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Abstract

Allowing risk preferences to be sensitive to the correlation between lottery outcomes can resolve

classical deviations from expected utility theory and provides a plausible explanation for phenom-

ena in various real-world settings. However, evidence on correlation sensitivity is limited and

mixed. In this paper, we first show that correlation-sensitive preferences in the general frame-

work of Lanzani (2022) can be classified into three categories. We propose a novel experimental

task that allows to classify experimental subjects according to this categorization. In a series of

experiments, we find that aggregate choices display correlation sensitivity but in the opposite di-

rection as often assumed in regret and salience theory. Individual level analysis suggests that the

aggregate findings are driven by a minority who consistently exhibit this behavior even when it

violates first-order stochastic dominance. Finally, we disentangle between correlation sensitivity

due to deliberate within-state comparisons and incidental payoff comparisons due to the framing

of decision problems, and find that both channels produce correlation sensitivity, with deliberate

comparisons being somewhat more important.
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1 Introduction

In an influential class of risk preferences including regret theory and salience theory (Bell, 1982;

Loomes and Sugden, 1982; Bordalo et al., 2012), the correlation between different risky prospects

can significantly impact choices. Incorporating correlation sensitivity in preferences can help

resolve several deviations from expected utility theory (EUT), including the Allais paradox (Allais,

1953), preference reversals, or simultaneous gambling and insurance. Moreover, it provides an

explanation for skewness preferences (Dertwinkel-Kalt and Köster, 2020) and asset price puzzles

(Bordalo et al., 2013a).

However, the key behavioral implications of correlation sensitivity remain somewhat elusive,

and existing experimental evidence on the prevalence and nature of correlation sensitivity is in-

conclusive. In this paper, we consider the general class of correlation-sensitive preferences axiom-

atized by Lanzani (2022), which nests regret (Bell, 1982; Loomes and Sugden, 1982, 1987) and

salience theory (Bordalo et al., 2013b). We show that there exist three types of correlation sensi-

tivity. We then propose a simple experimental task that allows us to classify experimental subjects

according to their type of correlation sensitivity. Finally, we provide experimental evidence on the

prevalence and nature of correlation sensitivity, and probe its psychological foundations.

Our novel experimental task, the same marginal lotteries (SML) task illustrated in Table 1,

captures the key features of correlation sensitivity. The marginal distribution of both lotteries is

described by three distinct payoffs: h, m, and l, each of which occurs with equal probability.

Whenever the row lottery yields the payoff h, m, or l, the column lottery yields, respectively, the

payoff l, h, or m. Note that both lotteries share the same marginal distribution and are distinguish-

able only by the way payoffs are correlated. The row lottery yields a much higher outcome than

the column lottery with probability 1/3 (h vs l), but a somewhat lower outcome with probability

2/3 (m vs h and l vs m). Evidently, a decision maker whose preferences are fully characterized by

the marginal distribution of payoffs is indifferent between the two lotteries. A correlation-sensitive

decision maker, however, has a strict preference for either the row or the column lottery.

Intuitively, the decision maker has to aggregate the differences between joint payoff realizations

to form a preference. If she aggregates payoff differences linearly, we say that she satisfies constant

sensitivity to payoff differences (CSPD). In this case, she is indifferent between the row and the

Table 1 The same marginal lotteries (SML) task

πsml h(1/3) m(1/3) l(1/3)
h(1/3) 0 1/3 0
m(1/3) 0 0 1/3
l(1/3) 1/3 0 0
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column lottery. If the decision maker is increasingly sensitive to payoff differences (ISPD), large

payoff differences have an outsized effect on preferences. The decision maker factors the high-

contrast realization (h, l) more heavily than the two smaller differences of the realizations (m,h)

and (l,m) combined. As a result, the decision maker has a strict preference for the row lottery.

If the decision maker is decreasingly sensitive to payoff differences (DSPD), the reverse applies.

Heuristically speaking, a decision maker characterized by ISPD chooses the lottery that yields

the higher outcome for the payoff realization with the highest contrast, whereas a decision maker

characterized by DSPD chooses the lottery that yields a higher payoff most of the time.

In the framework of Lanzani (2022), we show that preferences over the lotteries of the SML

task allow us to classify people into the three mutually exclusive categories of preferences char-

acterized by CSPD, ISPD, and DSPD. Lanzani provides a representation theorem for the class

of correlation-sensitive preferences. He further shows that if transitivity is imposed, correlation-

sensitive preferences collapse to EUT and become insensitive to the correlation structure. We

slightly extend Lanzani’s result to show that transitivity is equivalent to a simple and intuitive con-

dition on the correlation-sensitive utility function. This condition can be understood as imposing

CSPD, which implies that preferences are not correlation-sensitive, but are fully described by a

relation over marginal distributions of payoffs. It follows that in Lanzani’s framework, transitivity

can be violated in two ways, and thus correlation sensitivity can take two directional forms: either

ISPD or DSPD. We show that a decision maker satisfies CSPD if and only if she is indifferent be-

tween the row and the column lottery of the SML task. The decision maker strictly prefers the row

lottery (the column lottery) if and only if she satisfies ISPD (DSPD). Therefore, we occasionally

refer to the row as the ISPD lottery and the column as the DSPD lottery.

As Lanzani’s framework nests regret and salience theory, our result shows that correlation

sensitivity is the key behavioral property that distinguishes regret and salience theory from EUT.

Both theories make assumptions that imply ISPD. In salience theory, joint realizations receive

different decision weights according to their salience (Bordalo et al., 2012). The assumption that

implies ISPD is that joint realizations with large payoff differences are the most salient and thus

receive disproportionate decision weight. In regret theory, the decision maker’s utility depends

on a comparison of jointly realized payoffs. If the decision maker realizes that they could have

received a higher payoff had they chosen differently, she experiences regret (Loomes and Sugden,

1982, 1987). The crucial assumption that yields ISPD is that the decision maker is increasingly

sensitive to increments in regret.

The SML task serves as the basis for our experimental tests of correlation sensitivity. Since cor-

relation sensitivity implies strict preferences for either the row or the column lottery, if a decision

maker does not exhibit correlation sensitivity for the SML task, she will not exhibit correlation
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sensitivity in any other decision problem. Failure to detect correlation sensitivity thus provides

strong evidence of correlation insensitivity. Intuitively, since the marginal distribution of both

lotteries is the same, even correlation sensitivity of otherwise negligible importance should be

apparent. On the flip side, if choices display correlation sensitivity, this might be caused by a

weak preference that might not be evident in any other decision problem. To probe the strength of

potential correlation sensitivity, we add a payoff premium to all payoffs of either the ISPD or the

DSPD lottery, rendering one of the lotteries First-Order Stochastic Dominant (FOSD). We refer

to these decision problems as FOSD tasks. A decision maker with CSPD has a strict preference

for the lottery which is FOSD. Correlation-sensitive decision makers may violate FOSD in one

direction, which comes at the cost of forgoing higher payoffs.

We further implement three between-subject treatments to investigate the psychological foun-

dations of correlation sensitivity. ISPD is the key theoretical property in both regret and salience

theory, but these theories rely on distinct psychological mechanisms. In regret theory (Bell, 1982;

Loomes and Sugden, 1982), payoff comparisons are deliberate because the decision maker’s true

utility depends on a comparison of jointly realized payoffs. In salience theory (Bordalo et al.,

2012), on the other hand, payoff comparisons impact the decision maker’s perception of the choice

at hand. As there is nothing about joint payoff realizations that the decision maker values intrinsi-

cally, payoff comparisons might be best described as incidental. Different authors have suggested

that the framing of decision problems, rather than the joint realization of payoffs, might be the

relevant criterion to determine the unit of payoff comparisons in salience theory (Dertwinkel-Kalt

and Köster, 2015; Leland et al., 2019).

Our between-subject treatments build on the distinction between deliberate comparisons of

jointly realized payoffs and incidental payoff comparisons due to the framing of the decision

problem. In all treatments, the joint distribution of lotteries is described by reference to states of

nature, which are determined by the turn of a wheel of fortune, and the lotteries yield different

outcomes depending on the realized state of nature. We present the choice problems in tabular

form. In the baseline treatment, each column describes the realizations of each lottery in a given

state of the world. In this treatment, correlation sensitivity can arise from deliberate state-by-state

comparisons of payoffs or incidental column-by-column comparisons of payoffs. Our remaining

two treatments allow us to disentangle the two channels. In the column-effects treatment, payoffs

are perfectly correlated across states, which means correlation sensitivity can only arise from

column-by-column comparisons of payoffs. On the other hand, in the state-effects treatment,

the payoffs displayed in each column are the same for both lotteries, while the joint distribution of

payoffs remains consistent with the baseline treatment. Consequently, correlation effects observed

in this treatment can only be attributed to deliberate state-by-state comparisons of payoffs across
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columns.

We further supplement the SML task in the baseline treatment with a within-subject treatment

that varies whether subjects receive immediate outcome feedback after a given choice. We include

this treatment to accommodate for the contingency that regret aversion is a prominent feature in

decision making only if individuals anticipate immediate outcome feedback (Bell, 1983; Zeelen-

berg et al., 1996; Zeelenberg, 1999).

In one lab and two online experiments, comprising a total of 919 participants, we collected

more than 18,000 observations. In the baseline treatment, the aggregate choices provide evidence

for small but consistent effects that imply DSPD. We also document a precise null effect of im-

mediate outcome feedback, suggesting that it does not interact with correlation sensitivity in a

significant way. Using latent class analysis to identify categories of choice patterns, we find that

most of our participants exhibit behavior consistent with CSPD. However, a minority of around

17% of the participants consistently exhibit behavior that satisfies DSPD, even if it violates FOSD.

Importantly, the latent class analysis does not produce a corresponding category of participants

whose behavior is characterized by ISPD. Therefore, both our aggregate and individual-level re-

sults strongly reject ISPD as the prevalent property governing preferences.

We find further evidence of DSPD in both the column-effects and the state-effects treatments.

However, compared to the baseline treatment, the aggregate effect size is somewhat reduced, par-

ticularly in the column-effects treatment. Furthermore, when analyzing individual responses, we

find that only 9% of participants in the column-effects treatment are assigned to the latent class

characterized by strong DSPD. In contrast, the corresponding fraction in the state-effects treatment

is 22%. This indicates that deliberate comparisons of jointly realized payoffs may play a somewhat

more significant role in driving correlation sensitivity compared to incidental column-by-column

comparisons of payoffs.

1.1 Related literature

We contribute to three strands of literature. First and foremost, we contribute to the experimental

literature on correlation-sensitive preferences. Although models of correlation-sensitive prefer-

ences have drawn interest at least since the proposal of regret theory (Bell, 1982; Loomes and

Sugden, 1982) and have recently seen a revival in salience theory (Bordalo et al., 2012), the ex-

perimental evidence for correlation sensitivity is inconclusive.

Three approaches to examining correlation sensitivity can be distinguished. The first approach

builds on manipulations of the joint distribution of payoffs. A number of papers motivated by

testing regret theory (Loomes and Sugden, 1987; Loomes, 1988a,b) and salience theory (Bor-

dalo et al., 2012; Frydman and Mormann, 2018; Dertwinkel-Kalt and Köster, 2020; Bruhin et al.,

5



2022) used this approach and reported choice patterns that purportedly provided evidence for

ISPD. However, Starmer and Sugden (1993) showed that the initial results attributed to correla-

tion sensitivity were most likely caused by so called event-splitting effects, which are unintended

changes in the choice display.1 Once controlling for these simultaneous changes in the choice

display, Starmer and Sugden (1993) found that the evidence for correlation sensitivity was consid-

erably weakened and lost statistical significance. Humphrey (1995), and more recently Ostermair

(2021) and Loewenfeld and Zheng (2023) also failed to find evidence for correlation sensitivity

once changes in the choice display were controlled for. However the design of these studies does

not allow to conclude that preferences satisfy CSPD. We will elaborate on this point in section 3.2.

Therefore, their findings may be inconclusive. This view is echoed by (Starmer and Sugden, 1993,

p.253), who find no statistically significant evidence for correlation sensitivity but argue that their

“data display a clear tendency towards a [correlation] effect, and it may be that such effects would

be more apparent in other problem settings."

A second approach seeks to measure the correlation-sensitivity of preferences in a non-parametric

way using the trade-off method (Wakker and Deneffe, 1996). Adopting this approach, both Ble-

ichrodt et al. (2010) and Baillon et al. (2015) reported evidence suggesting the majority of their

participants satisfied ISPD. However, Andersson et al. (2023) failed to replicate their findings

with M-turk workers, who are supposedly more representative than university students. Moreover,

these results are subject to severe limitations. The trade-off method involves a dynamically gener-

ated series of choices. The dynamic nature of the method creates a critical issue, namely a lack of

incentive compatibility, which could produce behavior equivalent to ISPD.2

The third approach relies on testing for preference cycles as prescribed by regret theory (Loomes

et al., 1991; Baillon et al., 2015). As pointed out above, in Lanzani’s framework, decision makers

violate transitivity if and only if they are correlation-sensitive.3 Therefore, tests for preference

cycles predicted by ISPD constitute a test of correlation insensitivity. Initial studies seemed to find

1 In these studies, subjects were confronted with a choice between two different lotteries under two different joint dis-
tributions. Correlation sensitivity implies that subjects might shift their choices in response to the change in the joint
distribution. However, simultaneous to changing the correlation structure, the number of states displayed to subjects
was changed as well, in a way that has been shown to produce behavioral patterns similar to those implied by ISPD
(Starmer and Sugden, 1993; Ostermair, 2021; Loewenfeld and Zheng, 2023).

