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Abstract

Forecasting of seasonal mortality patterns can provide useful information for planning health-care demand and capacity. Timely
mortality forecasts are needed during severe winter spikes and/or pandemic waves to guide policy-making and public health decisions.
In this article, we propose a flexible method for forecasting all-cause mortality in real time considering short-term changes in seasonal
patterns within an epidemiologic year. All-cause mortality data have the advantage of being available with less delay than cause-
specific mortality data. In this study, we use all-cause monthly death counts obtained from the national statistical offices of Denmark,
France, Spain, and Sweden from epidemic seasons 2012-2013 through 2021-2022 to demonstrate the performance of the proposed
approach. The method forecasts deaths 1 month ahead, based on their expected ratio to the next month. Prediction intervals are
obtained via bootstrapping. The forecasts accurately predict the winter mortality peaks before the COVID-19 pandemic. Although the
method predicts mortality less accurately during the first wave of the COVID-19 pandemic, it captures the aspects of later waves better
than other traditional methods. The method is attractive for health researchers and governmental offices for aiding public health
responses because it uses minimal input data, makes simple and intuitive assumptions, and provides accurate forecasts both during
seasonal influenza epidemics and during novel virus pandemics.
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Introduction
In temperate countries in the Northern Hemisphere, all-cause
mortality exhibits a marked seasonality, with a winter peak driven
by influenza-related mortality in the older population.1,2 Large
variations of the seasonal mortality pattern (eg, in the magnitude
and timing of the winter peak) occur based on the severity and
circulation of influenza, pandemics arising from novel subtypes
of the influenza virus,3 and fluctuations in temperature and
humidity.4 Addressing severe influenza seasons or pandemic out-
breaks depends critically on the implementation of early public
health measures, including isolation and quarantine. Accurate
and timely mortality forecasts in the short term (ie, of some weeks
or months) can aid public health responses by informing key
preparation and mitigation efforts.5,6

Various types of short-term forecasts of all-cause mortality are
established in the literature. The simplest way to forecast mortal-
ity is to calculate the average number of deaths or the average
mortality rates over preceding years—for instance, the preceding
5 years. Modeling is commonly preferred because it extrapolates
a secular trend and estimates seasonal variations. Traditional
models are the Serfling model,7-9 Serfling-Poisson regressions,10

or time-series methods.2,11 These models are designed to predict
seasonal epidemics in the absence of mortality shocks. In the case
of a shock, the forecasts are interpreted as baseline mortality
(i.e., counterfactual forecasts), and excess mortality is used to

quantify the severity of an influenza season,12-15 the mortality
burden of heat waves,16,17 and the mortality burden of pandemics,
such as the 1918-1919 H1N1 influenza pandemic.8 During the
COVID-19 pandemic, excess death estimates were published by
media outlets and in the scientific literature,18-20 to compare
countries across time21-24 and to evaluate the effect of policy
interventions.25

Since excess mortality is used retrospectively, it may not be
suitable for real-time mortality monitoring. The few examples of
all-cause mortality forecasting in real time during severe mortal-
ity conditions are limited to the inclusion of seasonal influenza
in the modeling, such as the FluMOMO model, extending the
EuroMOMO model to measure excess death.15 The limitation of
these models is that they require information other than mor-
tality, usually data collection of indicators of temperature and
influenza activity provided by surveillance systems, which are
often voluntary and insufficiently systematic and detailed.26

Examples of timely forecasting can be found in infectious
disease forecasting. Compartmental models (eg, susceptible-
infectious-recovered (SIR) and susceptible-exposed-infectious-
susceptible (SEIR) models)27,28 simulate scenarios of disease
progression over time within a population. The aim is to
anticipate the evolution of the disease and be informative on
the preparation and prevention of illnesses, hospitalizations, and
deaths. Infectious disease forecasting is very demanding in terms
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of information—for example, numbers of infections, recoveries,
and hospitalizations. These types of data are usually available
in highly specific settings (eg, hospitals and care homes (nursing
homes)), leading to predictions produced on a small scale.29-32

