 

[0.0874] 

0.6791*** 

[0.0632] 

-0.0554 

[0.1058] 

0.7074*** 

[0.0752] 

-0.0662 

[0.0453] 

0.5853*** 

[0.5853] 

bonus 
-0.2188 

[0.1636] 

-1.2374*** 

[0.1890] 

0.4098* 

[0.2408] 

-1.0545*** 

[0.2304] 

-0.1504* 

[0.080] 

-0.4616*** 

[0.0955] 

Constant  
-4.9188* 

[0.7791] 

-4.9188*** 

[0.5876] 

-0.2026 

[0.9081] 

-5.6378*** 

[0.6592] 

0.1742 

[0.3822] 

-4.6010*** 

[0.3136] 끫븘 
0.5393*** 

[0.0729] 

0.1344 

[0.1201] 

0.0562 

[0.0480] 

Standard errors in brackets; ***: p < 0.01, **: p < 0.05, *: p < 0.1 

  



Table 6: Conditional dependence between SC and SG1 in  

sub-samples – Model 2 (year 2010) 

 

 Company 1 dealer Company 1  

non-dealer 

Company 2 

 SC SG1 SC SG1 SC SG1 

RG 
0.2010*** 

[0.0501] 

1.5341*** 

[0.2253] 

-0.0221 

[0.1104] 

1.1578*** 

[0.1645] 

0.0709 

[0.0599] 

1.2021*** 

[0.0980] 

female 
0.1167** 

[0.0549] 

0.2759*** 

[0.0824] 

-0.0620 

[0.0935] 

0.1638 

[0.1028] 

-0.1032** 

[0.0480] 

0.2954*** 

[0.0537] 

age2025 
0.4237 

[0.5564] 

-0.4132 

[0.6221] 

-0.1955 

[0.8616] 

-0.1888 

[0.8311] 

-0.3207 

[0.4869] 

-0.2477 

[0.5016] 

age2530 
-0.4478*** 

[0.1503] 

-0.5637** 

[0.2213] 

-0.0376 

[0.2680] 

-0.4613 

[0.3076] 

-0.2080 

[0.1329] 

-0.4562*** 

[0.1452] 

age3060 
-0.0198 

[0.0884] 

0.0052 

[0.1334] 

0.0910 

[0.1599] 

-0.2645 

[0.1707] 

-0.0325 

[0.0892] 

-0.1003 

[0.0987] 

tramak_n 
0.3639 

[0.3716] 

0.0218 

[0.4651] 

0.6697* 

[0.4006] 

0.3062 

[0.5392] 

0.3782 

[0.2385] 

0.1518 

[0.2967] 

tramak_f 
-0.1312 

[0.1246] 

0.1808 

[0.1894] 

0.0723 

[0.1563] 

-0.1424 

[0.1727] 

-0.2251** 

[0.0958] 

-0.2843*** 

[0.1054] 

tramak_h 
-0.0022 

[0.1272] 

0.1606 

[0.1764] 

0.0368 

[0.1485] 

-0.2072 

[0.1682] 

-0.0244 

[0.0769] 

-0.4242*** 

[0.0844] 

tramak_t 
-0.1027* 

[0.0572] 

0.5401*** 

[0.0802] 

-0.0549 

[0.0972] 

-0.0003 

[0.1056] 

0.0102 

[0.0505] 

-0.0394 

[0.0565] 

tramak_c 
-0.3570 

[0.3465] 

0.1435 

[0.4135] 

0.0864 

[0.2209] 

-0.4660* 

[0.2552] 

-0.1067 

[0.0892] 

-0.4536*** 

[0.0979] 

carage0 
-0.0659 

[0.1021] 

0.5069*** 

[0.1329] 

-0.0428 

[0.1574] 

0.5662*** 

[0.1766] 

0.0966 

[0.0888] 

0.6870*** 

[0.0882] 

carage1 
0.0044 

[0.0987] 

0.2771** 

[0.1267] 

-0.0676 

[0.1287] 

0.4466*** 

[0.1354] 

0.1138 

[0.0749] 

0.4128*** 

[0.0739] 

carage2 
-0.0842 

[0.1171] 

0.0655 

[0.1550] 

0.2540 

[0.1568] 

0.4376** 

[0.1804] 

0.0698 

[0.0793] 

0.2247*** 

[0.0830] 

carage3 
-0.0432 

[0.1142] 