2 The trade-off method consists of eliciting a series of values x j that make the decision maker indifferent between a
lottery (x j, p;g,1− p) and another lottery (x j−1, p;G,1− p), with g, G, x0, and p being chosen by the experimenter.
In the first step, g, G, and x0 are used to elicit x1. The second step then consists of using g, G, and x1 to elicit x2, and
so on up to x5 in Bleichrodt et al. (2010). If subjects anticipate the structure of the method, it provides an incentive to
report higher values of x1, x2, etc., as would correspond to their actual preferences.

3 Although we do not test for violations of transitivity directly in the sense of showing evidence for cycling preferences,
strict preferences for one of the lotteries of the SML task and cycling preferences are equivalent in the framework of
Lanzani (2022). Indeed, we show that the SML task is a “reduced form" test for the cycle A� B�C � A as it cuts out
the middle part and directly tests for A� A. It should be stressed here that the concept of transitivity commonly used in
the decision literature is defined for A, B, C denoting marginal distributions. While this facilitates comparisons to EUT
and other models of risk taking, this concept of transitivity is conceptually odd from the perspective of correlation-
sensitive preferences. For a correlation-sensitive decision maker, the row and the column lottery of the SML task are
clearly distinct from one another.
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support for such cycling preferences (Loomes et al., 1989, 1991). However, subsequent studies

claimed that the preference cycles previously observed were likely the result of decision noise

rather than intransitive preferences (Sopher and Gigliotti, 1993; Regenwetter et al., 2011). Moti-

vated by this development, Baillon et al. (2015) employed a two-step procedure. In the first step,

they employed the trade-off method to measure subjects’ correlation-sensitive preferences. In the

second step, subjects were confronted with choice-triples tailored to their preferences, such that

systematic violations of transitivity should be triggered. However, this was not observed, despite

simulation exercises suggesting statistical power near 100%. These findings suggests that the

trade-off method might not provide reliable estimates of correlation sensitivity.4

With the SML task, we advance the investigation of correlation sensitivity by providing a novel

diagnostic tool. From an experimental viewpoint, the simplicity of the SML task is its main

strength as it avoids methodological shortcomings. It is incentive compatible, and the results can

be interpreted in a straightforward way, while undesirable and confounding features of the choice

display are naturally avoided (see section 3.2 for details). The SML task is capable of detecting

correlation sensitivity, even if it were of negligible importance, which is a theoretical advantage.

While previous studies have been somewhat inconclusive, this property of the SML task enables

us to firmly reject that behavior satisfies ISPD both at the aggregate and the individual level. Fur-

thermore, in a large sample of participants, we document for the first time small but persistent

effects implying DSPD at the aggregate level, which is driven by a minority of participants who

consistently display behavior satisfying DSPD. These results are in sharp contrast with the predic-

tions of regret and salience theory and existing findings in the literature. We attribute our ability

to document DSPD to a mix of high statistical power and our improved experimental task.

We also contribute to the experimental literature on correlation sensitivity by investigating its

psychological foundations. To the best of our knowledge, we are the first to do so. Our results

suggest that both incidental payoff comparisons due to the framing of choice problems, as well as

deliberate state-by-state comparisons of payoffs play their part in producing correlation sensitivity,

although the latter channel might be somewhat more important.

Finally, we contribute to the broader literature on regret and salience theory. A number of ex-

perimental studies have tested the implications of regret (Somasundaram and Diecidue, 2017) and

salience theory (Dertwinkel-Kalt et al., 2017; Königsheim et al., 2019; Alós-Ferrer and Ritschel,

2022), but without testing for correlation sensitivity. A large literature has developed regret the-

ory theoretically (Bell, 1982; Loomes and Sugden, 1982; Bell, 1983; Loomes and Sugden, 1987;

Quiggin, 1990, 1994; Sarver, 2008; Diecidue and Somasundaram, 2017; Gollier, 2020). Applied

theoretical work has explored the implications of regret theory for insurance demand (Braun and

4 We are thankful to Aurélien Baillon for pointing this out.
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Muermann, 2004; Wong, 2012), portfolio choice (Michenaud and Solnik, 2008; Qin, 2015), as-

set pricing (Gollier and Salanié, 2006), and health prevention (Zheng, 2021). Salience theory

(Bordalo et al., 2012) has been shown to provide a potential foundation for skewness preferences

(Dertwinkel-Kalt and Köster, 2020) and has been applied to the study of asset pricing, both the-

oretically (Bordalo et al., 2013a) and empirically (Cosemans and Frehen, 2021), as well as the

newsvendor problem (Dertwinkel-Kalt and Köster, 2017).

The popularity of these two theories is due to their intuitively plausible explanations for many

perplexing choice phenomena observed in various settings, ranging from experimental labs to in-

surance and asset markets. We contribute to this literature by testing the ISPD property, which

is the key theoretical property that sets apart regret and salience theory from other prominent

decision-making theories under risk. Our rejection of ISPD at the aggregate and individual level

suggests that the mechanisms postulated in regret and salience theory are unlikely to be the cause

of deviations from EUT, such as the Allais paradox or simultaneous gambling and insurance,

as well as behavioral tendencies like the commonly observed preference for right-skewed risks.

One might argue that much of the ability of regret and salience theory to explain these behav-

ioral anomalies is due to its capability to endogenize the probability weighting of cumulative

prospect theory (Tversky and Kahneman, 1992). The recent literature on behavioral inattention

and Bayesian updating provides promising avenues for understanding these behaviors without vi-

olating transitivity (Gabaix, 2014; Enke and Graeber, 2021).

The remainder of this paper is organized as follows. Section 2 provides a formal discussion

of correlation-sensitive preferences. We then introduce our novel experimental task in section

3. Section 4 details the experimental procedures, and section 5 presents the main experimental

results. We discuss our results in section 6. Section 7 concludes.

2 Correlation-sensitive preferences

In the framework of Lanzani (2022), choices between two lotteries are described by a nonempty

set of payoffs X and a finite measure of the joint probability distribution π ∈ ∆(X ×X). To avoid

technicalities we impose X ⊆ R. Consider Table 2. The decision maker decides between the row

and the column lottery so as to be paid accordingly to the realized row or column outcome. The

payoff pair (xi,y j) realizes with a probability of πi j. For a decision maker who is not correlation-

sensitive, preferences are fully described by a binary ranking over the marginal distribution of

the row lottery π1 ∈ ∆(X) (light gray area in Table 2) and that of the column lottery π2 ∈ ∆(X)

(gray area in Table 2). Formally, the marginal distribution of the row lottery is given by π1(x) =

∑y∈Y π(x,y) = (p1, ..., pm) and that of the column lottery by π2(y) = ∑x∈X π(x,y) = (q1, ...,qn).
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Table 2 Binary choices in the tabular form

π y1(p1) ... ym(pm)

x1(q1) π11 ... π1m

... ... ... ...

xn(qn) πn1 ... πnm

To allow for correlation sensitivity, Lanzani defines the decision maker’s preferences over the

joint distribution of outcomes. Binary preferences are modeled as a preference set Π⊆ ∆(X×X).

The decision maker is said to have a preference for the row lottery for a given joint distribution π

if π ∈Π. Define π to be the conjugate distribution of π , that is, ∀(x,y) ∈ X×X , π(x,y) = π(y,x).

Intuitively, the conjugate distribution is the distribution that obtains when switching the row and

the column lottery. Then, a decision maker has a preference for the column lottery if π ∈Π.

The relation π ∈ Π is analogous to the familiar weak preference relation �, and π,π ∈ Π

corresponds to indifference. Note that the classical preference relation� also induces a preference

set. However, it is defined over ∆(X)×∆(X) whereas Π is defined over ∆(X ×X). Given the

notion of weak preferences, a notion of strict preferences, in the language of preference sets,

can be introduced. Given a preference set Π, the subset of strict preferences Π̂ is defined as

Π̂ = {π ∈Π : π /∈Π}. That is, for π ∈ Π̂ the decision maker strictly prefers to be paid according

to the row rather than the column lottery.

Lanzani (2022) imposes three axioms on the preference set Π that are necessary and sufficient

to obtain a representation theorem for correlation-sensitive preferences. The three axioms are

completeness, strong independence, and continuity, and are natural analogues to the corresponding

axioms in the v.N.M axiomatization of EUT.5 Consider a skew-symmetric function φ : X×X→R,

that is, φ(x,y) =−φ(y,x), ∀(x,y) ∈ R×R. A preference set Π satisfies Lanzani’s three axioms if

and only if there exists a skew-symmetric function φ such that, for any π ∈ ∆(X×X)

π ∈Π ⇐⇒ ∑
x,y

φ(x,y)π(x,y)≥ 0 (1)

As Lanzani points out, the binary preference relation induced by preferences defined over the

marginal distributions of payoffs is a possibly incomplete subset of the relation defined over the

joint distribution of payoffs. In other words, preferences defined over the joint distribution are

more general than preferences defined over the marginal distribution of payoffs. As such, it might

5 Whereas completeness and archimedean continuity can be seen as a translation of the corresponding axioms in the
v.N.M. axiomatization of EUT into the language of preference sets, the strong independence axiom implies consid-
erably less structure than the corresponding standard independence axiom of EUT. The standard independence axiom
implies that common consequences, understood as payoffs that are yielded by the marginal distribution of both lotter-
ies, do not impact choice and can be edited out. The strong independence axiom implies that payoffs yielded by both
the row and the column lottery can be edited out if they realize jointly.
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not be surprising that Lanzani’s framework can accommodate EUT preferences.6

However, the generality of correlation-sensitive preferences comes at a cost of added com-

plexity. Whether this added complexity is necessary, that is whether risk preferences are indeed

meaningfully correlation-sensitive, is a crucial question. As it is part of our motivation to provide

evidence on this question, we introduce a formal definition of correlation-sensitive preferences,

whose counterpart are naturally correlation-insensitive.

Definition of correlation-sensitive preferences. Let the set of payoffs X = R. A preference re-

lation is correlation-sensitive if and only if ∃π , π ′ ∈ ∆(X ×X) : π1 = π ′2, π2 = π ′1, π ∈ Π̂ and

π ′ ∈ Π̂.

Intuitively, preferences are correlation-sensitive if and only if there exists a pair of row and

column marginals such that the row lottery is strictly preferred under one joint distribution π ,

but the column lottery is strictly preferred under a different joint distribution π ′. In other words,

correlation-sensitive preferences cannot be fully described by a binary relation over marginal dis-

tributions.

Lanzani (2022) introduces a fourth axiom, transitivity, which is essentially a translation of the

classic transitivity axiom into the language of preference sets. In words, the transitivity states

that if a marginal distribution π1 is preferred to another marginal distribution χ1 under a joint

distribution π , and the marginal distribution χ1 is preferred to another marginal distribution χ2

under a joint distribution χ , then the marginal distribution π1 must be preferred to the marginal

distribution χ2 under a joint distribution ρ .7

In his Proposition 1, Lanzani (2022) shows that if transitivity is imposed, the preference relation

is fully characterized by an EUT representation. Below, we restate Lanzani’s proposition, and

slightly extend it by showing that transitivity is equivalent to correlation insensitivity, as well as to

a simple and intuitive condition on the function φ . This characterization of correlation insensitivity

will greatly help in clarifying the directional effect of correlation sensitivity and in deriving our

experimental tests of correlation sensitivity.

Proposition 1. If Π admits a correlation-sensitive preference representation as given in the ex-

pression (1), the following statements are equivalent:

1. Π satisfies transitivity.

2. Π is fully characterized by EUT (and thus correlation-insensitive).

3. ∀h,m, l ∈ R such that h > m > l, φ(h, l) = φ(h,m)+φ(m, l)
6 A preference set admits an EUT representation if there exists u : X→R such that π ∈Π ⇐⇒ ∑x,y(u(x)−u(y))π(x,y)≥

0. In other words, φ(x,y) = u(x)−u(y).
7 Formally, the transitivity axiom can be stated as follows: ∀ π,χ,ρ ∈ ∆(X×X), if π2 = χ1, ρ1 = π1, and ρ2 = χ2, then
(π ∈Π,χ ∈Π)⇒ ρ ∈Π.
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Proof. see Appendix A.

2.1 Classification of correlation-sensitive preferences

This restated and extended version of Lanzani’s proposition is meaningful for several reasons.