Furthermore, in the early stages of health shocks, testing
procedures for infections and registration systems are often not
in place, and limited data are available. During the COVID-19
pandemic, SEIR-type models were used for nowcasting COVID-
19 spread dynamics—that is, estimating the current numbers of
cases and deaths by correcting for reporting delays.33-35

In this paper, we propose a simple and flexible method for
real-time short-term forecasting of all-cause mortality 1 month
ahead—both in regular epidemic years and during pandemics of
infectious diseases. Our forecasting strategy is inspired by the
later/earlier method, introduced by Rizzi and Vaupel36,37 to make
counterfactual forecasts after the health shock caused by the first
COVID-19 wave. Here we first introduce the later/earlier method
for month-to-month all-cause mortality forecasting. We define
the seasonality index as the ratio of death counts between 2
adjacent months. The expected numbers of deaths 1 month ahead
are estimated on the basis of current mortality levels and recent
past seasonality. The current mortality level is determined by
the monthly death counts of the present epidemiologic year (epi-
year), whereas the time series of ratios of death counts between
adjacent months over preceding epi-years model the past sea-
sonality. We show an application on historical forecasts of all-
cause seasonal mortality from 2012 through 2022, including both
non-COVID and COVID years, in Denmark, France, Spain, and
Sweden. Furthermore, we compare the proposed method with
alternative ones. We provide R code for full replicability of our
analysis.

Methods
The method for month-to-month all-cause
mortality forecasting
An epi-year is defined as July through June, covering part of
2 adjacent calendar years. The Northern Hemisphere influenza
season usually starts in October and ends in May, with a seasonal
mortality peak between December and March. Winter seasonality
and low summer mortality make deaths in adjacent months
highly positively correlated, because an increase/decrease in one
month is associated with an increase/decrease in the following
month. By extrapolating the relationship between the current
month (earlier month) and the next month (later month), one
can predict the number of deaths in the next month at any
moment during the epi-year. The relationship between deaths
over adjacent months can be defined by their ratio, called the
later/earlier ratio.

Formally, consider the number of deaths in the ith month
during an epi-year, Di, with i = 1, . . . , 12. The later/earlier ratio
between the ith month and the

(
i + 1

)
th month, denoted by υi, is

given by

υi = Di+1

Di
. (1)

Our aim is to forecast the deaths 1 month ahead, that is, Di+1.
The expected number of deaths Di+1 can be derived from the
known deaths Di of the ith month and the later/earlier ratio υi

1 month ahead. The later/earlier ratio υi 1 month in the future is
not known. Therefore, the series of death counts for the ith month
over N epi-years in the past, Di = Di,j with j = 1, . . . , N, can be used
to compute the series of later/earlier ratios υi. The corresponding

average later/earlier ratio υi for the ith month is

υi = E (υi) , (2)

that is, the average of the later/earlier ratios for N past epi-
years. One can assume that the later/earlier ratio 1 month in the
future equals the average month-specific later/earlier ratio of the
previous years (υi = υi). This assumption holds if the series of
later/earlier ratios is stationary. The values υi, with i = 1, . . . , 12,
can be checked for stationarity over previous epi-years. If the
series shows no trend, the number of deaths in the

(
i + 1

)
th month

can be forecast based on the deaths in the ith month and on the
average ratio υi for the ith month, according to the formula

D̂i+1 ≈ υi Di. (3)

Illustration of the method
Let us suppose that we want to forecast the death counts 1
month ahead in 1 country (Spain) and in 2 epi-years with different
seasonality (epi-years 2013-2014 and 2017-2018), as illustrated in
Figure 1. In each panel, the black circles represent the observed
monthly death counts during the epi-year. Below the death counts
are plotted the month-specific later/earlier ratios, that is, the
deaths of 1 month ahead divided by the deaths of the current
month (purple squares). When there is an increase in the death
counts 1 month ahead, the corresponding later/earlier ratio is
greater than 1; when there is a decrease, the later/earlier ratio is
lower than 1. The average later/earlier ratios are computed over
the past 5 epi-years (seasons) and are represented with orange
triangles in Figure 1. The average later/earlier ratios are greater
than 1 from September through December and lower than 1 in
the remaining months. To obtain the forecasts 1 month ahead
(blue diamonds), one first tests the stationarity of the 5-year series
of later/earlier ratios and then multiplies the death counts of
the current month (black circles) by the corresponding average
later/earlier ratio (orange triangles).

