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1 Background

Economic, social and public health institutions rely on mortality forecasts to estimate, among
other things, health care and disability cost, plan social security policies or estimate the pension
cost in an aging population. There is then a demand for valid and coherent forecasts for general
mortality, but also for some components of mortality, such as causes of death and disability
levels.

The number of forecasting models has increased greatly the last three decades. The many
options include models based on di�erent indicators [1]; models including cohort e�ects and
smoking e�ects [2, 3, 4]; models accounting for coherence between populations and components
[5, 6]; and so on [7]. A common procedure to forecast mortality is to extrapolate the trends in
age-speci�c death rates. One commonly used model is the Lee-Carter (LC) model [8], which
forecasts age-speci�c death rates in a log-linear way using principal component analysis. Many
statistical o�ces use the LC model, or an extension of this model, to produce national pro-
jections. The advantages of this model include its simplicity, little subjective judgments are
required and it can factor in uncertainty. However, this model has one major drawback: it
tends to underpredict life expectancy. Many extensions and variants of the models have been
suggested over the years [9, 7].

There is a reluctance to forecast mortality by other components than ages at death. The reasons
being that (1) data access and quality is lesser for mortality components other than ages, such
as causes of death, health states and smoking e�ects; (2) models including such information can
be subject to many methodological limitations; and (3) fewer models are available, especially
forecast models by health states.

Nevertheless, mortality forecasts for di�erent components of mortality are needed. Oeppen
(2008) [6] lists two main advantages to disaggregating mortality forecasts: 1) the risks are
known for diverse factors, as age, sex, cause of death, etc. and 2) spending (on research,
capital investment, preventive measures or palliative care) could be more e�cient if forecasts
were known for diverse mortality components. Also, such forecasts can allow for a better
speci�cation of the morbidity process.

Given the need for coherent forecasts of mortality by di�erent components, the SCOR Foun-
dation for Science have been funding the current project. The project had three aims:

1. Evaluate forecast models by cause of death and suggest an approach which is not subject
to known limitations.

2. Develop models to forecast mortality by health state.

3. Disseminate the knowledge via peer-reviewed publications and presentations.

This report presents the main �ndings and general conclusions of aims 1 and 2. More details
on the methods, data, results and discussion can be found in the papers written as part of aim
3, listed in section 6.
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2 Schedule

The project was initially planned to start in January 2020 and to end in December 2020.
However, the principal investigator had a career break due to maternity leave from November
2020 to October 2021. The SCOR Foundation for Science thus agreed to extend the project
duration until July 2022.

Most of the work on aim 1 was done in the �rst half of 2020, while most of the work on aim 2
was done in the �rst half of 2022.

3 The people

The project was carry out by the principal investigator (PI), Marie-Pier Bergeron-Boucher, As-
sistant Professor at the Interdisciplinary Center on Population Dynamics, University of South-
ern Denmark. She was the lead on all papers and presentations produced during the project.
The PI collaborated with a number of colleagues over the course of the project, including:

1. Søren Kjærgaard
Postdoc, Interdisciplinary Center on Population Dynamics, University of Southern Den-
mark, Odense, Denmark; and CREATES, Department of Economics and Business Eco-
nomics, Aarhus University, Aarhus, Denmark.

2. Jim Oeppen
Associate professor, Interdisciplinary Center on Population Dynamics, University of South-
ern Denmark, Odense, Denmark.

3. Violetta Simonacci
Research Fellow in Statistics, University of Naples Federico II, Naples, Italy.

4. Cosmo Strozza
Postdoc, Interdisciplinary Center on Population Dynamics, University of Southern Den-
mark, Odense, Denmark.

4 Aim 1: Forecasts by cause of death

Mortality forecasts by age and cause of death are important for more e�cient spending on,
for example, healthcare and medical technology. Di�erent approaches have been suggested
to forecast mortality by cause of death. A common approach is to forecast age-speci�c death
rates for each cause independently and then sum them to obtain an all-causes mortality forecast
[10, 11]. However, there is a reluctance in including the cause of death dimension to the forecast,
as forecasts by cause are confronted with many methodological problems. Five main problems
have been highlighted, with some of them having been resolved in recent literature:

1. Causes-of-death forecasts are often dominated by an increase or slower decrease in certain
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causes of death, creating an inherent pessimism, so that life expectancy forecasts by cause
are lower than in non-disaggregated forecasts [10]. However, this pessimism have been
shown to only emerge under certain particular conditions, such as in linear extrapolative
models of death rates [6, 12]. This issue is then model-speci�c and not a general problem
with forecast by cause of death.

2. Extrapolative models by cause can lead to unrealistic trends [11]: If mortality of a given
cause has been increasing, it will keep doing so in the forecast, which can lead to a small
cause of death becoming the dominant cause in the forecasts.

3. Modi�cations to the International Classi�cation of Diseases (ICD) create discontinuities
over time, making the use of long time series di�cult. This issue is still a current problem
and will remain so until e�orts are made to ensure continuity between ICD revisions.