First, it highlights that preferences are correlation-sensitive, and transitivity is violated if and only

if φ(h, l) 6= φ(h,m)+φ(m, l). This allows to distinguish broadly between three mutually exclusive

categories of preferences. The first category is correlation insensitivity. Decision makers falling

into this category satisfy Constantly Sensitivity to Payoff differences (CSPD). such decision mak-

ers are indifferent between one large payoff difference and two smaller differences that add up to

the same size (see Proposition 1). For the other two categories of preferences, correlation sensitiv-

ity goes in two opposite directions. If φ(h, l)> φ(h,m)+φ(m, l), decision makers prefer one large

payoff difference to two smaller differences that add up to the same size. We will say that decision

makers in this category are Increasingly Sensitive to Payoff Differences (ISPD). For the reverse di-

rection, we will say that decision makers are Decreasingly Sensitive to Payoff Differences (DSPD).

This forms the third category. We summarize the classification of correlation-sensitive preferences

below.

Classification of correlation-sensitive preferences. Suppose that a decision maker’s preference

relation admits a correlation-sensitive preference representation as given in the expression (1).

Then,

(1) the decision maker is CSPD (or correlation-insensitive) if φ(h, l) = φ(h,m)+φ(m, l);

(2) the decision maker is ISPD if φ(h, l)> φ(h,m)+φ(m, l);

(3) the decision maker is DSPD if φ(h, l)< φ(h,m)+φ(m, l).

The condition on the preference functional connects naturally to the literature on regret and

salience theory. In their generalization of original regret theory (Loomes and Sugden, 1982),

Loomes and Sugden (1987) impose the condition φ(h, l) > φ(h,m) + φ(m, l), which is usually

referred to as regret aversion or convexity in the regret theory literature. As Herweg and Müller

(2021) demonstrate, from a mathematical perspective, salience theory is a special case of gener-

alized regret theory. Thus, both salience and and regret regret theory imply ISPD. Proposition 1

highlights the fact that correlation-sensitivity is the defining feature of both salience and regret

theory. When preferences satisfy CSPD, they are correlation-insensitive and collapse to an EU

representation.

Finally, it is worth mentioning that in the context of binary choices, the recently proposed

attention theory by Chew et al. (2023) incorporates correlation sensitivity. Particularly, when the

attention function exhibits skew symmetry, attention theory aligns with regret theory and salience
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theory. While our experiments primarily focus on characterizing correlation sensitivity within

the framework of Lanzani (2022), they also serve as a test for correlation sensitivity induced by

attention theory.

3 An experimental test of correlation sensitivity

3.1 The same marginal lotteries (SML) task

Consider the choice tasks displayed in Table 3. Panel (3i) presents our main experimental task,

the SML task. As the name suggests, subjects choose between two lotteries that have the same

marginal distribution. The lotteries can be distinguished only based on the joint distribution πsml .

In panels (3ii) and (3iii), a payoff premium (i.e., ε > 0) is added to all possible payoffs of either the

row or the column lottery, which makes the corresponding lottery first-order stochastic dominant.

We refer to these choice problems as the FOSD tasks, which are denoted as πr and πc depending

on whether the row or column lottery is dominant. The following corollary trivially follows from

Proposition 1.

Corollary 1. If Π admits a correlation-sensitive representation as given in the expression (1), the

following holds for all h,m, l ∈ R such that h > m > l.

1. φ(h, l)> φ(h,m)+φ(m, l) ⇐⇒ πsml ∈ Π̂;

2. φ(h, l)< φ(h,m)+φ(m, l) ⇐⇒ π
sml ∈ Π̂;

3. φ(h, l) = φ(h,m)+φ(m, l) ⇐⇒ πsml ∈Π and π
sml ∈Π ⇐⇒ πr ∈ Π̂ and π

c ∈ Π̂, ∀ε > 0.

The corollary states that any correlation-sensitive decision maker has a strict preference for

either the row or the column lottery of πsml . That is, in an experimental setting, any decision

Table 3 Tests of correlation sensitivity

πsml h(1/3) m(1/3) l(1/3)
h(1/3) 0 0 1/3
m(1/3) 1/3 0 0
l(1/3) 0 1/3 0

(i) The SML task

πr h(1/3) m(1/3) l(1/3)
h+ ε(1/3) 0 0 1/3
m+ ε(1/3) 1/3 0 0
l + ε(1/3) 0 1/3 0

(ii) The raw lottery being FOSD

πc h+ ε(1/3) m+ ε(1/3) l + ε(1/3)
h(1/3) 0 0 1/3
m(1/3) 1/3 0 0
l(1/3) 0 1/3 0

(iii) The column lottery being FOSD
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maker satisfying ISPD must express a preference for the row lottery. By contrast, a decision

maker satisfying DSPD must express a preference for the column lottery. We will therefore refer

to the row lottery as the ISPD lottery, and to the column lottery as the DSPD lottery. The SML

task provides a stringent test of correlation-sensitive preferences in the following sense. Should a

decision maker fail to express a preference for the ISPD (DSPD) lottery, it can be concluded that

the decision maker will not display increasing ISPD (DSPD) for any choice task.

A correlation insensitive decision maker is indifferent between the row and the column lottery

of πsml . If experimental subjects are forced to choose either the row or the column lottery, in-

difference implies that they choose either option with 50% probability. Subjects satisfying ISPD

(DSPD), on the other hand will, safe for decision error, choose the row (the column) lottery. There-

fore, a single choice of a single subject cannot be used to infer correlation insensitivity. However,

averaging over choices, either across different subjects or across different choices within the same

subjects, allows to cleanly distinguish between the three categories of preferences we introduced

previously.

To gauge the strength of correlation sensitivity, we further consider the FOSD tasks. Corre-

lation insensitivity implies a strict preference for the dominant lotteries under the joint distribu-

tions πr as well as πc. The SML task should reveal correlation sensitivity even if it is only of

second-order importance in the sense of lexicographic preferences. For the FOSD tasks, how-

ever, experimental subjects have to violate FOSD in order to express their correlation-sensitive

preferences.

The SML task also is a test of transitivity. Because correlation sensitivity is equivalent to

intransitivity, proposition 1 in conjunction with corollary 3.1 imply that a strict preference for the

row or the column lottery is equivalent to violating transitivity in Lanzani’s framework. However,

the SML task provides a test of transitivity in a more general sense. As Lemma A used in the

proof of Proposition 1 shows, one needs only impose the completeness axiom, and neither strong

independence, nor Archimedean continuity, for a strict preference for the row or the column lottery

of the SML task to constitute a violation of transitivity. Note however, when only completeness is

imposed, correlation insensitivity is no longer equivalent to transitivity, meaning that transitivity

can be violated in ways unrelated to correlation sensitivity. The SML task therefore allows to

unambiguously distinguish between transitive and intransitive preferences only within Lanzani’s

framework, but not in the more general case in which only completeness is imposed.

3.2 A comparison to past studies

In this section, we compare the SML task to previous experimental tasks used to test for correlation

sensitivity. The approach closest the SML task is testing for correlation sensitivity by manipulating
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the joint distribution for choices between lotteries with different marginal distributions (Starmer

and Sugden, 1993; Humphrey, 1995; Ostermair, 2021; Loewenfeld and Zheng, 2023). If no ev-

idence of correlation sensitivity is observed in these studies, it does not necessarily imply that

subjects are not correlation-sensitive. To clarify this point, consider the example task of Starmer

and Sugden (1993) illustrated in Table 4 below. Subjects have to choose between the row and the

column lotteries. The marginal distribution of the row lottery is relatively riskier but has a higher

expected value. Note that the choice on the right hand side of the table is the same in terms of the

marginal distributions of the lotteries. However, the joint distributions differ, with the lotteries on

the left-hand panel being more negatively correlated than on the right-hand panel.

Consequently, observing a subject express a preference for the raw lottery under the joint dis-

tribution π and a preference for the column lottery under the joint distribution π ′ implies that

her preferences are characterized by ISPD. The reverse choice pattern implies DSPD. However,

these choice patterns are not implied by increasing or decreasing sensitivity to payoff differences.

Formally, π ∈ Π and π
′ ∈ Π⇒ φ(h, l) ≥ φ(h,m)+ φ(m, l), and π ′ ∈ Π and π ∈ Π⇒ φ(h, l) ≤

φ(h,m) + φ(m, l), but the reverse direction (⇐ ) does not hold. Thus, failing to observe these

patterns cannot be taken to imply that preferences are correlation-insensitive.

Confronting subjects with this kind of tasks, Starmer and Sugden (1993) find no evidence for

correlation-sensitive preferences. As the authors themselves conclude, the implications of these

results are unclear as it is possible that correlation sensitivity would be more prevalent in another

setting (Starmer and Sugden, 1993, p.253). Intuitively, correlation-sensitive preferences do not

necessarily need to manifest in the setting of Starmer and Sugden (1993) if preferences over the

marginal distributions of the lotteries are strong enough. For instance, since the row lottery in Table

4 yields a higher expected payoff, a given subject might choose it under both correlation structures,

even if the very same subject would display correlation sensitivity in another setting. The SML

task does away with such ambiguities. Intuitively, since choices are between two lotteries with

the same marginal distribution, preferences over marginal distributions cannot play any role. This

forces decision makers to reveal their correlation sensitivity.

A second set of studies uses choice triples to test for violations of transitivity as implied by

ISPD (Loomes et al., 1991; Baillon et al., 2015). Consider the example displayed in Table 5.

Subjects choose between the three marginal distributions A = (8,0.6;0,0.4), B = (18,0.3;0,0.7),

Table 4 An example task from Starmer and Sugden (1993)

π 7(55%) 0(45%)
11(45%) 0% 45%
0(55%) 55% 0%

(i) Negative correlation structure

π ′ 7(55%) 0(45%)
11(45%) 45% 0%
0(55%) 10% 45%

(ii) Positive correlation structure
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Table 5 An example task from Loomes et al. (1991)

πA 8(60%) 0(40%)
18(30%) 30% 0%
0(70%) 30% 40%

(i) Lottery A vs lottery B

πB 18(30%) 0(70%)
4(100%) 30% 70%

(ii) Lottery B vs lottery C

πC 4(100%)
8(60%) 60%
0(40%) 40%

(iii) Lottery A vs lottery C

and C = (4,1). The cycle A � B, B �C, and C � A is consonant with ISPD, whereas the reverse

cycle B� A, C� B, A�C is consistent with DSPD. In the absence of decision noise, observing an

ISPD (DSPD) conform cycle implies ISPD (DSPD) of preferences. However, following a similar

argument as above, not observing such cycles does not imply CSPD. Decision noise, which might

affect all three choices required by experimental subjects, further complicates inference about

the transitivity of preferences in non-trivial ways (Sopher and Gigliotti, 1993; Regenwetter et al.,

2011; Loomes, 2005; Baillon et al., 2015). As the SML task consists of a single choice, it avoids

such issues.

Apart from these theoretical properties, the SML task has a number of additional advantages

from an experimental viewpoint. First, all joint payoff realizations have equal probability, which

renders the task easy to understand. Second, our task naturally controls for event-splitting effects

that are present in a number of studies on correlation sensitivity (e.g., Loomes, 1988b; Frydman

and Mormann, 2018; Bruhin et al., 2022). Third, we avoid displaying duplicated states to exper-

imental subjects, which is common in studies testing for correlation sensitivity while controlling

for event-splitting effects (e.g., Loomes et al., 1991; Starmer and Sugden, 1993; Humphrey, 1995;

Ostermair, 2021; Loewenfeld and Zheng, 2023). We also avoid “null states" or other states that

should be edited out. While it might be argued that these features are undesirable since they could

have unexpected effects on behavior, they are present in many of the choice tasks that have been

used to test for correlation-sensitive preferences (Loomes, 1988b; Starmer and Sugden, 1993;

Humphrey, 1995; Dertwinkel-Kalt and Köster, 2020; Ostermair, 2021; Loewenfeld and Zheng,

2023).

3.3 Probing the psychological foundations of correlation sensitivity

Although regret and salience theory both induce ISPD, they build on distinct psychological mecha-

nisms. In both regret and salience theory, decision makers compare payoffs within states of nature,

although for different reasons. In regret theory, within-state comparisons of payoffs are deliberate
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as they impact the decision maker’s utility. In salience theory, within-state comparisons of payoffs

can be seen as incidental. They impact the decision maker’s perception of the choice task. How-

ever, there is nothing about within-state difference of payoffs that the decision maker intrinsically

values. This has led to the suggestion that payoff comparisons need not necessarily be determined

by which payoffs realize jointly but by how decision problems are framed when presented to deci-

sion makers (Dertwinkel-Kalt and Köster, 2015; Leland et al., 2019). This approach seems broadly

consistent with the description of salience as “a property of states of nature that depends on the

lottery payoffs that occur in each state, as they are presented to the decision maker" (Bordalo et al.,

2012, p.1256), and the recurring allusions to salience-driven framing effects throughout the paper.