The method is suitable for forecasting mortality changes
during an epi-year because (1) it assumes a seasonal mortality
structure in the epi-year given by the average later/earlier ratios
(υi with i = 1, . . . 12 in equation (2)) and (2) at the same time,
it adjusts the level of mortality of the particular epi-year using
the actual observed deaths (Di with i = 1, . . . 12 in equation (3)).
This permits one to make short-term forecasts in epi-years
with different mortality levels and severity of winter peaks—
for example, season 2017-2018 (Figure 1A) compared with season
2013-2014 (Figure 1B) in Spain.

Prediction intervals
Prediction intervals must consider the 2 sources of variability
of the forecasts. The first source comes from the uncertainty in
the later/earlier ratios—that is, from the assumption that the
expected later/earlier ratio 1 month ahead equals the month-
specific average later/earlier ratio in the previous years. To assess
how much the expected later/earlier ratio 1 month ahead might
differ from its average value in previous years, we use a bootstrap-
ping strategy. The second source comes from the observed deaths.
The procedure can be described as follows.

1. Step 1—bootstrapping. Draw 10 000 simulated later/earlier
ratios from the series of later/earlier ratios and substitute
them in equation 2 to compute 10 000 expected deaths 1
month ahead.
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Figure 1. Illustration of the later/earlier method for Spain, 2013-2014 (A) and 2017-2018 (B). The forecast of the monthly death count (blue diamonds)
is obtained using as input data the death count (black circles) of the previous month and the corresponding average later/earlier ratio (orange
triangles) approximating the monthly ratio of the current year (purple squares).

2. Step 2—mapping on a distribution. Draw 10 000 death counts
from a Poisson distribution with the mean equal to expected
deaths 1 month ahead.

3. Step 3—computation of the prediction intervals. Compute
the empirical 95% prediction intervals as the 2.5th and
97.5th percentiles of the Poisson distribution.

Data and application
Data
At the beginning of the COVID-19 pandemic, national statistical
offices started publishing timely all-cause weekly and monthly

mortality data series. We focused on Denmark,38 France,39

Spain,40 and Sweden41 because of the availability and high quality
of data from those countries. Moreover, different population sizes
allowed for a robustness check of the method. We retrieved data
on monthly numbers of deaths for the total population from
the individual countries’ national statistical offices. Statistics
Denmark and Statistics Sweden cover all deaths among those
countries’ residents. The Institut national de la statistique et
des études économiques covers the population of metropolitan
France (excluding overseas territories). The Instituto Nacional
de Estadística covers all of the deaths that occur in Spain. We
chose epi-year 2007-2008 as the starting point because it was the

Table 1. Average later/earlier ratios and coefficients of variation computed for all-cause mortality, by month, in
Denmark, France, Spain, and Sweden for the epidemiologic years 2007-2008 through 2022-2023.

Country

Monthly ratio Denmark France Spain Sweden

Mean L/E ratio CV, % Mean L/E ratio CV, % Mean L/E ratio CV, % Mean L/E ratio CV, %

υJuly 0.99 2.75 0.99 2.70 0.99 5.15 0.98 2.42
υAugust 1.01 3.02 1.02 1.65 0.96 2.61 1.03 2.13
υSeptember 1.02 2.80 1.07 2.64 1.06 2.38 1.03 2.29
υOctober 1.03 2.34 1.03 4.60 1.07 2.16 1.03 4.02
υNovember 1.09 4.43 1.08 6.13 1.08 4.91 1.10 5.16
υDecember 1.04 4.10 1.08 5.35 1.14 7.50 1.05 3.54
υJanuary 0.99 5.96 0.98 6.97 0.95 8.70 0.97 6.01
υFebruary 0.97 5.18 0.95 8.15 0.95 17.30 0.97 5.04
υMarch 0.95 5.40 0.95 6.23 0.94 5.50 0.97 9.33
υApril 0.96 4.29 0.93 7.44 0.93 11.61 0.93 4.80
υMay 0.98 2.32 0.97 2.31 0.98 2.88 0.96 3.31
υJune 1.00 3.29 1.01 2.89 1.01 4.60 1.01 3.74

