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Modeling extreme streamflow events in river networks
for stochastic simulation and climate-change projection
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River flood risk

* Not a recent phenomenon,
but modified by changes in land use and climate
* |ntensively investigated,
in fundamental and operational research
e Past and present streamflow trends:
* More heterogeneous and noisy than large-scale climate
e Possibly different trends in means and extremes

Change in mean annual flood discharge per decade (%)

Bloschl et al (2019, Nature)

Rice et al (2015, WRR)



How can we learn about future floods?

* Climate-model simulations of large-scale variables
(Coupling of Global Circulation Models and Regional Climate Models)

* Downscaling to local scale of streamflows

* Dynamical downscaling: large-scale variables as ,,boundary conditions” in physical models

 Statistical downscaling (our approach) :

Learn statistical relationships to predict local-scale distribution

* Include features of local topography, especially of the river catchment

* So far, relatively little work on spatiotemporal dependence along the river network
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Hagen et al (2021, J Hydrol)



Dependence models should be aware of river topology

No classical ,,Euclidean” geometry and autocorrelation models
Locations connected along the 1D river network

Direction of flow

Space-time autocorrelation depends on river distance
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FIGURE 1. Topographic map of the upper Danube basin, showing sites of
31 gauging stations (red blobs) along the Danube and its tributaries. Water
flows broadly from left to right.

Asadi et al (2015, AOAS)
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Random field models from Stochastic Partial Differential Equations

* Space-time random field X={X(s,t)}, here river discharge at location s, time t
* General SPDE approach for physically realistic and numerically tractable fields X

%X(t,s) + (K% — D)2 X (t,5) +7- VX(t,5) = W(t,5), t>0, s€D

* Goal: Adapt this approach to the topology of the river network
— Finite-element discretization
— Flow conservation constraint

Bolin et al (2022, arXiv)




Peaks-Over-Threshold for spatial extreme events

* Risk functional r(X), e.g. r(X) = max X(s,t) over space-time window
* Extreme episode X if threshold exceedance r(X) > u
e How to model X provided that r(X)>u?
Goal : Adapt asymptotic models from Spatial Extreme-Value Theory

Laurens de Haan (1987)

Example:

e r(X) = X(s0) for fixed location sO (blue line)
 Threshold u (red line)

* Extreme episodes (black curves)

* Non-extreme episodes (grey curves)
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Expected outcomes of the project

* Stochastic generator for space-time extreme-streamflow events
* Occurrence times and locations of extreme-event episodes
* Local streamflow and space-time extent of flood events

e Simulation of future streamflows through statistical downscaling of climate models

e Analysis of future extreme streamflows at differents horizons (e.g. 2030, 2050, 2100)
e Space-time trends
* Sensitivity to input parameters
* Uncertainty partitioning (climate scenario/model, downscaling, natural variability...)
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