We use this distinction to experimentally differentiate between correlation sensitivity that arises

from intentional comparisons of jointly realizing payoffs and correlation sensitivity that arises

from payoff comparisons due to the visual presentation of choice problems. We implement a set

of three between-subjects treatments as illustrated in Table 6. In all three treatments, subjects

face a binary choice similar to our SML task in panel (3i) of Table 3. Following the experimen-

tal literature, we describe the joint distribution of lotteries by referring to the underlying states

of nature. That is, the payoff generated by the lotteries depends on the realization of state of

nature, represented by different fields of a wheel of fortune. In panel (6i), which represents the

baseline treatment, each column describes the realizations of both lotteries in a given state of the

world. In this treatment, correlation-sensitivity can arise because subjects deliberately compare

payoffs state-by-state, but it could also arise if subjects incidentally compare payoffs column-by-

column. Evidently, it is not possible to distinguish between the two. This display follows previous

studies on correlation sensitivity (Starmer and Sugden, 1993; Humphrey, 1995; Ostermair, 2021;

Loewenfeld and Zheng, 2023).

The remaining two treatments allow to distinguish between correlation sensitivity arising from

state-by-state and column-by-column comparisons of payoffs. Consider the display in the column-

effects treatment, illustrated in panel (6ii). Note that the two lotteries are perfectly correlated. To

a decision maker whose correlation sensitivity is caused by deliberate state-by-state comparisons

of payoffs, they are equivalent. However, note that the column-by-column comparison of payoffs

is equivalent to that in the baseline treatment. Thus, any correlation sensitivity arising in this treat-

ment can be only attributed to incidental payoff comparisons that arise from presenting payoffs

column-by-column. Finally, consider the state-effects treatment illustrated in panel (6iii). The

payoffs displayed in each column are the same for both lotteries, whereas the joint distribution of

payoffs is as in the baseline treatment. Therefore, correlation sensitivity arising in the state-effects

treatment cannot be caused by incidental column-by-column comparisons of payoffs, but it can

only arise from state-by-state comparisons of payoffs. Arguably, such state-by-state comparisons
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Table 6 Between-subjects treatments for differentiating the distinct mechanisms underlying correlation
sensitivity

Lotteries Payoffs & States of nature

A h if s1 m if s2 l if s3

B l if s1 h if s2 m if s3

(i) Baseline treatment

Lotteries Payoffs & States of nature

A h if s1 m if s2 l if s3

B l if s3 h if s1 m if s2

(ii) Column-effects treatment

Lotteries Payoffs & States of nature

A h if s1 m if s2 l if s3

B h if s2 m if s3 l if s1

(iii) State-effects treatment

Table notes: all states are equally likely. Payoffs h,m, l ∈ R satisfy the relationship that h > m > l.

now require a deliberate effort on behalf of the experimental subjects.

Within the baseline treatment, we further implement a within-subject treatment that varies the

timing of outcome feedback. An argument often put forward in the psychology literature is that

in order for people to minimize ex-post regret, they have to anticipate immediate outcome feed-

back (Bell, 1983; Zeelenberg et al., 1996; Zeelenberg, 1999; Somasundaram and Diecidue, 2017).

While the timing of outcome feedback is not part of regret theory (Loomes and Sugden, 1982,

1987), we explore the possibility that immediate feedback is important for correlation sensitivity

to emerge by providing immediate feedback on some, but not all tasks.8 In the experiment, partic-

ipants make a number of choices, one of which is randomly selected to be payoff relevant. When

participants receive immediate outcome feedback, they are informed only about the outcome of

their choice, but not whether the task was selected for payoff. Note that, when participants do

not obtain immediate outcome feedback, they still receive feedback for the payoff relevant task at

the end of the experiment. Therefore, while any feedback effects we observe will be ascribed to

anticipated regret, it should not be inferred that correlation sensitivity in the absence of immediate

feedback cannot be driven by anticipated regret.

8 Our feedback manipulation is similar to that of Somasundaram and Diecidue (2017), but we are, to the best of our
knowledge, the first to test for feedback effects on correlation sensitivity.
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3.4 Main experimental hypotheses

Testing properties of deterministic models on invariably noisy choice data necessitates imposing

assumptions about the nature of noise and probabilistic choice (Loomes and Sugden, 1995; Luce,

1995; Baillon et al., 2015). We impose the minimal assumption that, if individuals are indifferent,

they choose at random, and that their probability of choosing a given lottery is (weakly) increasing

in their utility of doing so. This implies that correlation-insensitive individuals choose either

lottery of the SML task with 50% probability. This random choice benchmark constitutes our null.

As regret and salience theory are the main theories implying correlation sensitivity, we derive our

alternative hypothesis assuming that preferences are characterized by ISPD, which implies that the

ISPD lottery is chosen at a frequency higher than 50%. This motivates Hypothesis 1(a).

Second, if immediate feedback is necessary for correlation sensitivity driven by regret aversion

to arise, we might expect the preference for the ISPD lottery to be more pronounced when subjects

receive immediate feedback, as opposed to when feedback is only provided at the end of the

experiment. This motivates Hypothesis 1(b).

Further, observing choice frequencies different from 50% in the column-effects treatment will

provide evidence of correlation sensitivity driven by column-by-column comparisons, whereas

observing choice frequencies different from 50% in the states-effects treatment will provide ev-

idence of correlation sensitivity caused by state-by-state comparisons. In the first two of three

experiments only the baseline treatment was employed. After having observed choice frequencies

lower than 50% in these experiments, we hypothesized, based on introspection, that the observed

correlation sensitivity is driven by column-by-column comparisons. This motivates our Hypothe-

sis 1(c) and (d).

Finally, we gauge the strength of correlation sensitivity. If preferences are correlation-insensitive,

subjects will, safe for decision noise, choose the dominant lottery in both panels (3ii) and (3iii)

of Table 3. This implies an overall choice frequency of the row lottery of 50%. Pooling choices

for both cases, we can again test for correlation-sensitive preferences by testing whether the ISPD

lottery is chosen at an overall frequency higher than 50%.9 We summarize our experimental hy-

potheses below.

Hypothesis 1. Correlation-sensitivity at the aggregate level.

(a) The ISPD lottery will be chosen at a frequency higher than 50%.

(b) The above effect will be larger when subjects receive immediate outcome feedback.

9 An alternative way of testing for correlation-sensitive preferences, that is more in the spirit of Starmer and Sugden
(1993), would be to test whether violations of first-order stochastic dominance occur more often when ISPD favors the
dominated lottery than when it favors the dominant one.
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(c) The ISPD lottery will be chosen at a frequency significantly lower than 50% in the column-

effects treatment.

(d) The ISPD lottery will not be chosen at a frequency significantly different from 50% in the

state-effects treatment.

(e) Correlation sensitivity will persist even if one lottery is first-order stochastic dominant.

4 Experimental procedures

We conducted 3 preregistered experiments.10 Table 7 provides a summary of the experiments.

The first experiment was conducted in March 2021 at Renmin University of China in Beijing.11 In

June 2022 and December 2022, we conducted two additional online experiments. After excluding

subjects who violated a pre-defined attention check, we remain with 289 valid responses from

the lab experiment, 145 from the first and 467 from the second online experiment, 158 of which

are from the baseline, 159 from the column-effects, and 150 from the state-effects treatment.12

All participants in the lab experiment were students, whereas only between 17% and 27% of the

participants in the online experiments stated to be students, with the majority of the remaining

participants being part- or full-time employed. Participants in the lab experiment were around

20 years old on average, while the average age in the online experiments was around 30. 59%

of the participants in the lab and the first online experiment were female, whereas around 50%

participants of the second online experiment were female in each of the treatments. See Table B.1

in Appendix B for more summary statistics.

The lab and the first online experiment included SML tasks in the baseline display as well as

the immediate feedback treatment. The second online experiment included SML tasks as well

10 We pre-registered with the AEA social science registry under the IDs AEARCTR-0007239, AEARCTR-0009573, and
AEARCTR-0010279. In our results section, we follow the structure of our pre-analysis plan, but supply additional
analysis and deviate from our pre-analysis plan in one instance in which the data requires such a deviation. This
approach is in line with the arguments made in recent articles that the pre-analysis plan should guide the data analysis
but that research papers should not be just a “populated pre-analysis plan" (Banerjee et al., 2020; Janzen and Michler,
2020).

11 Students who were preregistered in a platform called Yanzhong Lab (https://www.yanzhonglab.com) received a mess-
sage regarding our experiment in their WeChat account. They could choose which session they would attend and then
come to the lab at their preferred time slot.

12 In all experiments, we included two choice tasks for which one option dominates the other state- and column-wise. In
the analysis we exclude subjects who chose the dominated option for these tasks at least once. We exclude 7 participants
of the lab experiment, 11 participants of the first, and a total of 173 subject of the second online experiment, among
which 59 were in the baseline treatment, 53 in the column-effects treatment, and 61 in the state-effects treatment.
The differences in rates of exclusion are likely due to differences in the samples. People who were excluded are
younger on average, less educated, more likely to be a student, and less likely to be married. However, none of these
variables is found to be correlated with correlation sensitivity. Including excluded participants in the analysis does not
change results qualitatively, but reduces effects. Especially in the second online experiment, the choices of excluded
participants seem to be quasi-random. For instance, pooling all three treatments, excluded subjects violated FOSD
with 45% frequency overall, with no detectable pattern, whereas non-excluded subjects violate FOSD with an overall
frequency 19%, some of which seems to be caused by systematic correlation sensitivity. We take this to suggest that our
attention check was successful in filtering out bots or human participants who clicked through the experiment randomly.
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Table 7 Summary of the experiments

Lab Online 1 Online 2 Online 2 Online 2

Treatment Baseline Baseline Baseline State Column

Sample Students General General General General

Date 2021.03 2022.06 2022.12 2022.12 2022.12

Tasks SML SML SML SML SML

Event-splittinga FOSD FOSD FOSD FOSD

Feedback Feedback - - -

Attention Attention Attention Attention Attention

Valid subjects 289 145 158 159 150

Excluded subjects 7 11 59 53 61

a Results from this part are reported in a companion paper (Loewenfeld and Zheng, 2023).

FOSD tasks, and consisted of the baseline, column-effects, and state-effects treatment that were

described in Table 6, but we dropped the immediate feedback treatment.

In the lab experiment, participants completed a total of 35 choice tasks. Among these, 10

choices were between two lotteries with the same marginal distribution.13 We employed 2 sets

of SML tasks (see Table 8). Each set consists of three choice tasks with three states and two

choice tasks with four states, all equiprobable. For one set of SML tasks, subjects did not receive

immediate feedback. These choices were presented to subjects in random order among the other

25 choice tasks. The five choices for which subjects received immediate feedback were always

encountered at the end of the experiment. After having decided on the choices for which no

feedback was provided, subjects were informed that they would make five more decisions for

which they would now receive immediate feedback on their choice. Subjects were then exposed to

these choice tasks in random order. We chose this particular order so as to avoid potential effects

of past feedback on choice tasks for which subjects did not receive feedback. We counterbalanced

whether subjects received feedback for set 1 or 2.

The main motivation for the first online experiment was to test for correlation-sensitive pref-

erences using a more general population.14 The experiment was similar in design to the lab ex-

periment, but it only included SML tasks. In addition, we included four FOSD tasks and one

state-wise dominant lottery as an attention check, which, for ease of exposition, we describe in

13 The remaining choice tasks were part of a related study and are described in Loewenfeld and Zheng (2023).
14 Renmin University of China is generally considered as one of the Chinese top universities and its students are highly

trained in mathematics, which might reduce the scope to document correlation-sensitive preferences.
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Table 8 Parameters for the SML tasks in the lab and first online experiment

Set 1
Task a b c d
1 73 64 20 -
2 120 33 0 -
3 101 53 0 -
4 149 50 16 0
5 120 60 20 0

Set 2
Task a b c d
1 110 33 9 -
2 101 41 15 -
3 86 50 3 -
4 143 32 26 7
5 94 81 37 13

Table notes: the three-states lotteries always have the following three possible states: (xA,xB) ∈
{(c,a),(b,c),(a,b)}. The four-state lotteries always have the following four possible states: (xA,xB) ∈
{(d,a),(c,d),(b,c),(a,b)}. All states are equally likely.

Appendix C.15 Subjects in the first online experiment made a total of 19 choices.

The goals of the second online experiment were to disentangle between correlation sensitivity

caused by state-by-state and column-by-column comparisons, and to gauge the strength of corre-

lation sensitivity by including FOSD tasks. We implemented all three between-subject treatments

discussed above. Each subject encountered all 9 SML tasks with parameters displayed in Table 9.

We slightly changed the set of parameter values in order to include 3 choice tasks with 6 states.16

The parameters of the three- and four-state choice tasks used in the second online experiment

are shared among all experiments, which ensures comparability. We obtain pairs of first-order

stochastic dominant and dominated lotteries by adding a premium of 1, 3, or 9 (approximately

2%, 6%, and 18% of the lotteries’ expected value) to either the DSPD or the ISPD lottery, as il-

lustrated in Table 3. Each subject further encountered each of the 9 lotteries with one of the three

premiums. That is, they encountered each lottery with a premium of 1, 3, or 9.17 Premiums are

varied between subjects such that the same number of subjects encounter a given parameter set

for a given premium. As an attention check, we also included two choices for which one lottery

dominates the other state- and column-wise. See examples in Appendix E. Subjects made a total

15 Overall choice patterns are similar to those observed in the second online experiment. For ease of exposition and
because we systematically vary premiums in the second online experiment, we focus the discussion on FOSD tasks from
this experiment. Results are qualitatively similar. We also varied the choice display of the FOSD tasks systematically
in a way that increases the complexity of the choice tasks to account for the possibility that effects as prescribed by
salience theory might only become apparent when choices are sufficiently complex. We describe this in detail in
Appendix D.