4. Trajectories of causes of death are generally considered to be independent. But in reality,
they are interconnected [6]. This correlation between the components is often ignored
when forecasting. To remedy to this problem, Oeppen [6] suggested abandoning the
conventional way to forecast death rates and to forecast death distributions using Com-
positional Data Analysis (CoDA). Compositional data are vectors of relative information,
constrained to sum to a constant, such as proportions. Oeppen used the distribution of
death by age and cause from multiple-decrement life tables to forecast mortality by age
and cause simultaneously. By treating life table deaths as compositional data and using
a CoDA framework, the deaths are constrained to vary between 0 and the life table radix
(e.g. 1 or 100,000), conditioning the relationship between components. Deaths are thus
directly dependent on each other on the aggregate level, such that the decrease in deaths
from one cause will lead to an increase in deaths from at least one other cause.

5. Forecasts by cause are often inconsistent with all-causes forecasts. This issue relates to
how changes in mortality by age and cause interact. Deaths have been simultaneously
shifted towards older ages and more diverse causes of death over time [13]. Hence, the
question is how the di�erent methods model this shift, which varies with the level of
disaggregation and the number of categories.

We found in the literature that some of these limitations are still current issues. How the age
and cause dimensions interact when forecasting has been overlooked. Should they be forecast
simultaneously or separately? How do di�erent approaches a�ect the forecast?

To answer these questions we used a model framework which models ages and causes simultane-
ously; causes-of-death distribution (CDD) within each age group; and age-at-death distribution
(ADD) within each cause. All approaches are performed in a CoDA framework to avoid is-
sue 4. We speci�ed multiple models within each of the three approaches to obtain a better
understanding of the importance of the age and cause interactions for forecasting.

To evaluate the accuracy of the various models, we used an out-of-sample approach. The out-
of-sample method consists in forecasting observed trends, based on a �tting period outside the
forecast horizon. We did out-of-sample tests for multiple �tting periods and forecast horizons.
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We found that forecasting the CDD within each age group generally provides the most accurate
forecasts, while avoiding limitations 1,4 and 5 listed above. To avoid issue 2, we suggested
forecasting the CDD with a Holt-linear damped trend, rather than an ARIMA model with
linear trend (the more traditional approach). Instead of forecasting a continuous increase into
the future, the Holt-linear damped trend �dampens� the trend at some point in the future. By
using this model, we limit the transfer of deaths towards the cause which showed the fastest
increase in the �tting period (issue 2). Figure 1 shows an example of the forecast of the cause-
of-death distribution with the best performing approach in Australia.

Figure 1: Cause-of-death distribution observed and forecast over time for Australian females,
1998 to 2030
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Data and calculation: Data from [14] and [15] and calculation by Marie-Pier Bergeron-Boucher (PI) and Søren Kjærgaard.

Reference: Bergeron-Boucher, Marie-Pier, and Søren Kjærgaard. 2022. �Mortality Forecasts by Age and Cause of Death: How to

Forecast Both Dimensions?� SocArXiv. June 28. doi:10.31235/osf.io/d7hbp

We concluded that recent methodological developments allowed to resolve some of the issues
with forecasts by cause of death. With this project, we contributed to the discussion around
forecasting by cause of death by assessing how to forecast both the age and cause dimensions
within a CoDA framework. Nowadays, forecasting by cause of death is possible without carrying
too much methodological problems.
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5 Aim 2: Forecasts by health state

We live longer than ever. But are we also living healthier? Whether the extra years of life are
being lived in good or poor health is of importance to society. The quality of these extra years
of life has implications for individuals and society, including an increased burden of caregiving
for surviving family members, increased pressure on healthcare systems, as well as changes in
the dependency ratio [16]. As forecasts support social, economic and medical decisions, as well
as individuals' choices, there is a clear rationale for forecasting healthy life expectancy (HLE).
However, forecast of HLE remains uncommon.

HLE estimates the number of years expected to live in good health, informing on the overall
population health. There are two main approaches to estimate HLE: the Sullivan's method and
the multistate life table (MSLT) method. The Sullivan method estimates the number of years
lived in good or poor health using cross-sectional information on mortality and prevalence in
each health-state. The MSLT model estimates health-prevalence as the results of transitions
across states (e.g. healthy, unhealthy and death).

Forecasts of HLE are often based on scenarios. However, scenarios are more of a "what if"
situation and it is arduous to assess the likelihood of each scenario [17]. Other authors used
microsimulation to forecast health and mortality for individuals. This approach has the disad-
vantage to be very data demanding, making it hard to apply to diverse populations and contexts
[18]. Other authors forecast HLE assuming that the transition probabilities across health states
in the MSLT remain constant in the forecast for di�erent components or variables, e.g. age,
sex and education [19, 20].