0.0676 

[0.1472] 

0.0953 

[0.1352] 

0.2778* 

[0.1472] 

0.0236 

[0.0745] 

0.2375*** 

[0.0796] 

carage4 
-0.3611*** 

[0.1289] 

-0.1421 

[0.1602] 

-0.4584*** 

[0.1689] 

0.3412** 

[0.1630] 

-0.0691 

[0.0842] 

0.1746* 

[0.0896] 

veh_m 
0.0165 

[0.0596] 

-0.2147** 

[0.0864] 

-0.1595 

[0.1011] 

-0.3025*** 

[0.1143] 

0.1506*** 

[0.0584] 

0.0094 

[0.0652] 



veh_l 

-0.   

1736** 

[0.0699] 

-0.2738*** 

[0.0971] 

-0.3776 

[0.1246] 

-0.2738** 

[0.1308] 

0.1270 

[0.0866] 

0.2227** 

[0.0968] 

sedan 
-0.1373 

[0.1279] 

-0.3944** 

[0.1921] 

0.0408 

[0.1612] 

-0.4320** 

[0.1846] 

0.0674 

[0.0838] 

-0.3254*** 

[0.0924] 

lnprem 
0.2181** 

[0.0890] 

0.7433*** 

[0.0660] 

-0.0377 

[0.1169] 

0.7134*** 

[0.0781] 

-0.0475 

[0.0484] 

0.6283*** 

[0.0385] 

bonus 
-0.1648 

[0.1718] 

-1.0223*** 

[0.1953] 

0.4459 

[0.2571] 

-1.0166*** 

[0.2367] 

-0.2510*** 

[0.0932] 

-0.4993*** 

[0.1022] 

Constant  
-1.5136* 

[0.7873] 

-5.7331*** 

[0.6162] 

-0.4028 

[1.0080] 

-5.4420*** 

[0.6751] 

0.1944 

[0.4086] 

-4.8641*** 

[0.3291] 끫븘 
0.5729*** 

[0.0699] 

0.0916 

[0.1362] 

-0.0610 

[0.0534] 

Standard errors in brackets; ***: p < 0.01, **: p < 0.05, *: p < 0.1 

  



 

Table 7: Conditional dependence between SC and SG2 in  

sub-samples – Model 3 (year 2010) 

 

 Company 1 dealer Company 1  

non-dealer 

Company 2 

 SC SG2 SC SG2 SC SG2 

RG 
0.2622 

[0.2004] 

1.6147*** 

[0.2621] 

-0.4441 

[0.4225] 

2.3649*** 

[0.4639] 

0.2728* 

[0.1594] 

1.7827*** 

[0.2152] 

female 
-0.1535 

[0.1249] 

-0.0666 

[0.1494] 

-0.0555 

[0.1397] 

0.3131 

[0.2001] 

-0.0175 

[0.0669] 

-0.0709 

[0.0833] 

age2025 
0.2937 

[0.7007] 

-0.4864 

[0.8008] 

0.2417 

[1.1300] 

0.4348 

[1.0916] 

-0.0347 

[0.6076] 

-0.2253 

[0.7808] 

age2530 
-0.6705 

[0.3223] 

-0.3919 

[0.3941] 

0.6021 

[0.4272] 

-0.7861 

[0.7589] 

-0.3573* 

[0.1828] 

-0.4311* 

[0.2376] 

age3060 
0.0564 

[0.2093] 

-0.1246 

[2562] 

0.4362* 

[0.2572] 

-0.1269 

[0.3146] 

-0.1732 

[0.1268] 

-0.1471 

[0.1547] 

tramak_n 
0.7126 

[0.6845] 

-0.1096 

[0.7266]  

-0.3747 

[1.7463] 

0.0300 

[1.7441] 

0.2852 

[0.4113] 

0.2575 

[0.4415] 

tramak_f 
-0.1230 

[0.2342] 

0.3446 

[0.2781] 

-0.0555 

[0.2220] 

0.0392 

[0.2885] 

-0.0269 

[0.1283] 

-0.0740 

[0.1624] 

tramak_h 
-0.0649 

[0.2789] 

-0.1577 

[0.3410] 

0.0791 

[0.2231] 

-0.5671* 

[0.3424] 

0.0696 

[0.1063] 

-0.2862** 

[0.1434] 

tramak_t 
-0.4971*** 

[0.1352] 