16 The inclusion of six-state choice tasks was motivated by an argument that correlation effects as prescribed in salience
theory might not be apparent in three-state choice tasks because it is too obvious that both lotteries have the same
marginal distribution.

17 The premium of 1 is chosen because it is the smallest possible premium while sticking to integer values. We then
increase the premiums by a factor of three.
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Table 9 Parameters for the SML tasks in the second online experiment

Task a b c d e f
1 73 64 20 - - -
2 101 53 0 - - -
3 110 22 9 - - -
4 149 50 16 0 - -
5 120 60 20 0 - -
6 94 81 37 13 - -
7 93 75 57 39 21 3
8 135 72 50 37 24 8
9 115 75 61 39 27 14

Table notes: the joint distribution of the choice tasks is always given as follows. For the three-state lot-
teries: {(a,c),1/3;(b,a),1/3;(c,b),1/3}. The four-state lotteries always have the following four possible
states: {(a,d),1/4;(b,a),1/4;(c,b),1/4;(d,c),1/4}. The six-state lotteries always have the following four
possible states: {(a, f ),(b,a),(c,b),(d,c),(e,d),( f ,e)}. All states are equally likely.

of 29 (3×9+2) lottery choices.

In all experiments, participants read that for each choice task, there were two options with pay-

offs that depend on the turn of a personal wheel of fortune.18 In all treatments, choice problems

were displayed to subjects as shown in Figure 1a. In the baseline treatment of the lab and first

online experiment, the wheel of fortune was described as having 99 equally likely fields. The

implementation of the column-effects and the state-effects treatment necessitated a slightly differ-

ent display. To avoid overloading choice presentation, we decided to implement the state space

through a wheel of fortune with up to six equiprobable fields of different colors. We color-coded

the fields to improve state-by-state comparability. See Figure 1b-1d for examples. The implemen-

tation of the baseline treatment ensures comparability between the different experiments. Before

they were allowed to start real choice tasks, subjects had to answer a set of comprehension ques-

tions correctly. In case a subject gave a wrong answer, they received feedback intended to help

them understand the task at hand.

During the experiment, payoffs were displayed in an experimental currency that was translated

into Yuan at a rate of 0.5 in the lab and at a rate of 0.4 in the online experiments. To avoid any

unwanted effects of the way in which choices are presented, we randomized the order in which

states appear. Lotteries were referred to in neutral language, as “Option A" and “Option B". We

also randomized which lottery was labelled option A and B. All of this randomization was done at

the subject level. After the choice tasks, subjects were prompted to answer a short questionnaire.

Upon finishing the experiment, subjects received their payment. Participants in the lab study

received a show-up fee of 10 Yuan and had one randomly selected choice paid out. Participants

in the online experiments received a participation fee of 9 Yuan and had a 1/3 chance of having

18 By referring to a personal wheel of fortune, we address the concern that correlation structure might impact subjects’
choices because of other-regarding preferences.
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Figure 1 The display of choice problems in different treatments and experiments

(a) Lab and 1st online experiment: Baseline (b) 2nd online experiment: Baseline

(c) 2nd online experiment: Column-effects (d) 2nd online experiment: State-effects

one of their choices paid out. Subjects received an average payoff of around 41 Yuan in the lab

experiment, 17 Yuan in the first and 16 Yuan in the second online experiment. The lab experiment

lasted around 30 minutes, and the two online experiments took between 10 and 15 minutes. All

experiments were programmed with oTree (Chen et al., 2016).

5 Results

5.1 Correlation sensitivity at the aggregate level

We begin by testing for correlation sensitivity. At this stage, we combine data from choices with

and without immediate feedback. We analyze data from SML tasks from all three experiments for

the baseline treatment, resulting in a sample of 5762 choices made by 592 participants. Partici-

pants in the lab experiment chose the ISPD lottery with a frequency of 48.1%, while participants

in the first online experiment chose it with a frequency of 45.1%, and subjects in the second online

experiment chose it with a frequency of 39.0% (see Figure 2). Running logistic regressions again,

we find that the choice frequency differed only marginally from the 50% random-choice bench-

mark for the lab experiment (p = 0.08), but significantly in the first and second online experiments

(p = 0.003 and p < 0.001, respectively). Correlation sensitivity appears to be insignificant for the

lab experiment participants, slightly stronger for the first online experiment, and even stronger for

the second online experiment. As we discuss in more detail in Appendix C, these disparities may

be due to a combination of differences in the subject pool, changes in the choice display, as well

as the number of states of the choice tasks. Notably, correlation sensitivity seems to be particu-

larly evident for choice tasks with six states. Overall, the results provide strong evidence against

Hypothesis 1(a). In contrast to the predictions of regret and salience theory, the aggregate choices

suggest a modest preference for the DSPD lottery.

In the next step, we test for the impact of immediate feedback. We find that choices were not
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Figure 2 Choice frequencies of the ISPD lottery
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significantly influenced by immediate feedback in both the lab and the first online experiment. In

the lab experiment, 47.8% of choices were for the ISPD lottery when subjects received immediate

feedback, while 48.4% were without feedback. Similarly, in the online experiment, subjects chose

the ISPD lottery at a frequency of 44.8% with immediate feedback and at a frequency of 45.4%

without it. Running logistic regressions with a dummy variable for ISPD lottery choice as the

dependent variable and a dummy variable indicating whether immediate feedback was provided

as the explanatory variable, we find that feedback did not significantly impact choices in either

the lab (p = 0.73) or the online experiment (p = 0.83), or when we pool the two (p = 0.68).19

To assess the precision of these null results, we calculate 95% confidence intervals for the effect

of feedback on choice frequencies. The confidence intervals for the immediate feedback effect

are [-0.046, 0.032] for the lab experiment, [-0.046, 0.032] for the online experiment, and [-0.037,

0.024] for the pooled sample. This suggests that the null result on feedback effects is precisely

estimated and not the result of noisy data. Therefore, we reject Hypothesis 1(b). In Appendix B,

we explore heterogeneity in feedback effects and find that participants reporting a higher tendency

to feel regret in a hypothetical investment scenario (Guiso, 2015) chose the ISPD lottery less often

under immediate feedback than without feedback. We interpret this finding as suggestive evidence

that anticipated feedback might play an important role only for individuals with a high propensity

to experience regret.

We next turn to the column-effects and state-effects treatments to shed some light on the drivers

of correlation-sensitivity. In the column-effects treatment, participants chose the ISPD lottery

with a frequency of 46.1%, while in the state-effects treatment, they chose it with a frequency

19 Regressions results can be found in Table B.2. Unless otherwise noted, p-values are obtained from Wald Chi-Square test
with standard errors clustered at the subject level. We also obtained similar results using pre-registered non-parametric
Wilcoxon signed-rank tests (p-values of 0.58, 0.22, and 0.20 for the lab, online, and pooled samples, respectively).
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Figure 3 Choice frequencies of the ISPD lottery by levels of premium
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of 43.3% (see Figure 2). Using logistic regressions with standard errors clustered at the subject

level (see Table B.2), we find that the choice frequency of the ISDP lottery is significantly below

50% in both treatments (p = 0.002 in the column-effects treatment and p < 0.001 in the state-

effects treatment). The logistic regressions also suggest that the difference in choice frequencies

of 7.1 percentage points (ppt) between the baseline treatment and the column-effects treatment is

statistically significant (p < 0.001). The difference of 4.1 ppt between the baseline and the state-

effects treatment is marginally significant at p = 0.054, and the 2.8 ppt difference between the

column-effects and the state-effects treatment is not statistically significant (p = 0.17, based on a

Chi-squared test).

We do not reject Hypothesis 1(c) but reject Hypothesis 1(d). If anything, state-by-state com-

parisons seem to be somewhat more important, although the difference between the state-effects

and the column-effects treatment is not statistically significant. The findings suggest that corre-

lation sensitivity in the baseline treatment arises from both deliberate state-by-state comparisons

of payoffs, as well as incidental column-by-column comparisons of payoffs. Importantly, results

from both treatments again imply modest aggregate correlation sensitivity in line with DSPD.

The results so far provide very consistent evidence for DSPD. However, since the effects were

observed with same marginal lotteries, these could, in principle, be of second-order importance

only. To test the robustness of the observed correlation sensitivity, we now turn to the FOSD tasks.

Figure (3) displays the choice frequencies of the ISPD lottery as a function of the payoff premium.

As can be seen, the choice frequencies are always significantly smaller than 50% at the 5% level

in all three treatments, even for the highest level of premium, but seem to be moving closer to 50%

as the premium is increased. To test for the impact of the size of the premium on choice behavior

25



Table 10 Logistic regressions on SML tasks

(1) (2) (3)

Baseline Column-effects State-effects

Variables ISDP ISDP ISDP

p2 0.144** -0.006 -0.038

(0.070) (0.062) (0.063)

p6 0.256*** 0.053 0.012

(0.071) (0.060) (0.064)

p18 0.217*** 0.070 0.102

(0.073) (0.064) (0.065)

Constant -0.446*** -0.158*** -0.271***

(0.063) (0.052) (0.066)

Observations 4,266 4,293 4,050

Individuals 158 159 150

Table notes: the notations for significance levels are as follows: ∗ for p≤0.1; ∗∗ for p≤0.05; ∗∗∗ for
p≤0.01.

more formally, we run the following logistic regressions separately for each treatment.

ISDPi,t = c+β1 p2i,t +β2 p6i,t +β3 p18i,t + εi,t , (2)

where p2i,t , p6i,t , and p18i,t , with i being the index of subjects and t being the index of treat-

ments, are dummy variables that indicate the levels of premium 2%, 6%, and 18% respectively.

Zero premium is the omitted category. Table 10 reports the regression results. Higher premiums

significantly reduce DSPD only in the baseline treatment, but not in the other two treatments.

Another way to look at the effects of correlation sensitivity is to consider its impact on rates of

violations of first-order stochastic dominance. Pooling all levels of the payoff premium, subjects

in the baseline treatment violate first-order stochastic dominance at a rate of 15.2% when the

DSPD lottery is dominant. The rate of FOSD violations is increased by 78% to 27.1% when it is

the ISPD lottery that is dominant. In the column-effects treatment, the rate of FOSD violations

is 9.5% when the DSPD lottery is dominant. This rate is increased by 62% to 15.4% when it

is the ISPD lottery that is first-order stochastic dominant. In the state-effects treatment, subjects

violate FOSD at a rate of 12.9% when the DSPD lottery is dominant, but at a 95% higher rate of

25.1% when the ISPD lottery is dominant. For all comparisons, the increase in the rate of FOSD

violations is statistically significant (p < 0.001, logistic regression with standard errors clustered

at the subject level).
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Overall, the results from FOSD tasks provide further evidence of a DSPD effect of modest

size. FOSD is much more predictive of aggregate choice patterns than the joint distribution of

lotteries. However, our results also suggest that correlation sensitivity is responsible for a sizable

fraction of the FOSD violations we observe. This suggests that correlation sensitivity is not only

of second-order importance but can exert a significant influence over participants’ choices. We do

not reject Hypothesis 1(e).

We summarize our findings on correlation sensitivity at the aggregate level below.

Result 1. On SML tasks and treatment effects:

(a) In the baseline treatment, we find that subjects chose the ISPD lottery at a frequency of

48.1% in the lab experiment, 45.1% in the first online experiment, and 39.0% in the second

online experiment. The choice frequencies differ from the 50% random choice benchmark

marginally in the lab experiment (p = 0.08) and significantly in both online experiments

(p < 0.002). We reject Hypothesis 1(a).

(b) Estimating the effect of immediate feedback on choices, we find a precisely null effect. We

reject Hypothesis 1(b).

(c) The ISPD lottery is chosen at a frequency of 46.1% in the column-effects treatment, which

is significantly different from 50% at p = 0.002. We do not reject Hypothesis 1(c).

(d) The ISPD lottery is chosen at a frequency of 43.3% in the state-effects treatment, which is

significantly different from 50% at p < 0.001. We reject Hypothesis 1(d).

(e) In all three treatments, we find evidence for DSPD even when one lottery in a pair is first-

order stochastic dominant. Pooling all levels of the payoff premium, we find that the ISDP

lottery is chosen at a frequency of 44.0% in the baseline treatment, 47.0% in the column-

effects treatment, and 43.9% in the state-effects treatment (all with p < 0.001). We do not

reject Hypothesis 1(e).

5.2 Correlation sensitivity at the individual level

After discussing correlation sensitivity at the aggregate level, we now turn to analyzing individual

heterogeneity. This analysis is exploratory in nature. In the first step, we non-parametrically

test whether some individuals consistently display greater correlation sensitivity than others. We

conduct the following exercise by focusing on the SML tasks of all experiments and treatments,

pooling choices with and without immediate feedback. For each individual, we randomly divide

the tasks into two sets.20 We then calculate the choice frequency of the ISPD lottery for each of
20 For the lab and the first online experiment, we divide the choice tasks into two sets of 5. For the second online

experiment, we divide the choice tasks into one set of 5 and one set of 4.
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the two sets and compute their Spearman’s rank-order correlation coefficient. We use a bootstrap

approach and repeat this procedure 10,000 times, which allows us to obtain confidence intervals

for the correlation coefficients and also helps us avoid arbitrary choices. The idea behind this

exercise is the following. If correlation sensitivity is uniformly distributed among our sample, we

should observe correlation coefficients of zero. If, however, some individuals consistently express

more correlation sensitivity than others, we should observe positive correlation coefficients.