Abbreviations: CV, coefficient of variation; L/E, later/earlier.
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Figure 2. One-month-ahead forecasts of all-cause mortality (solid blue line with blue diamonds) derived using the later/earlier method from
epidemiologic year 2012-2013 through epidemiologic year 2018-2019 in Denmark (A), France (B), Spain (C), and Sweden (D) as compared with observed
death counts (dashed black line with black circles). Gray shaded areas show the 95% prediction interval obtained via a bootstrapping procedure.

first available year for Denmark. The data were available until
December 2021 for Denmark, Spain, and Sweden and until July
2022 for France.

The death counts were adjusted to be comparable across
months of different lengths and across leap years and nonleap
years, following Nepomuceno et al.42 We assumed the average
number of days in a month in both leap and nonleap years to be
30.44 days (365.25/12). The monthly death counts were multiplied
by the ratio between 30.44 and the actual number of days in each
month. To adjust for any difference in the annual total number of
deaths after rescaling, we distributed the difference according to
the annual relative frequencies of the rescaled death counts. The
relative frequencies were computed within the epidemic year, to
account for the influenza season.

Testing of the method’s assumptions
The later/earlier method assumes that the later/earlier ratios do
not show any trend in the short term. Table 1 shows the mean
values and coefficients of variation for the series of later/earlier

ratios computed on the epi-years from 2007-2008 through 2022-
2023 by country. The average later/earlier ratios are above 1 from
September through December and below 1 from February to May.
The coefficients of variation are lower than 10%, with only a few
exceptions slightly larger but always lower than 20%. The series
of later/earlier ratios for Denmark, France, Spain, and Sweden
reveal a considerable regularity, that is, similar means by country
and small coefficients of variation. Furthermore, the series are
stationary (the mean and variance are constant over time) via the
Ljung-Box test or the Kwiatkowski-Phillips-Schmidt-Shin test.43

These regularities provide a simple approach for (short-term)
forecasting the deaths 1 month ahead.

The first COVID-19 wave in 2020 represents an exceptional
case, because the mortality shock occurred outside the window of
the winter peak, and it is not safe to assume that the later/earlier
ratios from March to May 2020 were the average over previous
years. In Appendix S1, Figures S1-S4 show the complete series of
later/earlier ratios and the departure from the average in 2019-
2020 in all countries analyzed. For these months, we expected that
the forecasts would not be able to predict mortality accurately.
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Figure 3. One-month-ahead forecasts of all-cause mortality (solid blue line with blue diamonds) derived using the later/earlier method from
epidemiologic year 2018-2019 through epidemiologic year 2022-2023 in Denmark (A), France (B), Spain (C), and Sweden (D) as compared with observed
death counts (dashed black line with black circles). Gray shaded areas show the 95% prediction interval obtained via a bootstrapping procedure.

Month-to-month forecasts with the later/earlier
method
We applied the later/earlier method to forecast mortality 1 month
ahead with a rolling window of 5 epi-years preceding the fore-
casting window. The summary measures for the 5-year series of
later/earlier ratios for testing the method’s assumptions can be
found in Appendix S1 (Tables S1-S12). We forecast monthly mor-
tality from July 2012 through November 2022 (December 2021 for
Spain) based on mortality data from June 2007 through October
2022. For example, we forecast mortality in Denmark in July 2012
based on the deaths of June 2012 and the average later/earlier
ratio for July/June of the preceding 5 epi-years, starting from
2007-2008. The first forecast (July 2012) used the first 5 available
years of data (from 2007-2008 through 2011-2012), and the last
forecast (November 2022) used the last 5 available years of data
(from 2017-2018 through 2021-2022). Due to differences in years
with available data by country, the years of the forecasts varied
across countries. Figure 2 and Figure 3 illustrate the results for
the 4 countries analyzed. To demonstrate the accuracy of the
forecasts (blue diamonds), we have superimposed the observed

death counts (black circles) and the 95% forecasting intervals
(gray shaded areas).