-0.8100*** 

[0.1601] 

-0.1005 

[0.1473] 

-0.1753 

[0.1983] 

0.0083 

[0.0727] 

-0.1858** 

[0.0946] 

tramak_c 
0.0140 

[0.5654] 

-0.0334 

[0.8117] 

-0.2963 

[0.2935] 

-0.2935 

[0.4233] 

-0.1097 

[0.1245] 

-0.8299*** 

[0.1970] 

carage0 
0.1719 

[0.1898] 

0.4071* 

[0.2236] 

-0.0541 

[0.2660] 

0.2479 

[0.3513] 

0.3881*** 

[0.1199] 

0.3900*** 

[0.1319] 

carage1 
-0.0991 

[0.1911] 

0.0391 

[0.2321] 

-0.0870 

[0.1933] 

0.4110 

[0.2520] 

0.0899 

[0.0954] 

-0.0666 

[0.1193] 

carage2 
-0.0875 

[0.2321] 

-0.0744 

[0.2908] 

0.2821 

[0.2407] 

0.3666 

[0.3243] 

0.0783 

[0.1058] 

-0.0445 

[0.1366] 

carage3 
0.3269 

[0.2303] 

-0.1232 

[0.2926] 

0.0080 

[0.2028] 

-0.2482 

[0.3401] 

0.2198** 

[0.0963] 

-0.0513 

[0.1284] 

carage4 
-0.2220 

[0.2400] 

-0.4267 

[0.3248] 

-0.3660 

[0.2303] 

0.4180 

[0.2698] 

0.0271 

[0.1083] 

-0.0476 

[0.1430] 

veh_m 0.0385 0.0276 0.1005 -0.1990 0.1787** -0.0262 



[0.1383] [0.1680] [0.1489] [0.2141] [0.0815] [0.1075] 

veh_l 
0.1327 

[0.1801] 

0.2949 

[0.1809] 

0.1798 

[0.1944] 

-0.0297 

[0.2319] 

0.2780** 

[0.1228] 

0.3828*** 

[0.1455] 

sedan 
-0.2460 

[0.2635] 

-0.2723 

[0.3166] 

0.0885 

[0.2384] 

-0.6997** 

[0.2843] 

0.1115 

[0.1199] 

-0.3116** 

[0.1471] 

lnprem 
0.1987 

[0.1692] 

0.6067*** 

[0.1097] 

-0.1528 

[0.2006] 

0.4173*** 

[0.1440] 

-0.0067 

[0.0713] 

0.3557*** 

[0.0688] 

bonus 
-0.0319 

[0.3338] 

-0.9141** 

[0.3744] 

0.2821 

[0.4282] 

-0.9554** 

[0.4655] 

-0.3427** 

[0.1385] 

0.0301 

[0.1585] 

Constant  
-1.4106 

[1.4319] 

-5.0827*** 

[1.0026] 

0.0842 

[1.6199] 

-3.8736*** 

[1.2197] 

-0.1057 

[0.5649] 

-3.6732*** 

[0.5400] 끫븘 
0.7492*** 

[0.1355] 

-0.2020 

[0.2206] 

0.2076*** 

[0.0702] 

Standard errors in brackets; ***: p < 0.01, **: p < 0.05, *: p < 0.1 

  



Table 8: Difference of conditional dependence between SC and 

SG/SG1/SG2 in 2010 

 

 Model 1 Model 2 Model 3 

 SC, SG SC, SG1 SC, SG2 끫븘끫롮 − 끫븘끫뢂끫롮 0.4049*** 

[4.6650] 

0.4814*** 

[5.3121] 

0.9513*** 

[5.2735] 끫븘끫롮 − 끫븘끫롬2 0.4831*** 

[7.9626] 

0.6339*** 

[10.3059] 

0.5416*** 

[6.0383] 끫븘끫롬2 − 끫븘끫뢂끫롮 -0.0782 

[-1.1193] 

-0.1526 

[-1.9339] 

0.4096*** 

[3.4480] 

 

  



Table A1:  Sample structure in 2018 

 