Figure 4 shows the results of this exercise. As shown, the bootstrapped correlation coefficient

is around 0.2 and does not include zero in all experiments and treatments, except for the column-

effects treatment of the second online experiment. For this treatment, the confidence interval of

the correlation coefficient is centered around zero. These results suggest that correlation sensi-

tivity induced by incidental column-by-column comparisons of payoffs affects all participants in

a similar way. However, there seems to be some heterogeneity in correlation sensitivity due to

deliberate state-by-state comparisons of payoffs.

We further explore individual heterogeneity using latent class analysis based on structural equa-

tion models. For this purpose, we focus on our second online experiment, since the inclusion of

FOSD tasks allows for a richer analysis. We divide choice tasks into the three different categories

displayed in Table 3: SML tasks, FOSD tasks where the ISPD lottery is dominant, and FOSD

tasks where the DSPD lottery is dominant. For each category, we sum all choices a subject made

for the ISPD lottery and specify that the resulting variables are distributed according to a binomial

distribution with 9 trials. We estimate latent class models pooling all observations from the dif-

ferent treatments.21 We estimate latent class models with up to seven classes. For models with

Figure 4 Bootstrapped correlation coefficients
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Figure notes: we display Spearman’s rank-order correlation coefficients, bootstrapped with 10,000 repetitions, with
empirical confidence intervals.

21 As we are able to recover the frequency of each class for each treatment, this approach allows for the possibility that
different latent classes emerge in the different treatments while avoiding potential issues of unstable classes that could
arise from small samples. This approach also enhances interpretability of our results.
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Table 11 Latent-class analysis

By tasks % ISPD (SD) 95% CI By treatments % Subjects Averaged

Class 1

Same marginal 0.484 (0.012) [0.461 - 0.507] Baseline 0.335

ISPD-FOSD 0.987 (0.005) [0.977 - 0.998] Column 0.640 0.494

DSPD-FOSD 0.023 (0.005) [0.014 - 0.032] State 0.505

Class 2

Same marginal 0.227 (0.024) [0.180 - 0.273] Baseline 0.191

ISPD-FOSD 0.334 (0.029) [0.276 - 0.391] Column 0.094 0.167

DSPD-FOSD 0.229 (0.024) [0.181 - 0.277] State 0.216

Class 3

Same marginal 0.405 (0.029) [0.348 - 0.462] Baseline 0.318

ISPD-FOSD 0.774 (0.042) [0.691 - 0.857] Column 0.156 0.207

DSPD-FOSD 0.082 (0.017) [0.049 - 0.114] State 0.147

Class 4

Same marginal 0.507 (0.033) [0.442 - 0.572] Baseline 0.156

ISPD-FOSD 0.537 (0.033) [0.472 - 0.601] Column 0.110 0.132

DSPD-FOSD 0.445 (0.032) [0.383 - 0.507] State 0.131

more classes, convergence fails. Among the estimated models, we select the one with the lowest

Bayesian information criterion (BIC) value, which is a model with four classes. Considering pos-

terior probabilities, i.e., the probability of class membership for each individual, we find that the

medium participant is assigned to one class with 95% probability and only about 20% of the par-

ticipants are assigned to one class with less than 75% probability. This suggests that most subjects

can be assigned to one of the classes with high probability.

Table 11 reports the results from the latent class analysis. The behavior of individuals in Class

1 is nearly perfectly characterized by correlation insensitivity. Individuals in this class choose

the ISDP lottery with a frequency that does not differ significantly from the 50% random-choice

benchmark for the SML tasks and respect FOSD almost perfectly. That is, the ISPD lottery is

chosen practically always when it is dominant and practically never when it is dominated.

Classes 2 and 3 display correlation sensitivity, both consistent with DSPD. Individuals in class

2 display strong DSPD. They choose the DSPD lottery at a frequency of 77% for the SML tasks,

at a frequency of 67% when it is first-order stochastic dominated, and at a frequency of 77% when

it is first-order stochastic dominant. Individuals in this category seem to be relatively unaffected

by FOSD and seem to implement their correlation sensitivity somewhat imperfectly, especially

compared to individuals in class 1 who satisfy CSPD near perfectly. The behavior of individuals

in class 3 might be best characterized as weak DSPD. Overall, choice behavior in this class is

similar to that in class 1 but is somewhat skewed towards the DSPD lottery. The DSPD lottery is

chosen at a frequency of 59% for the SML tasks, 23% when it is first-order stochastic dominated,

and 92% when it is first-order stochastic dominant. We posit that choices in class 2 can be inter-

preted as expressing deliberate correlation sensitivity, whereas choice behavior in class 3 could
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be interpreted as stemming from individuals who are generally correlation insensitive, but whose

choices are somewhat biased towards DSPD.

Finally, the fourth class seems to capture random behavior. For all three types of choice tasks,

choice frequencies do not differ significantly from 50%. What is striking is the absence of any

class of individuals who display behavior consistent with ISPD. This suggests that ISPD is not only

rejected as the property governing aggregate behavior, but that virtually none of our participants

display behavior that is characterized by ISPD.22

Averaging over all three treatments, 49% of the participants are assigned to the correlation-

insensitive class 1, while 17% and 21% are assigned to classes 2 and 3 that capture strong and

weak DSPD respectively, and 13% are assigned to the random-choice class 4. This suggests that

although correlation insensitivity is the predominant category, a sizable fraction of the participants

are characterized by DSPD.

Comparing the fractions of participants assigned to the four classes across treatments reveals in-

teresting differences. In all treatments, a similar fraction of 11%-16% of participants are assigned

to the random-choice class 4. It is reassuring that these fractions do not differ greatly between

treatments. The fraction of subjects assigned to the correlation-insensitive class 1 is only 34% in

the baseline treatment, 51% in the state-effects treatment, and reaches 64% in the column-effects

treatment. This pattern mirrors our aggregate results, which show that subjects display the highest

correlation sensitivity in the baseline treatment, followed by the state-effects and column-effects

treatments.

Similar fractions of participants in the baseline and state-effects treatments are assigned to

the strongly correlation-sensitive class 2, namely 19% and 22% respectively, while only about

9% of participants in the column-effects treatment are assigned to this class. This suggests that

strong and consistent DSPD may be primarily driven by deliberate state-by-state comparisons of

payoffs. This finding is also consistent with our analysis above, which failed to find evidence for

consistent correlation sensitivity at the individual level in the column-effects treatment (see Figure

4). Finally, about 32% of participants in the baseline treatment are assigned to the moderate-DSPD

class 3, whereas the corresponding fractions in the column-effects and state-effects treatments are

16% and 15%. The high prevalence of this class in the baseline treatment may be explained

by the fact that both column-by-column and state-by-state comparisons of payoffs are aligned in

this treatment. This might make it more challenging to discern that both lotteries share the same

marginal distribution or that one lottery is dominant.

22 When estimating a model with 7 latent classes, a class characterized by moderate ISPD emerges. Subjects in this class
choose the ISPD lottery at frequency of 67% for the SML tasks, 83% when the ISDP lottery is first-order stochastic
dominant, and 58% when it is first-order stochastic dominated. A negligible fraction of 1.4% of the participants are
assigned to this class.
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6 Discussion

Our results provide consistent evidence of modest DSPD on the aggregate. The latent-class analy-

sis suggests that this aggregate effect might be driven by a minority of subjects who display strong

DSPD, even if it means violating FOSD. Importantly, the analysis does not produce an equivalent

class of participants displaying strong ISPD. These findings are in contrast with previous studies

that are based on manipulations of the joint distribution and tend to report null results (Starmer and

Sugden, 1993; Humphrey, 1995; Ostermair, 2021; Dertwinkel-Kalt and Köster, 2021; Loewenfeld

and Zheng, 2023), or studies using the trade-off method that report evidence for ISPD (Bleichrodt

et al., 2010; Baillon et al., 2015). Our ability to uncover evidence for DSPD might be attributed to

several factors. The SML task improves on previous tests by being more suitable to correlation-

sensitive preferences in a theoretical sense and avoids some features that seem undesirable to an

experimenter, such as lack of incentive compatibility or duplicated states.

As our findings clearly reject the hypothesis that behavior is characterized by ISPD, both at

the aggregate and individual levels, our results strongly reject both regret and salience theory. We

would like to reiterate that it is ISPD that allows the theories to rationalize classical behavioral

anomalies, such as the Allais paradox or simultaneous gambling and insurance, as well as the

commonly observed preference for right-skewed risks. Broadly speaking, DSPD produces the

opposite of the commonly observed patterns, such as preferences for negative skewness and an

aversion to long-shot lotteries.

As the observed correlation sensitivity contradicts regret and salience theory, it is important

to investigate its drivers. Our three between-subject treatments suggest that both incidental pay-

off comparisons resulting from the framing of choices and deliberate state-by-state comparisons

contribute to the observed correlation sensitivity. The latter suggests that some subjects may have

genuine preferences that are impacted by the correlation of payoffs across states. Otherwise,

it is difficult to understand why subjects would compare payoffs state-by-state across different

columns. While regret and salience theory postulate an increase in sensitivity to within-state dif-

ferences, one could also argue that decreasing sensitivity to payoff differences has strong intuitive

appeal. In EUT, for instance, decreasing sensitivity to increments of wealth is commonly assumed

to explain risk aversion. In prospect theory, decreasing sensitivity to incremental losses is used to

explain risk aversion in the gain domain and risk-seeking in the loss domain, as well as probability

weighting (Tversky and Kahneman, 1992). Our results suggest that decreasing sensitivity is also

the predominant pattern governing within-state comparisons.

We believe that our null effect of immediate outcome feedback does not provide good evidence

against the possibility that correlation sensitivity is, at least to some degree, driven by an aversion
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to regret. Since subjects receive outcome feedback on the payoff relevant lottery in any case at

the end of the experiment, it is possible that simply changing the timing of the feedback was not

sufficient to alter subjects anticipation of regret. We would also like to highlight that our null

finding for immediate feedback effects is compatible with studies that document feedback effects

(e.g., Zeelenberg et al., 1996; Zeelenberg, 1999). In these studies choices can usually be used to

manipulate the outcome feedback one obtains, which is not possible in our setting. Moreover,

ISPD is not necessary to rationalize such feedback effects. All one has to assume is that people

feel less regret in the absence of feedback on the forgone outcome, as modelled by Bell (1983), for

instance. Applied research on regret has often modeled regret in this vein (see, e.g., Filiz-Ozbay

and Ozbay, 2007; Engelbrecht-Wiggans and Katok, 2008; Strack and Viefers, 2021; Zheng, 2021).

Given the increase in complexity that arises from intransitive preferences, should (applied)

economists allow for correlation sensitivity in their models? Although we find some evidence for

correlation sensitivity, we take our results to suggest that, in most applications, the steep price

economists have to pay in added complexity when allowing for correlation sensitivity might not

be worth it. We arrive at this conclusion for mainly two reasons. First, correlation-sensitive prefer-

ences satisfying DSPD induce, broadly speaking, the opposite of the commonly observed patterns

such as skewness seeking. Second, although we do observe evidence for DSPD, the overall ef-

fect size on the aggregate is rather small. Considering the baseline treatment of the second online

experiment, which is the treatment for which we observe the strongest correlation sensitivity, we

find an overall choice frequency of 39% for the ISPD lottery in the SML tasks. Using Cohen’s g

as a rough measure of effect size, this constitutes a small effect.23 It can be argued that the ability

of correlation-sensitive preferences to rationalize commonly observed behavioral patterns results

largely from its capability to endogenize the probability weighting of cumulative prospect the-

ory (Tversky and Kahneman, 1992). The recent literature on behavioral inattention and Bayesian

updating (Gabaix, 2014; Enke and Graeber, 2021) may provide a way forward without violating

transitivity.

Finally, we would like to stress that our study examines correlation-sensitivity in the important

but specific setting in which choices are made in a static setting. Comparisons of joint payoff

realizations might induce behavior to be more strongly correlation-sensitive in other settings. For

instance, Loewenfeld (2023) studies a setting of delegated risk-taking in which principals can

reward agents ex-post. He shows that a tendency of principals to condition bonus payments on

an ex-post comparison of the realized outcomes can render bonus payments, and therefore agents’

incentives to choose between different actions, strongly correlation-sensitive. In a similar vein,

studies in the cognitive psychology literature show that an ex-post comparison of the realized

23 If p is the choice frequency, Cohen’s g is calculated as g = |0.5− p| · g < 0.05 is categorized as negligible, g ∈
[0.05,0.15) as small, g ∈ [0.15,0.25) as medium, and g > 0.25 as large.
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and forgone outcome can lead to subjects experiencing regret, which can influence future choices

(Camille et al., 2004; Coricelli et al., 2007). It seems conceivable that this mechanism might

induce correlation-sensitive behavior in settings in which decision makers have to learn from their

choices (Hertwig et al., 2004; Hart and Mas-Colell, 2000; Hart, 2005). The theoretical literature on

correlation-sensitive preferences (Loomes and Sugden, 1982, 1987; Bordalo et al., 2012; Lanzani,

2022) will provide valuable guidance in tackling this important issue.