The forecasts capture the seasonal trend of the data (Figure 2).
For example, the method captures the higher level of winter
mortality in 2012-2013 and the lower winter level in 2013-2014
in Denmark, due to different types of viruses and transmission
modes. The season 2012-2013 witnessed a long period of high
influenza activity dominated by the A(H3N2) strain, while
influenza activity and mortality were low in the A(H1N1)-
dominated 2013-2014 season.14 A season with predominant
influenza A(H3N2) has higher mortality impact than a season
with predominant influenza A(H1N1) or a season with low
influenza A transmission. As a second example, the method
forecasts the higher seasonality peaks in the winters 2014-
2015 and 2016-2017 in France and Spain. These seasons were
characterized by a high activity of influenza A(H3N2) viruses,
the circulation of variants of the virus, and a reduction in the
effectiveness of the influenza vaccine.13 The method provides,
in a few cases, delayed forecasts corresponding to the winter
peaks, which is expected due to the intrinsic variability in the
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Figure 4. Observed numbers of deaths (dashed black line with black circles) and forecasts derived using the later/earlier method (solid blue line with
blue diamonds), the 5-year-average method (solid red line with red triangles), and the Serfling model (solid green line with green squares) from
epidemiologic year 2012-2013 through epidemiologic year 2018-2019 in Denmark (A), France (B), Spain (C), and Sweden (D).

winter peak. For instance, the mortality peak in 2016-2017 in
Spain and France occurred in January. The method forecasts the
mortality peak in February 2017, because it uses the average over
the preceding 5 epi-years to model the seasonality, and mortality
peaks before epi-year 2016-2017 occurred in February. However,
the forecast in the epi-year 2017-2018 averages the change in the
peak occurrence, and the winter peak is captured in January 2018,
in both France and Spain.

Our forecasts reflect the synchrony of the 3 main COVID-
19 waves through 2020 and 202144 and the different mortality
burdens in the 4 countries analyzed (Figure 3). A consistent excess
mortality—large in Sweden and Spain, medium in France21-23—
was reported for the first wave (mid-February 2020 through the
end of May 2020). Our monthly forecasts failed to predict the
deaths in the first month of the pandemic (ie, March 2020) in
France, Spain, and Sweden, because the shock occurred abruptly
outside of the usual seasonal pattern and because of its magni-
tude. In the second wave (autumn 2020 through March 2021) and
the third wave (starting in the latter half of 2021 and ongoing by
the end of 2021), France experienced a toll similar to that of the

first wave, whereas Spain and Sweden experienced lower tolls but
lasting for many weeks.45 In this context, the forecasts capture the
level and shape of the seasonal mortality.

The forecasts fit most of the data within the 95% predic-
tion intervals. The coverage of the 95% prediction intervals is
72.76% for all countries (82.54% for Denmark, 64.29% for France,
64.91% for Spain, and 79.37% for Sweden). Details on the cov-
erage of the prediction intervals computed separately for pre–
COVID-19 epi-years and COVID-19 epi-years is presented in Table
S13. The monthly prediction intervals are not equally affected
by the overall seasonality. They are wider in the winter peaks,
where variability in the observed deaths is higher. Prediction inter-
vals reflect mortality changes in preceding years. For instance,
the uncertainty in the estimates for the months March through
June 2021 in France is greater because of the COVID-19 wave
in 2020.

Forecast evaluation
To evaluate the forecast accuracy, we compared the performance
of the later/earlier method with the 5-year-average method and
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Figure 5. Observed numbers of deaths (dashed black line with black circles) and forecasts derived using the later/earlier method (solid blue line with
blue diamonds), the 5-year-average method (solid red line with red triangles), and the Serfling model (solid green line with green squares) from
epidemiologic year 2018-2019 through epidemiologic year 2022-2023 in Denmark (A), France (B), Spain (C), and Sweden (D).

the quasi-Poisson Serfling model (see Appendix S2). We chose
these well-established methods for short-term mortality forecast-
ing because they allow the same input data as the later/earlier
method—that is, a rolling window of 5 epi-years of all-cause mor-
tality data. Figure 4 and Figure 5 illustrate the respective monthly
forecasts when each of the 3 methods is applied.

