MATHEMATICAL MODELS OF DYNAMIC EQUILIBRIA FOR LARGE POPULATIONS, AND THEIR APPLICATIONS

Pierre-Louis LIONS

Collège de France, Paris

Conference of SCOR Foundation for Science Webinar, June 28th 2022

- I INTRODUCTION
- II A REALLY SIMPLE EXAMPLE
- III GENERAL STRUCTURE
- IV OVERVIEW AND PERSPECTIVES
- V MEANINGFUL DATA AND ML
- VI RECENT THEORETICAL DEVELOPMENT
- VII RECENT APPLICATIONS

WHAT? WHY?

- decentralized / centralized intelligence
- mathematical models for situations involving many agents/players

- New class of models for the average (Mean Field) behavior of "small" agents (Games) started in the early 2000's by J-M. Lasry and P-L. Lions.
- Requires new mathematical theories.
- Numerous applications: economics, finance, social networks, crowd motions, telecommunications, Meaningful Data and ML...
- Independent introduction of a particular class of MFG models by M. Huang, P.E. Caines and R.P. Malhamé in 2006.
- Previous related works in Economics: anonymous games, Krusell-Smith...
- A research community in expansion: mathematics, economics, finance, telecommunications, energy...

- In 2018, two books; most of the existing mathematical material to be found in the Collège de France videotapes (≥ × 18h) that can be downloaded...!
- Combination of Mean Field theories (classical in Physics and Mechanics) and the notion of Nash equilibria in Games theory.
- Nash equilibria for continua of "small" players: a single heterogeneous group of players (adaptations to several groups...).
- Each generic player is "rational" i.e. tries to optimize (control) a criterion that depends on the others (the whole group) and the optimal decision affects the behavior of the group (however, this interpretation is limited to some particular situations...).
- Huge class of models: agents → particles, no dep. on the group are two extreme particular cases.

AN EXAMPLE OF APPLICATIONS: CROWD MOTIONS

II. A REALLY SIMPLE EXAMPLE

- Simple example, not new but gives an idea of the general class of models (other "simple" exs later on): where do we put our towels on the beach?
- E metric space, N players $(1 \le i \le N)$ choose a position $x_i \in E$ according to a criterion $F_i(X)$ where $X = (x_1, \dots, x_N) \in E^N$.
- Nash equilibrium: $\bar{X} = (\bar{x}_1, \dots, \bar{x}_N)$ if for all $1 \leqslant i \leqslant N$ \bar{x}_i min over E of $F_i(\bar{x}_1, \dots, \bar{x}_{i-1}, x_i, \bar{x}_{i+1}, \dots \bar{x}_N)$.
- Usual difficulties with the notion
- $N \to \infty$? simpler ?
- Indistinguishable players:

$$F_i(X) = F(x_i, \{x_j\}_{j \neq i}), F \text{ sym . in } (x_j)_{j \neq i}$$

• Part of the mathematical theories is about $N \to \infty$:

$$F_i = F(x, m) \quad x \in E , \quad m \in \mathcal{P}(E)$$

where
$$x = x_i$$
, $m = \frac{1}{N-1} \sum_{j \neq i} \delta_{x_j}$

• "Thm": Nash equilibria converge, as $N \to \infty$, to solutions of

(MFG)
$$\forall x \in \text{Supp } m, F(x, m) = \inf_{y \in E} F(y, m)$$

- Facts: i) general existence and stability results
 - ii) uniqueness if $(m \to F(\bullet, m))$ monotone
 - iii) If $F = \Phi'(m)$, then $(\min_{\mathcal{P}(E)} \Phi)$ yields one solution of MFG.

Example:
$$E = \mathbb{R}^d$$
, $F_i(X) = f(x_i) + g\left(\frac{\#\{j/|x_i - x_j| < \varepsilon\}}{(N-1)|B_{\varepsilon}|}\right)$

 $g \uparrow$ aversion crowds, $g \downarrow$ like crowds

$$F(x, m) = f(x) + g(m * 1_{B_{\varepsilon}}(x)(|B_{\varepsilon}|^{-1})$$
$$\varepsilon \to 0 \qquad F(x, m) = f(x) + g(m(x))$$

(MFG) supp
$$m \subset \text{Arg min } \left(f(x) + g(m(x)) \right)$$

-g ↑ uniqueness, g ↓ non uniqueness

$$\min\left\{\int fm + \int G(m)/m \in \mathcal{P}(E)\right\}, \ G = \int_0^Z f(s)ds$$

- explicit solution if $g\uparrow: m=g^{-1}(\lambda-f), \lambda\in\mathbb{R}$ s.t. $\int m=1$

III. GENERAL STRUCTURE

• MFG dynamical equilibria lead to equations

$$\frac{\partial U}{\partial t} + D + T + N = 0 \quad t \in (0, T)$$

where the unknown function U ("value function")

$$U(x, m, t) \in \mathbb{R}$$

(this is an example: finite horizon, one crowd? ...)