7 Conclusion

In this paper, we proposed a theory-tailored experimental task, namely the SML task, to test for

correlation-sensitive preferences in risk-taking (Lanzani, 2022). To assess the strength of these

preferences and understand their drivers, we further introduced different treatments built on the

SML task. In a series of experiments with over 900 participants, we found that aggregate choices

displayed modest evidence for decreasing sensitivity to differences in jointly realized payoffs (i.e.,

DSPD), which contrasts with what regret and salience theory have advocated. Not only could the

documented correlation-sensitive preferences survive in face of first-order stochastic dominance,

but they were also robust to the absence of immediate outcome feedback. Additionally, we found

that both column-by-column and state-by-state payoff comparisons seemed to impact decision-

making, but the latter played a more critical role, suggesting that correlation sensitivity arises

mainly due to deliberate considerations such as regret avoidance rather than incidental biases such

as salience. Finally, our latent-class analysis discovered that only a relatively small sample of

subjects contributed to the documented evidence for correlation sensitivity.
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Appendix A: Proof of Proposition 1

Step 1 and 2 of the proof follow that of Lanzani (2022) closely. However, we replace the condition

of modularity of the φ function with the CSPD property.

Step 1: (3) =⇒ (2). Take any h,m, l ∈ X . Without loss of generality, suppose h≥ m≥ l, and

define u : X →R such that u(z) = φ(z, l). According to the statement (3) and by definition of u(·),

we have

φ(h, l) = φ(h,m)+φ(m, l) ⇐⇒ φ(h,m) = φ(h, l)−φ(m, l) = u(h)−u(m).

This proves that φ(h,m) = u(h)−u(m) whenever h≥m. Whenever m > h, skew-symmetry of

φ(·) implies φ(h,m) = −φ(m,h) = −(u(m)− u(h)) = u(h)− u(m) . This proves that φ(h,m) =

u(h)−u(m) holds for any m,h ∈ X .

Thus, π ∈Π if and only if

∑
(x,y)∈X×X

φ(x,y)π(x,y)≥ 0 ⇐⇒ ∑
(x,y)∈X×X

[u(x)−u(y)]π(x,y)≥ 0 ⇐⇒

∑
x∈X

π1(x)u(x)≥ ∑
x∈X

π2(x)u(x).

Step 2: (2) =⇒ (3). If Π admits an expected utility representation, then

π ∈Π ⇐⇒ ∑
(x,y)∈X×X

(u(x)−u(y))π(x,y)

Defining φ(z,w) = u(z)−u(w), (3) is satisfied for any h,m, l ∈ X , that is

φ(h, l) = φ(h,m)+φ(m, l) ⇐⇒ u(h)−u(l) = u(h)−u(m)+u(m)−u(l)

Step 3: (2) =⇒ (1) is a well known result.

To proof (1) =⇒ (3), we first proof the following lemma, which clarifies that a strict prefer-

ence for one of the lotteries of the SML task constitutes a violation of transitivity in a quite general

framework where only the completeness axiom is imposed.

Lemma 1. When the completeness axiom is satisfied, the following statements are equivalent.

(a) π,π ∈Π for any π ∈ ∆(X×X) such that π1 = π2

(1) π satisfies transitivity .

The lemma states that when completeness is satisfied, transitivity is equivalent indifference
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between any row and column lottery with the same marginal distribution. The completeness axiom

states that for all π ∈ ∆(X×X), π /∈Π =⇒ π ∈Π.

Step i: We proof (1) =⇒ (a) by contrapositive, that is not (a) =⇒ no t(1). Not (a) implies

that there exists π with π1 = π2 such that π ∈ Π̂. Consider also the joint distribution χ with

χ1 = χ2 = π1 such that χ = χ . Completeness implies χ,χ ∈Π. Finally, define the joint distribution

ρ = π . Preferences over the three joint distributions π , χ , and ρ violate transitivity.

For the reader’s convenience, we restate here the transitivity axiom. Transitivity means that

∀ π,χ,ρ ∈ ∆(X ×X), if π2 = χ1, ρ1 = π1, and ρ2 = χ2, then (π ∈ Π,χ ∈ Π)⇒ ρ ∈ Π. In the

example, π1 = π2 = ρ1 = ρ2 = ξ1 = ξ2, and (π ∈ Π,χ ∈ Π). But, by construction, ρ /∈ Π. This

concludes step (i).

Step ii: We also proof (a) =⇒ (1) by contrapositive, that is not (1) =⇒ not (a). Consider the

three joint distributions π , χ , and ρ defined above and suppose transitivity does not hold, that is

(π ∈Π,χ ∈Π), but ρ /∈Π. This implies π ∈Π, but π = ρ /∈Π, although π1 = π2. This concludes

the proof of the lemma.

Step 4: (1) =⇒ (3). We prove this by contrapositive, that is showing that not (3) =⇒ not (1).

Consider π = ((h, l),1/3;(m,h),1/3;(l,m),1/3), where h > m > l. Note that π1 = π2. Imposing

φ(h, l)> φ(h,m)+φ(m, l) or φ(h, l)< φ(h,m)+φ(m, l) implies π ∈ Π̂ or π ∈ Π̂ respectively. By

Lemma 1, this violates transitivity.

This concludes the proof proposition 1.

It is worth pointing out that the only way to violate transitivity in Lanzani’s framework is to

have preferences such that φ(h, l) 6= φ(h,m) + φ(m, l). Lemma 1 shows that such preferences

constitute a violation of transitivity in a much more general framework that imposes only the

completeness axiom. Note that in this more general framework, φ(h, l) 6= φ(h,m)+φ(m, l) is no

longer the only of violating transitivity.
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Appendix B: Supplementary tables and figures

Table B.1 Summary statistics of participants’ characteristics

Lab Online 1 Online 2 Online 2 Online 2

Treatment Baseline Baseline Baseline State Column

Male 0.41 0.41 0.51 0.51 0.48

(0.49) (0.49) (0.50) (0.50) (0.50)

Age 19.79 28.70 29.40 31.40 30.52

(1.53) (7.49) (7.70) (8.70) (8.30)

Student 1.00 0.27 0.27 0.21 0.17

(0.00) (0.45) (0.44) (0.41) (0.37)

Married 0.00 0.41 0.51 0.55 0.60

(0.00) (0.49) (0.50) 0.50) (0.49)

Highest degree 2.03 2.04 2.28 2.36 2.24

(0.31) (0.56) (0.70) (0.77) (0.71)

Total included 289 145 158 159 150

Total excluded 7 11 59 53 61

Table notes: standard errors are in parentheses. Highest degree: 1=high school, 2=undergrad 3=master,
4=PhD, 0=none of the above.

Table B.2 Logistic regressions on the SML tasks

(1) (2) (3) (4) (5) (6) (7)

Sample Lab Online Pooled Lab Online Pooled Pooled

Variables Dependent variable: Choice of the ISPD lottery

Feedback -0.028 -0.022 -0.026

(0.080) (0.102) (0.063)

Online -0.120

(0.079)

Constant -0.062 -0.185** -0.103** -0.076* -0.196*** -0.076* -0.116***

(0.057) (0.083) (0.047) (0.043) (0.067) (0.043) (0.037)

Observations 2,890 1,450 4,340 2,890 1,450 4,340 4,340

Individuals 289 145 434 289 145 434 434

Table notes: the dependent variable is a dummy that is equal to 1 if a subject chose the ISPD lottery, and 0 otherwise. The
variable “Feedback" is equal to 1 if immediate feedback was received and 0 otherwise. The variable “Online" is equal to 1
if an observation comes from the online experiment and 0 otherwise. The notations for significance levels are as follows: ∗

for p≤0.1; ∗∗ for p≤0.05; ∗∗∗ for p≤0.01.
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Heterogeneity in response to immediate feedback

To explore heterogeneity in feedback effects, we conduct a latent class analysis, similar to that

presented in section 5.2. For each subject, we compute the frequency of choosing the ISPD lot-

tery, separately for choices with and without immediate feedback. We specify that the resulting

variables are distributed according to a binomial distribution with five trials. We estimate mod-

els with up to five classes, but convergence fails for models with six or more classes. Both the

Bayesian and the Akaike information criteria select the model with two classes. The first class of

individuals chooses the ISPD lottery at a frequency of 0.60 without immediate feedback and at a

frequency of 0.30 with immediate feedback. However, this difference is not statistically signifi-

cant (p = 0.30). Approximately 7% of subjects are allocated to this class, characterized by strong

DSPD. The remaining 93% are assigned to a class that chooses the ISPD lottery at a frequency of

50% both with and without immediate feedback. In summary, the latent class analysis does not

provide any evidence for heterogeneity in feedback effects.

We further explore correlations between survey measures and feedback effects. To do this,

we compute, for each individual, the frequency of choosing the ISPD lottery, separately for

choices with and without immediate feedback, and calculate the difference. The resulting vari-

able ∆(ISPD) ranges between -1 and 1. It is positive if a subject chose the ISPD lottery more often

when receiving immediate feedback, and negative otherwise.

In column (1) of Table B.3, we pool observations from the lab and the first online experiment

and perform an OLS regression with ∆(ISPD) as the dependent variable. We include a number of

demographic variables as explanatory variables, such as dummies indicating whether a participant

is married, a student, or male. Additionally, we include variables indicating their participation in

the lab experiment, age, and education level (1=high school, 2=undergraduate, 3=master, 4=PhD,

0=none of the other levels).

For the lab experiment, we conduct an additional OLS regression with several survey measures,

including individuals’ CRT score (Frederick (2005), see Figure E.10), their tendency to experience

general regret (Schwartz et al. (2002), see Figure E.11), investment regret (Guiso (2015), see

Figure E.13), and their score on a numeracy test (Schwartz et al. (1997); Cokely et al. (2012),

see Figure E.14). The CRT and numeracy scores are calculated based on the number of correct

answers. Both regret scores are calculated as the average response and are coded such that a higher

score implies a higher tendency to experience regret. These results are reported in column 2.

We apply the Romano-Wolf step-wise procedure (Romano and Wolf, 2005, 2016) to correct

p-values for multiple hypotheses testing. After the correction, two explanatory variables remain

statistically significant at the 5% level. These are the dummy variable indicating whether a par-

ticipant is a student and the subjects’ self-reported tendency to experience investment regret. In
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response to immediate feedback, students chose the ISPD lottery approximately 23 percentage

points more often. For a standard deviation increase in the reported tendency to experience in-

vestment regret (sd = 0.92), participants chose the ISPD lottery roughly 6.2 percentage points less

often under immediate feedback.

Table B.3 OLS regressions exploring correlates of feedback effects

(1) (2)
Variables ∆(ISPD) ∆(ISPD)

married 0.121 CRT score -0.004
(0.071) (0.035)
[0.451] [0.981]

student 0.227** general regret 0.054
(0.069) (0.029)
[0.017] [0.405]

male 0.011 investment regret -0.067**
(0.032) (0.023)
[0.981] [0.042]

age 0.002 numeracy score -0.018
(0.005) (0.018)
[0.981] [0.84]

education level -0.012
(0.028)
[0.981]

lab 0.129
(0.056)
[0.187]

Constant -0.158 Constant 0.091
(0.138) (0.125)

Observations 434 Observations 289
R-squared 0.024 R-squared 0.035

Table notes: the dependent variable is the difference between the frequency of choos-
ing the ISPD lottery with and without feedback. The notations for significance levels
are as follows: ∗ for p≤0.1; ∗∗ for p≤0.05; ∗∗∗ for p≤0.01. Significance levels are
indicated with respect to p-values that were corrected for multiple hypotheses testing
following the Romano-Wolf procedure (Romano and Wolf, 2005, 2016). The corrected
p-values are reported in brackets.
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Correlates of correlation sensitivity

In the survey, we asked participants to rate on Likert scales to what extent they compared lotteries

column-by-column, state-by-state, row-by-row, and whether they calculated the expected values.

We explore whether the subjects’ reports are consistent with the latent classes they are assigned

to. To simplify the analysis, we code two variables that average the responses to modes of com-

parisons that might be more conducive to correlation sensitivity and modes that might be more

conducive to correlation insensitivity. Comparing lotteries row-by-row and calculating expected

values might be associated with correlation insensitivity. In the baseline treatment, column-by-

column comparisons and state-by-state comparisons should induce correlation sensitivity. In the

column-effects treatment, only column-by-column comparisons might be associated with correla-

tion sensitivity, whereas state-by-state comparisons might be associated with correlation insensi-

tivity. The reverse might hold true in the state-effects treatment.