Stochastic models to forecast HLE are rare. Majer and colleagues [21] were among the �rst
to introduce such a model. They suggested using the LC model [8] to forecast the age-speci�c
transition rates estimated with a MSLT, using a separate forecasts for the mortality rates of
the nondisabled, mortality rates of the disabled and the incidence rates. The model assumes
independence between mortality rates for non-disabled and disabled and incidence rates. There
is, however, a dependence between the di�erent states. If individuals become less and less
disabled over time, more and more individuals will remain nondisabled and die in that state.

During the duration of the project, we developed models which can (1) forecast simultaneously
mortality and health prevalence; (2) consider the dependence between age-groups and between
health-states; and (3) account for changes in transition probabilities and health prevalence over
time. We developed two models: one based on the Sullivan method and the other on the MSLT
method. Both models make use of CoDA, which has been shown to account for correlation
between mortality and health components [22].

There are di�erences in the estimation and forecast of HLE whether we used the Sullivan or
the MSLT models. But, we found that the di�erences between models was not signi�cant in
most cases. Both Sullivan and MSLT models showed similar trends over time. The MSLT
model is generally seen as the best approach in estimating the number of years lived in good or
poor health, but it is more data demanding. If the data to estimate MSLT are not available,
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the Sullivan method can be an acceptable alternative for monitoring such trends in health
expectancies, as previously shown [23, 24]. Figure 2 shows the forecast of life expectancy,
disability-free life expectancy and severe disability-free life expectancy for Spanish females. We
see that more and more years are being lived without limitations. However, the increase in
disability-free life expectancy (in blue) increased slower than the total life expectancy (in red),
suggesting also more years lived with limitations.

Figure 2: Life expectancy, disability-free life expectancy and severe disability-free life ex-
pectancy at age 50 observed and forecast with the Sullivan and MSLT approaches, Spanish
females, 2004�2030
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Data: Data from [25] and [15]. The results are based on data from Eurostat, EU-SILC 2004-2020.

The responsibility for all conclusions drawn from the data lies entirely with the authors.

Calculation: Calculations by Marie-Pier Bergeron-Boucher (PI), Cosmo Strozza, Violetta Simonacci and Jim Oeppen.

Reference: Bergeron-Boucher, Marie-Pier, Cosmo Strozza, Violetta Simonacci, and Jim Oeppen. 2022. �Modeling and Forecasting

Healthy Life Expectancy with Compositional Data Analysis.� SocArXiv. July 9. doi:10.31235/osf.io/ksrbj.
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As only a few models were developed to forecast HLE, the introduced models are a welcome
addition to the literature. These models solved some of the methodological issues with forecast
of HLE, by simultaneously forecasting health and mortality in a coherent manners, while ac-
counting for changes in prevalence and transition probabilities over time. These models are a
�rst step towards simple and coherent forecasts of the number of years lived in good and poor
health and can be further developed by future research.

6 Aim 3: Knowledge dissemination

6.1 Peer-reviewed articles

During the duration of the project, two articles were produced. At the time the �nal report
was submitted, both articles were under review in peer-reviewed journal. Nevertheless, both
articles can be found on a preprint server:

� Bergeron-Boucher, Marie-Pier, and Søren Kjærgaard. 2022. �Mortality Forecasts by
Age and Cause of Death: How to Forecast Both Dimensions?� SocArXiv. June 28.
doi:10.31235/osf.io/d7hbp. https://osf.io/preprints/socarxiv/d7hbp/

� Bergeron-Boucher, Marie-Pier, Cosmo Strozza, Violetta Simonacci, and Jim Oeppen.
2022. �Modeling and Forecasting Healthy Life Expectancy with Compositional Data
Analysis.� SocArXiv. July 9. doi:10.31235/osf.io/ksrbj. https://osf.io/preprints/

socarxiv/ksrbj/

6.2 Presentations

The methods developed and results produced were presented during three seminars/conferences:

� Bergeron-Boucher, Marie-Pier. 2020. �Mortality Forecasts by Age and Cause of Death:
How to Forecast Both Dimensions?� Presentation, SCOR seminar, Online (October 28).

� Bergeron-Boucher, Marie-Pier, Cosmo Strozza, Violetta Simonacci and Jim Oeppen.
2022. �Modelling and forecasting healthy life expectancy. A Compositional Data Analysis
approach?� Presentation, SCOR seminar, Paris (April 6).

� Bergeron-Boucher, Marie-Pier, Cosmo Strozza, Violetta Simonacci and Jim Oeppen.
2022. �Modelling and forecasting healthy life expectancy. A Compositional Data Anal-
ysis approach?� Presentation, European Population Conference (EPC), Groningen, the
Netherlands (July 2).
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7 Conclusions

Mortality forecasts by age, cause of death and health state are important for more e�cient
planning. However, there was a reluctance to include information on causes of death and
health states to the forecasts, due to data and methodological problems. With the support
from the SCOR Foundation for Science, we showed that many of the methodological problems
with such forecasts can be solved or avoided. We hope that future research will build on the
developed methods to provide forecasts for multiple components of mortality.
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