The later/earlier method better captures the interannual vari-
ability than either of the other methods (Figure 4). The coverage of
the 95% prediction intervals is greater for the later/earlier method
(72.76%), followed by the 5-year-average method (68.90%) and the
quasi-Poisson Serfling model (56.50%). Details by country can be
found in Appendix S3 (Figures S5-S8 and Tables S13 and S14).
Lower winter levels of mortality (eg, in Denmark in the winter sea-
son of 2013-2014) and highest seasonality peaks (eg, in France and
Spain in 2014-2015 and 2016-2017) are more accurately forecast
by the later/earlier method than by the 5-year-average and quasi-
Poisson Serfling methods. The delays in the forecasts in relation to
specific winter peaks are observed for all 3 methods, confirming
the difficulty in predicting the month of occurrence regardless of
the forecasting method.

None of the methods were able to forecast the mortality shock
in March and April 2020, because of the sudden sharp mortality
increase beyond the regular seasonal shape (Figure 5). After the
first COVID-19 wave, the later/earlier method provided better
predictions of the mortality level in the 4 countries than the
5-year-average and the quasi-Poisson Serfling model, because
it was more flexible in relation to the higher level of winter
mortality. In 2020-2021, the seasonal peak occurred earlier than
in regular endemic years (from November to January). The later/
earlier method forecasts the highest mortality, albeit with 1
month of delay, unlike the 5-year-average and the quasi-Poisson
Serfling model. From the final months of 2021 to the beginning of
2022, Denmark witnessed sustained excess mortality, presumably
caused by the transmission of infection with the Delta variant
of SARS-CoV-2. The later/earlier method turned out to be the
method that forecast the highest level of mortality in Denmark in
late 2021.

To evaluate the accuracy of the forecasts, we computed the root
mean squared error (RMSE) and the mean absolute percentage
error (MAPE) of the forecasts of the 3 methods. We chose a
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Table 2. Accuracy measures (root mean squared error and mean absolute percentage error) for all-cause
mortality forecastsa derived using the later/earlier ratio method, the 5-year-average method, and the
quasi-Poisson Serfling model.

Accuracy measure and country
Mortality forecasting method

Later/earlier method 5-y average Quasi-Poisson Serfling

RMSE
Denmark 213 236 214
France 2784 3688 2877
Spain 2262 2717 2818
Sweden 359 395 413
Total 1806 2302 2027

MAPE
Denmark 3.51 4.00 3.41
France 3.55 4.85 3.86
Spain 3.86 4.83 5.59
Sweden 3.22 3.14 3.82
Total 3.54 4.20 4.17

Abbreviations: MAPE, mean absolute percentage error; RMSE, root mean squared error.
aThe forecasts were calculated for epidemiologic year 2012-2013 through epidemiologic year 2020-2021 (excluding
epidemiologic year 2019-2020) for Denmark, France, Spain, Sweden, and the pooled sample.

scale-dependent measure (RMSE) and a measure based on per-
centage errors (MAPE) to check whether they favored different
models.46 We excluded epi-year 2019-2020 from the computation
of the accuracy measures, because of the external shock that
disrupted the seasonality pattern and that was not predictable
by any method, and epi-year 2021-2022, for which data were
available only in France. The RMSE and MAPE for the 4 countries
analyzed are displayed in Table 2.

The accuracy of the methods varied across countries and
indicators. When considering the RMSE, the later/earlier method
proved to be more accurate than the other two methods. When
considering the MAPE, the later/earlier method was the second-
best method for Denmark and Sweden. On average, considering
the pooled sample of the 4 countries, the later/earlier method
predicted the deaths 1 month ahead more accurately according
to both the RMSE and the MAPE. Using the later/earlier method
instead of the 5-year average method, we decreased the RMSE
by 21.55% (and the MAPE by 15.71%). Compared with the quasi-
Poisson Serfling model, the later/earlier method decreased the
RMSE by 10.9% (and the MAPE by 15.11%). The errors were
weighted in different ways by the 2 accuracy indicators. This
resulted in some differences in the measurement of the most
accurate method based on RMSE or MAPE.