• D : decision block, for instance, optimal control decision

$$D = H(x, m, \partial_x U) \quad \text{(Bellman)}$$
optimal control $\alpha^*(x, m, \partial_x u)$

• *T* : transport block, for instance, the state of the population is modified only by the individual decisions

$$T = \langle \partial_m U, -\partial_x \dot{\{}B(x, m; \alpha^*)m\} \rangle$$

 N : random effects (idiosynchratic noise variance a, common noise variance b)

$$N = -\frac{a+b}{2} \partial_x^2 U + \langle \partial_m U, -\frac{a+b}{2} \partial_x^2 m \rangle + b \langle \partial_x \dot{\partial}_m U, \partial_x m \rangle$$

- A VERY PARTICULAR CASE: dynamical problem, horizon
 T, continuous time and space, Brownian noises (both indep.
 and common), no intertemporal preference rate, control on
 drifts (Hamiltonian H), criterion dep. only on m
- U(x, m, t) $(x \in \mathbb{R}^d, m \in \mathcal{P}(\mathbb{R}^d) \text{ or } \mathcal{M}_+(\mathbb{R}^d), t \in [0, T] \text{ and } H(x, p, m) \text{ (convex in } p \in \mathbb{R}^d)$

• MFG master equation (∞d equation!)

$$\begin{cases} \frac{\partial U}{\partial t} - (\nu + \alpha) \Delta_{x} U + H(x, \nabla_{x} U, m) + \\ + \langle \frac{\partial U}{\partial m}, -(\nu + \alpha) \Delta m + \operatorname{div} \left(\frac{\partial H}{\partial p} m \right) \rangle + \\ -\alpha \frac{\partial U}{\partial m^{2}} (\nabla m, \nabla m) + 2\alpha \langle \frac{\partial}{\partial m} \nabla_{x} U, \nabla m \rangle = 0 \end{cases}$$

and
$$U|_{t=0} = U_0(x, m)$$
 (final cost)

ullet ν amount of ind. rand. , α amount of common rand.

TWO PARTICULAR CASES

- ullet ∞ d problem in general but reductions to finite d in two cases
- 1. Indep. noises ($\alpha=0$), no common noise int. along caract. in m yields

$$(\mathrm{MFGi}) \left\{ \begin{array}{l} \frac{\partial u}{\partial t} - \nu \Delta u + H(x, \nabla u, m) = 0 \\ \\ u\mid_{t=0} = U_0(x, m(0)), m\mid_{t=T} = \bar{m} \\ \\ \frac{\partial m}{\partial t} + \nu \Delta m + \ \mathrm{div} \ (\frac{\partial H}{\partial \rho} m) = 0 \end{array} \right.$$

where \bar{m} is given

FORWARD — BACKWARD system!

2. Finite state space $(i \leqslant i \leqslant k)$: graphs...

(MFGf)
$$\frac{\partial U}{\partial t} + (F(x, U) \cdot \nabla) U = G(x, U), U|_{t=0} = U_0$$

(no common noise here to simplify ...)

$$x \in \mathbb{R}^k$$
, $U \to \mathbb{R}^k$, F and $G: \mathbb{R}^{2k} \to \mathbb{R}^k$

non-conservative hyperbolic system

Example: If
$$F = F(U) = H'(U)$$
, $G \equiv 0$

and if
$$U_0 = \nabla \varphi_0 \ \ (\varphi_0 \to \mathbb{R})$$
 then

- solve HJ

$$\frac{\partial \varphi}{\partial t} + H(\nabla \varphi) = 0 , \ \varphi \mid_{t=0} = \varphi_0$$

– take $U = \nabla \varphi$, "U solves" (MFGf) in this case

FUNCTIONS OF MANY VARIABLES

- From $u(x_1,\ldots,x_N)$ symmetric in (x_1,\ldots,x_N) to u(m) $m\in\mathcal{P}$ (think $m=\frac{1}{N}\sum_i\delta_{x_i}$ (empirical measures) or equivalently u(X) X random variable whose law is m (think $X=x_i$ with probability 1/N)
- mathematical theory to exploit this idea with applications in particular to the Master Equation.

IV. OVERVIEW AND PERSPECTIVES

Lots of questions, partial results exist, many open problems

- Existence/regularity:
 - (MFGi) "simple" if H "smooth" in m (or if H almost linear ...), OK if monotone
 - (MFGf) OK if (G, F) mon. on \mathbb{R}^{2k} or small time
- Uniqueness: OK if "monotone" or T small . . .
- Non existence, non uniqueness, non regularity (!)
- Qualitative properties, stationary states and stability, comparison, cycles . . .
- $N \to \infty$ (see above)
- Numerical methods (currently, 3 "general" methods and some particular cases)
- Variants: other noises, several populations, more couplings . . .
- applications (MFG Labs . . .)