We regress, for each of the four latent classes, the posterior probability on the two indexes mea-

suring modes of comparison that might be conducive to correlation sensitivity or insensitivity (see

Table B.4). We compute p-values controlling for the family-wise error rate (Romano and Wolf,

2005, 2016). We find subjects self-reports are broadly consistent with their probability of being

assigned to the different classes. The probability of being assigned to the correlation-insensitive

class 1 significantly decreased with comparison modes that were conducive to correlation sen-

sitivity, whereas the probabilities of being assigned to the correlation-sensitive classes 2 and 3

increased with these modes of comparison. We did not find any correlation between the modes of

comparison that might be conducive to correlation insensitivity and class assignment in any of the

three classes. Finally, none of the coefficients reached significance in the random-choice class 4.

We also explore correlations between correlation sensitivity at the individual-level and survey

repose variables. To do so, we calculate for each subject the fraction with which the ISPD lottery

was chosen for the SML tasks, and regress this variable on demographics and other survey vari-

ables (see Table B.5). Throughout, we pool as much observations possible, in order to increase

power. We again compute p-values controlling for the family-wise error rate (Romano and Wolf,

2005, 2016). None of the considered variables reaches statistical significance at the 5% level.
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Table B.4 Self-reported mode of lottery comparison and class assignment

(1) (2) (3) (4)

Variables p1 p2 p3 p4

“insensitive" “strong DSPD" “modest DSPD" “random choice"

Sensitive mode -0.052*** 0.016*** 0.026*** 0.010

(0.008) (0.005) (0.005) (0.005)

[0.003] [0.010] [0.003] [0.136]

Insensitive mode 0.014 0.003 -0.008 -0.010

(0.014) (0.010) (0.011) (0.010)

[0.684] [0.748] [0.711] [0.684]

Constant 0.755*** 0.031 0.085 0.129

(0.102) (0.068) (0.066) (0.078)

Observations 467 467 467 467

R-squared 0.060 0.014 0.031 0.006

Table notes: the notations for significance levels are as follows: ∗ for p≤0.1; ∗∗ for p≤0.05; ∗∗∗ for
p≤0.01. Significance levels are indicated with respect to p-values that were corrected for multiple
hypotheses testing following the Romano-Wolf procedure (Romano and Wolf, 2005, 2016). The
corrected p-values are reported in brackets. Robust standard errors are reported in parentheses. The
variable “Sensitive mode" is calculated as follows. Baseline: (columni + statei)/2. Column-effects:
columni. State-effects: statei. The variable "Insensitive mode" is calculated as follows. Baseline:
(rowsi+EVi)/2. Column-effects: (rowsi+EVi+statei)/3. State-effects: (rowsi+EVi+columni)/3,
where rowsi, EVi, columni, and statei are the extent to which subjects state they compared lottery
row-by-row, by calculating the expected payoff, by comparing payoffs column-by-column, or state-
by-state, each on a Likert scale from 1-9.
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Table B.5 Self-reported mode of lottery comparison and class assignment

(1) (2) (3)

Variables ISPD ISPD ISPD

Age -0.001

(0.001)

[0.864]

Male 0.007

(0.012)

[0.910]

Education level 0.015

(0.010)

[0.711]

Student 0.031

(0.017)

[0.468]

CRT score 0.021 0.015

(0.019) (0.014)

[0.864] [0.864]

Numeracy -0.002

(0.009)

[0.967]

General regret 0.012

(0.015)

[0.887]

Investment regret -0.018

(0.012)

[0.771]

WTR 0.000

(0.005)

[0.967]

Constant 0.426*** 0.465*** 0.446***

(0.036) (0.078) (0.025)

Observations 919 296 452

R-squared 0.033 0.010 0.002

Table notes: the notations for significance levels are as follows: ∗ for p≤0.1; ∗∗ for
p≤0.05; ∗∗∗ for p≤0.01. Significance levels are indicated with respect to p-values that
were corrected for multiple hypotheses testing following the Romano-Wolf procedure
(Romano and Wolf, 2005, 2016). The corrected p-values are reported in brackets. Robust
standard errors are reported in parentheses.
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Appendix C: Differences between experiments

Considering the choice frequencies in the baseline treatment for the different experiments reveals

differences in correlation sensitivity across treatments. In the following, we focus on the six

same marginal lotteries of three- and six-state choice tasks that were common among the three

experiments (see tasks 1-6 in Table 9). Subjects chose the ISPD lottery at a frequency of 47.8%

in the lab experiment, at a frequency of 45.8% in the first online experiment, and at a frequency

of 41.4% in the second online experiment. Running logistic regressions, we find that the choice

frequency does not differ significantly between the lab and the first online experiment (p = 0.396),

but does differ significantly between the lab and the second online experiment p = 0.004 and

marginally between the first and second online experiment p = 0.08. This suggests that the choice

display we used in the second online experiment might be somewhat more conducive to trigger

correlation sensitivity.

To further explore the causes of differences in behavior between the different treatments, we

run a logistic regression with a dummy indicating whether a subject chose the ISPD lottery for a

given choice task, and number of demographics and task characteristics as explanatory variables.

Demographic variables include age, education level (1=high school, 2=undergraduate, 3=master,

4=Phd, 0=none of the other levels), and dummies indicating whether a subject is male and a

student. We further include dummies indicating whether a subject took part in the first online

experiment, one dummy for each of the three treatments of the second online experiment, and

dummies indicating the number of states.

Results can be found in Table C.1. We apply the Romano-Wolf step-wise procedure (Romano

and Wolf, 2005, 2016) to correct p-values for multiple hypotheses testing. After the correction,

two variables remain statistically significant at the 5% level. These are the dummy indicating the

baseline treatment of the second online experiment and the dummy indicating that a choice task

had six states, both of which enter negatively and are highly significant (corrected p < 0.01). The

omitted category is choices in the lab study with three states. The estimates suggest that both the

choice display in the second online experiment and a high number of states might lead to stronger

correlation sensitivity.
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Table C.1 Logistic regressions on the SML tasks

(1)
Variables ISPD
age -0.004

(0.004)
[0.428]

male 0.041
(0.049)
[0.671]

education level 0.077*
(0.043)
[0.060]

student 0.040
(0.084)
[0.709]

online 1 -0.063
(0.097)
[0.671]

online 2 - baseline -0.269***
(0.095)
[0.002]

online 2 - column 0.023
(0.092)
[0.709]

online 2 - state -0.081
(0.102)
[0.671]

four states -0.083*
(0.046)
[0.060]

six states -0.171***
(0.070)
[0.007]

Constant -0.168
(0.156)

Observations 8,723

Table notes: the notations for significance levels are as follows: ∗ for p≤0.1; ∗∗ for
p≤0.05; ∗∗∗ for p≤0.01. Significance levels are indicated with respect to p-values
that were corrected for multiple hypotheses testing following the Romano-Wolf pro-
cedure (Romano and Wolf, 2005, 2016). The corrected p-values are reported in
brackets. Standard errors, clustered at the subject level, are in parentheses.
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Appendix D: Exploration of potential drivers of correlation sensitivity

Parameters for the FOSD tasks in the first online experiment can be found in Table D.1. We obtain

these pairs of choice tasks by adding an additional payoff to each payoff of lottery A or B in two

SML tasks. We further include one choice between a state-wise dominant and a dominated lottery

as an attention check.

As we only implemented these choices in the online experiment, we have choices for four

pairs of choice tasks as illustrated in Table 3 for 145 subjects. Pooling observations from all

lottery pairs, participants chose the ISPD lottery at a frequency of 18.0% when it was first-order

stochastic dominated but at a frequency of 68.4% when it was dominant. Clearly, participants

expressed a strong preference for first-order stochastic dominance. Importantly, when pooling

all choices regardless of which lottery was dominant, participants chose the ISPD lottery at a

frequency of about 43.2%, which is again significantly lower than the random-choice benchmark

of 50% (p < 0.001). Thus, the observed correlation-sensitivity in lottery choices persists even

when one lottery is first-order stochastic dominant. This suggests that the observed effects are not

of second-order importance only.24 Moreover, the overall choice frequency of the ISPD lottery

is significantly lower than 50% for both the three states and the six states tasks (p = 0.005 and

p < 0.001 respectively, logistic regression with standard errors clustered at the subject level.) For

further discussion on the role of the number of states, see Appendix C.

To address the potential concern that meaningful correlation sensitivity might arise only when

choices are sufficiently complex we included lottery choices with three and six states and fur-

ther manipulated the choice display to explore whether task complexity is linked to correlation

Table D.1 Parameters for choice tasks involving FOSD

Set 1
Pair a b c d e f
1 71 63 22 - - -
2 93 75 57 39 21 3

Set 2
Pair a b c d e f
1 94 45 4 - - -
2 94 88 83 15 10 4

Table notes: the three-state lotteries always have the following three possible states: (xA,xB) ∈
{(c,a),(b,c),(a,b)}. The four state lotteries always have the following four possible states: (xA,xB) ∈
{( f ,a),(e, f ),(d,e),(c,d),(b,c),(a,b)}. All states are equally likely. We added 4 to each state of either
lottery to make it first-order stochastic dominant.

24 Another way of seeing these results is that first-order stochastic dominance is violated at a frequency of 18% when the
ISPD lottery is dominated, but at a frequency of 31.6% when the ISPD lottery is dominant.
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Figure D.1 Choice frequencies of the ISPD lottery
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sensitivity. Task complexity might be linked to correlation sensitivity if correlation sensitivity

is caused by the salience channel or heuristics in decision making.25 We employ the following

within-subject treatment. We present subjects the choice tasks either in the minimal state space

(i.e., 3 displayed states for the 3 states and 6 displayed states for the 6 states choice task), or we

split each state into two, which results in a presentation with double the number of states as in the

minimal state space (i.e., 6 displayed states for the 3 states and 12 displayed states for the 6 states

choice task). The states are split such that each initial state is split in the same way. For instance,

if state 1 of a 3-states choice task that occurs with probability 1/3 is split into two states that occur

with probability 1/9 and 2/9, state 2 and 3 are split in the same way. For an illustration of this,

consider Figure D.2. Half of the subjects received set 1 in Table D.1 non-split, and set 2 split, and

the other group received set 2 non-split and set 1 split.

We find that the split display significantly increases violations of FOSD by about 7% (p =

0.001, logistic regression with standard errors clustered at the subject level). We take this as

evidence that this manipulation succeeded in making the choice tasks more complex. If correlation

sensitivity in choices is increased by complexity, we should expect stronger correlation sensitivity

when subjects faced choices in the split display. This is however not the case. Overall, the ISPD

lottery was chosen at a frequency of 43.6% when choices were displayed in the minimal state

Figure D.2 Examples of the minimal state display and the split display

(a) Minimal state display (b) Split state display

25 For instance, subjects might count which lottery yields the higher payoff in most states and then choose this lottery.
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display and a frequency of 42.8% when choices were displayed in the split display. This difference

is not statistically significant (p = 0.68, Wald Chi-Square test, standard errors clustered at the

subject level).26

26 We obtain similar results when summing, for each subject, the number of choices for the ISDP lottery and running a
non-parametric Wilcoxon signed-rank test (p = 0.66).
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Appendix E: Screenshots of the experiments

The experiments were conducted in Chinese. The following screenshots are translations into En-

glish. The instructions and the display of the choice tasks were very similar in the different exper-

iments. The online experiments included an abbreviated version of the questionnaire shown here,

which included only the Cognitive Reflection Test (Frederick, 2005) and demographic questions.

The demographic survey used in the first online experiment was slightly different from that used

in the lab experiment.

Appendix E.1: The lab and first online experiment

Figure E.1 Example of feedback on choices’ outcomes

Figure E.2 Introduction (1/4)
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Figure E.3 Introduction (2/4)
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Figure E.4 Introduction (3/4)
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Figure E.5 Introduction (4/4)
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Figure E.6 Example of a choice task

Figure E.7 Example of a state-wise dominant task

Figure E.8 Announcement of feedback for the last five choice tasks
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Figure E.9 Survey on how participants made their decisions
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Figure E.10 Survey (1/6)

Figure E.11 Survey (2/6)

Figure E.12 Survey (3/6)
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Figure E.13 Survey (4/6)

Figure E.14 Survey (5/6)
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Figure E.15 Survey (6/6)
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Appendix E.2: Second online experiment

Figure E.16 Instructions (1/3) that is common in all three treatments

Figure E.17 Instructions (2/3) in the baseline treatment
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Figure E.18 Instructions (3/3) in the baseline treatment

Figure E.19 Example of a choice screen in the baseline treatment
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Figure E.20 Asking participants how they made their choices in the baseline treatment
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Figure E.21 Instructions (2/3) in the column-effects treatment
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Figure E.22 Instructions (3/3) in the column-effects treatment

Figure E.23 Example of a choice screen in the column-effects treatment

66



Figure E.24 Asking participants how they made their choices in the column-effects treatment
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Figure E.25 Instructions (2/3) in the state-effects treatment
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Figure E.26 Instructions (3/3) in the state-effects treatment

Figure E.27 Example of a choice screen in the state-effects treatment
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Figure E.28 Asking participants how they made their choices in the state-effects treatment
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Figure E.29 The questionnaire that is common in all three treatments
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