We performed a sensitivity analysis of the later/earlier method
to the length of the time series used to train the model (Appendix
S4, Table S15). The average later/earlier ratios were computed
on 2-8 epi-years. Longer time series seemed preferable, although
the percentage improvements were quite small. Furthermore,
we computed the RMSE, MAPE, and mean absolute scaled error
(MASE) for the 3 methods while distinguishing between prepan-
demic and COVID-19 pandemic years (Appendix S5, Tables S16
and S17). Overall, the accuracy was larger for the later/earlier
method.

Discussion
In this study, we proposed a novel method for forecasting monthly
all-cause mortality 1 month ahead. We applied it to 4 countries
(Denmark, France, Spain, and Sweden) with different population
sizes and variations in pandemic phases and death tolls during
the COVID-19 pandemic (from epi-year 2012-2013 through

2021-2022). The method incorporates important features of mor-
tality, learning from past seasonality of deaths and the current
yearly variable level of mortality. This ensures a flexible structure
for forecasting in normal epidemic years, during and after a
major shock (eg, the COVID-19 pandemic). Compared with the
well-established 5-year-average method and quasi-Poisson
Serfling regression,7-10 the later/earlier method provided better
predictions in relation to the seasonal mortality peaks and
competitive predictions during the pandemic waves.

The proposed method requires minimal input on monthly all-
cause mortality data and minimal assumptions, differently than
more sophisticated models, such as compartmental models,27,28

which require much more information. All-cause mortality data
are available in most countries with a short delay, unlike cause-
specific data, which have reporting delays of up to 2 years in many
countries, due to the process of coding by cause of death. They
avoid bias in cause-of-death registration and issues of standard-
ization of cause-of-death classification across countries and time.
The forecasts rely on the assumption of stationarity of the series
of later/earlier ratios. In our application, tests for stationarity
proved that the assumption was met. If the assumption were not
to hold, time-series methods could remove nonstationarity from
the series of later/earlier ratios.

An innovative aspect of the method is the empirical predic-
tion intervals estimated from the uncertainty in time series of
past later/earlier ratios. This reflects the intuitive notion that a
forecast is as precise as similar forecasts turned out to be in the
past for that corresponding month. The approach is different from
conventional parametric intervals, which rely on the suitability of
parametric assumptions. The result is that the prediction inter-
vals for our forecasts properly widen during the winter.

Some limitations have been found when forecasting mortality
1 month ahead. A delay in the forecasts was observed in
correspondence of specific winter peaks due to the uncertainty in
the month of occurrence of the winter peak. The delay was also
observed with the other two forecasting methods considered here.
Furthermore, the later/earlier method was not able to predict
the first COVID-19 wave. It was able to capture the aspects
of later waves better than other traditional methods (ie, the
5-year-average method and the quasi-Poisson Serfling model).
The later/earlier method might be suitable for forecasting
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mortality in pandemic times, immediately after the initial health
shock, when mortality resembles that of an influenza epidemic
by circulating seasonally.

Another limitation is that the forecasts are provided only 1
month ahead. However, this is already a useful time window
during a pandemic caused by a new virus, when no information on
the spread of the infectious disease or cause of death is available.
Information on how many people might die in the next month can
support decision-makers in keeping existing measures in place,
taking further actions, or, if a slowdown is forecast, relaxing the
measures taken. Short-term forecasts can be used for health-care
management decisions, such as hospital equipment and lodging,
and by local authorities to plan mortuary capacity.

For epidemiologists, public health researchers, and demogra-
phers, the COVID-19 pandemic fostered many research questions.
The question of what methods and models were best suited to
monitor and predict the severity of the COVID-19 pandemic was
widely discussed. The later/earlier method is a flexible forecasting
method that might serve statistical offices and surveillance sys-
tems in closely monitoring mortality progression. It can be used
for nonpandemic mortality and current and future pandemics.
Statistical offices should continue to improve the release and
timing of reliable seasonal mortality data.
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