- NEW optimal stopping, impulsive controls
- NEW intertemporal preference rates $(+\lambda \to \infty)$: agent based models, kinetic models. . .
- NEW MFG with a major player
- NEW MFG with Bayesian learning/partial information
 - ? Beyond MFG ? (fluctuations, LD, transitions)

TWO S. EXAMPLES

- at which time will the meeting start?
- the mexican wave

V. MEANINGFUL DATA

- MFG Labs
- Practical expertise and models mainly for "big" data involving "people"
- New models that include classical clustering models in M.L. (K-mean, EM . . .), then algorithms
- No need for euclidean structures or for "a priori" distances
- Models for Deep Learning

Why "PEOPLE": STRATEGY!

Ex. 1: Taxis

Ex. 2: Movies and Fb

People that are "close" will say they like movies that are "close"

 \rightarrow consistency distance - like on items/people

VI. RECENT THEORETICAL DEVELOPMENTS

- 1. WEAK FORM OF MASTER EQS (Ch. Bertucci)
 - requires "less" regularity
 - using monotonicity structure
- 2. EXTENDED MFG (P.E. Souganidis PL²)
 - "decouples" $\frac{\partial H}{\partial p}$ term in *m*-dynamics and the *H* term for the value equation
 - Example:

$$-\frac{\partial u}{\partial t} + A(\nabla u, m) = 0, \frac{\partial u}{\partial t} + \operatorname{div}(B(\nabla u, m)) = 0$$

- $\bullet \ unifies \ MFG \ and \ Optimal \ Control/Transport$
- stable by homogenization limits
- 3. FINITE STATE SPACE TO CONTINUA (...)
 - asymptotic limit
 - OK under monotonicity conditions

4. PARTIAL OBSERVATION/INFORMATION

4.1 PARTIAL INFORMATION AND BAYESIAN LEARNING (PL², CdF)

- agent does not "know" his controlled drift
- 1 agent: Stochastic Control with Partial Information → leads to the optimal control of Zakaï 's equation (PL² a long time ago...)
- agents share the same belief on the others
- MASTER EQUATION (Proba on Proba!)
- Reduction in the "Gaussian" case

4.2 PARTIAL OBSERVATION (Ch. Bertucci)

- agent knows his state but does not know the state of the crowd
- belief on the state of the crowd (Proba on Proba
 2)
- MASTER EQUATION
- well-posedness under monotonicity conditions

- MAJOR PLAYER/CROWD WITH STRATEGIC ADVANTAGES
 (J.M. Lasry-PL², Ch. Bertucci, J.M. Lasry-PL²)
- A "CATALOGUE" OF SOLUTIONS (B. Seeger-PL²)
 Ex: FINITE STATE SPACE, functions nonincreasing in all variables
 - ∃ maximal, minimal solutions (all solutions between...)
 - Different regularisations pick various solutions (maximal, minimal, others...)
 - Examples with a complete description of all solutions
- 7. NUMERICAL SIMULATION OF MASTER EQS VIA NEURAL NETS
 - (Y. Achdou, L. Bertucci, J-M. Lasry, PL²)
 - $\bullet \infty D$ nonlinear equation !
 - why it might be possible/why it is possible
 - Ex. Krussel-Smith

8. RANDOM MATRICES (non commutative spaces):

- asymptotic integro-differential Vlasov-Mc Keen equations (Ch. Bertucci, M. Debbah, J-M. Lasry, PL²)
- optimal control of systems governed by large random matrices
 - \rightarrow optimal control of above eqs \rightarrow MFG
- MFG for intelligent systems governed by large random matrices (yet to be explored)
- RK: "Similar problems" for preferential attachments networks/graphs

VII. RECENT APPLICATIONS

- MOBILE NETWORKS (Bertucci, Debbah, Paschos, Lasry, Vassilaras, PL²) CROWD OF DEVICES CONNECTED TO AN ANTENNA (5G): MINIMIZE ENERGY USAGE WHILE ACHIEVING QOS REQUIREMENTS (IEEE, 15th ISWGS) and more in preparation...
- BITCOIN MINING (Bertucci², Lasry, PL²)
 COMPETITION BETWEEN MINERS in a POW
 based BLOCKCHAIN
 unique equilibrium (MFG), total compact power...,
 and other "proofs", lightning networks...
- MACHINE LEARNING (in collaboration with F. BACH group at INRIA) mathematical models for machine learning (my seminar at CdF 11/09/18 "deep learning")

- many existing works with mean-field limits, not games
- various issues: number of neurons going to infinity, number of layers going to infinity, game interpretation a posteriori
 - 4. OIL PRODUCTION (Achdou, Bertucci, Lasry, Rostand, Scheinkman, PL²)
 - major agent (cartel), competitive producers and arbitrages (via storage)
 - MFG models (EDMOND 1, 2)
 - calibration on historical data
 - agreement on production shares . . .
 - new predictions: the "cliff", negative prices in some situations
 - article in FT (hugely read) on March 23, 2020 saying that our game theoretic work explains the current oil crisis (falling off "the cliff")
 - in April 2020, negative prices were observed (in particular for WTI oil futures)