 Whole 

sample 

Sub-sample 

with claim 

DOA non-DOA 

claim 0.0371    

SC 0.0090 0.2420 0.2695 0.2275 

RG 0.3400 0.3614 0.4912 0.2931 

AB 0.3500 0.3708 0.5039 0.3007 

SG 0.2189 0.2697 0.3505 0.2272 

D 0.2795 0.3452 1.0000 0.0000 

female 0.5599 0.6515 0.6541 0.6502 

age2025 0.0087 0.0057 0.0061 0.0055 

age2530 0.0376 0.0401 0.0344 0.0430 

age3060 0.7674 0.8107 0.7968 0.8180 

carage0 0.0439 0.1970 0.2246 0.1825 

carage1 0.0591 0.1702 0.1705 0.1701 

carage2 0.0644 0.1477 0.1424 0.1504 

carage3 0.0608 0.1132 0.1106 0.1146 

carage4 0.0618 0.0993 0.1004 0.0987 

veh_m 0.2800 0.3320 0.3372 0.3292 

veh_l 0.1612 0.1881 0.1910 0.1866 

sedan 0.9719 0.9951 0.9962 0.9945 

lnprem 8.9993 9.0407 9.2992 8.9045 

bonus 0.9370 0.7083 0.7316 0.6960 

     

Observations  269475 10010 3455 6555 

 

 

  



Table A2: Conditional dependence between SC and SG (year 2018) 

 

 dealer Non-dealer 

 SC SG SC SG 

RG 
-0.1621* 

[0.0833] 

3.9976*** 

[0.1734] 

-0.0552 

[0.0539] 

4.1421*** 

[0.1275] 

female 
0.1163** 

[0.0565] 

0.1735 

[0.1131] 

0.1878*** 

[0.0379] 

0.1635* 

[0.0839] 

age2025 
-0.4879 

[0.4042] 

1.7509*** 

[0.6026] 

-0.3606 

[0.2516] 

-0.2547 

[0.7147] 

age2530 
-0.4798*** 

[0.1719] 

0.5993** 

[0.3043] 

-0.6081*** 

[0.1090] 

0.1064 

[0.2218] 

age3060 
-0.0701 

[0.0716] 

0.2061 

[0.1511] 

-0.0548 

[0.0509] 

-0.0222 

[0.1054] 

tramak_n 
-0.5044 

[0.5860] 

1.2453** 

[0.5731] 

0.4607** 

[0.2073] 

-0.2498 

[0.5385] 

tramak_f 
0.3979*** 

[0.1484] 

0.1127 

[0.2855] 

0.5452*** 

[0.0839] 

0.7828*** 

[0.1915] 

tramak_h 
0.1188 

[0.1440] 

0.2980 

[0.2660] 

0.2119*** 

[0.0795] 

-0.3979** 

[0.1850] 

tramak_t 
0.5698*** 

[0.0578] 

0.1843 

[0.1162] 

0.3826*** 

[0.0393] 

0.3883*** 

[0.0891] 

tramak_c 
0.4150 

[0.2818] 

-0.4958 

[0.6022] 

-0.0831 

[0.1984] 

0.3025 

[0.4272] 

carage0 
0.2969*** 

[0.0899] 

-0.9596*** 

[0.1991] 

0.2489*** 

[0.0581] 

-0.6280*** 

[0.1419] 

carage1 
-0.1035 

[0.0878] 

-0.9074*** 

[0.1917] 

-0.0309 

[0.0576] 

-0.3448** 

[0.1366] 

carage2 
-0.2374*** 

[0.0891] 

-0.1850 

[0.1909] 

-0.0843 

[0.0579] 

-0.3009** 

[0.1320] 

carage3 
-0.2848*** 

[0.0980] 

-0.2969 

[0.1936] 

-0.3812*** 

[0.0658] 

-0.5707*** 

[0.1408] 

carage4 
-0.2814*** 

[0.1003] 

-0.3862* 

[0.2060] 

-0.2758*** 

[0.0684] 

-0.9843*** 

[0.1550] 

veh_m 
-0.0768 

[0.0593] 

-0.0678 

[0.1243] 

0.1282*** 

[0.0407] 

0.2059** 

[0.0956] 

veh_l 
-0.3323*** 

[0.0739] 

-0.4531*** 

[0.1601] 

-0.1396*** 

[0.0525] 

0.3258*** 

[0.1124] 



sedan 
-0.5778 

[0.4758] 

-1.3503* 

[0.6892] 

-0.4488 

[0.2802] 

-1.1315** 

[0.5508] 

lnprem 
0.1095** 

[0.0453] 

-0.0162 

[0.0916] 

-0.0536* 

[0.0291] 

-0.0823 

[0.0592] 

bonus 
0.9318*** 

[0.1128] 

0.3404 

[0.2296] 

0.7223*** 

[0.0790] 

-1.0135*** 

[0.1906] 끫븘 
0.5229** 

[0.2575] 

0.9277*** 

[0.2172] 

Standard errors in brackets; ***: p < 0.01, **: p < 0.05, *: p < 0.1 

The difference of conditional dependence between SC and SG:  끫븘끫롮 − 끫븘끫뢂끫롮 = -0.4048 (t = -1.7524; 끫롶0: 끫븘끫롮 ≤ 끫븘끫뢂끫롮 cannot be rejected) 

  



 

Table A3:  Comparative manipulation ability of DOAs (years 2010 and 

2018) 

 First stage Second stage 

 Est. coeff. P value Est. coeff. P value 

Intercept -37.0773 <.0001 -0.7793 0.0027 

SG   -0.4212 0.0899 끫뢌끫뢌�    -0.1565 0.5312 

dealer   0.00618 0.9478 

y2018   -0.2399 0.0005 

SG*dealer   1.8147 <.0001 

SG*y2018   0.7457 0.0029 

dealer*y2018   0.0443 0.6633 

SG*dealer*y2018   -1.7265 <.0001 

recoup 16.7495 0.8673 -0.1304 0.5139 

female 0.3715 0.0198 0.0640 0.0322 

age2025 -4.3641 0.9975 -0.4786 0.0182 

age2530 0.0644 0.9055 -0.5400 <.0001 

age3060 0.6748 0.0241 -0.0957 0.0182 

tramak_n -4.9743 0.9972 0.1025 0.575 

tramak_f 0.6856 0.0085 0.0525 0.4566 

tramak_h -0.3143 0.3305 0.0618 0.3446 

tramak_t -0.3328 0.0447 0.2423 <.0001 

tramak_c 0.3515 0.4887 -0.2892 0.0562 

carage0 0.2408 0.2913 0.4741 <.0001 

carage1 0.1337 0.5468 0.1807 <.0001 

carage2 -0.2893 0.2825 0.1914 <.0001 

carage3 -0.3436 0.2325 0.0823 0.1051 

carage4 0.3167 0.1901 0.0314 0.5563 

veh_m -0.1722 0.3223 0.0300 0.3498 

veh_l -0.1807 0.3411 0.0333 0.3941 

sedan -1.4823 <.0001 -0.1291 0.3234 

logprem 3.8113 <.0001 -0.0223 0.3687 

bonus -0.8332 0.0087 0.5239 <.0001 

-2logL 12270.286 11655.898 

  



Table A4: Testing Hypothesis 2 for year 2018 

 SG Type C 

 Est. coeff. P value Est. coeff. P value 

Intercept 20.8341 0.0259 30.3130 0.0009 

SC -4.8308 0.0581 -9.0929 0.0006 

first -0.8095 0.5265 -3.7417 0.0036 

first*SC -0.7615 0.7789 1.8227 0.5221 

female -3.7137 <.0001 -0.7140 0.4280 

age2025 -10.3178 0.0970 11.9403 0.0314 

age2530 -3.5532 0.1216 3.4655 0.1534 

age3060 -2.5520 0.0254 -0.9612 0.4385 

tramak_n -1.7228 0.7422 -7.9312 0.1331 

tramak_f -4.9029 0.0172 -9.3758 <.0001 

tramak_h -7.9695 <.0001 -11.4974 <.0001 

tramak_t -7.0401 <.0001 -11.1717 <.0001 

tramak_c -8.6608 0.0585 -10.9192 0.0065 

carage0 2.7724 0.0447 3.4785 0.0142 

carage1 5.1712 <.0001 4.1478 0.0029 

carage2 3.7767 0.0039 5.8271 <.0001 

carage3 2.5255 0.0692 5.5491 0.0003 

carage4 2.3239 0.1084 4.1172 0.0100 

veh_m 5.0363 <.0001 4.5882 <.0001 

veh_l 9.7725 <.0001 15.1139 <.0001 

sedan 6.2842 0.3710 7.3519 0.2293 

logprem -0.6929 0.2462 -1.5460 0.0395 

bonus 2.1328 0.2304 -0.0887 0.9615 

Adj.끫뢊2 0.0773 0.0549 

Observations  3149 7530 
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